首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
开展了检测小鹅瘟病毒(GPV)VP3基因的荧光定量PCR(FQ-PCR)的建立和基因枪轰击不同剂量(6μg/只、3μg/只和1μg/只)GPV-VP3基因疫苗(pcDNA-GPV-VP3)在BALB/c小鼠各组织器官(心、肝、脾、肺、肾、脑、肠和免疫部位皮肤)分布规律的研究。结果表明:①建立的FQ-PCR特异性强、灵敏度高、重复性好,核酸模板数与FQ-PCR测定的Ct值具有很好的直线相关性(相关系数达到0.999);②pcDNA-GPV-VP3在各剂量免疫小鼠1h即可在各组织中被检测到,其中在免疫部位皮肤含量最高,在心与肺中含量也较高,在脑中含量最低;③pcDNA-GPV-VP3在组织器官里的含量于3h开始下降,31wk仍能在3个剂量免疫组小鼠的各个组织器官中检测到,但多数组织器官中的含量比1h时约少了102,免疫部位皮肤减少了103;④不同剂量免疫组各组织器官中pcDNA-GPV-VP3含量6μg/只组>3μg/只组>1μg/只组,但剂量组之间的差异并不显著(P>0.05)。研究表明:FQ-PCR是定量检测pcDNA-GPV-VP3在免疫小鼠各组织器官含量的可靠实验手段,pcDNA-GPV-VP3免疫小鼠后1h时可分布至小鼠体内各组织器官中并持续存在31wk以上。  相似文献   

2.
 【目的】比较小鹅瘟病毒(GPV)VP3基因疫苗(pcDNA-GPV-VP3)和弱毒疫苗免疫鹅体内的免疫应答,以期为进一步研究和阐明pcDNA-GPV-VP3免疫发生机理、免疫持续期等提供基础数据。【方法】将pcDNA-GPV-VP3和小鹅瘟弱毒疫苗分别免疫30日龄四川白鹅,用免疫组织化学方法检测免疫鹅体内GPV抗原的分布,用淋巴细胞增殖实验和间接ELISA分别检测免疫鹅的细胞免疫水平和血清抗体滴度,比较GPV基因疫苗与弱毒疫苗诱导鹅体免疫应答的能力。【结果】①弱毒疫苗组于免疫鹅的心、肝、脾、肺、肾、法氏囊、胸腺、哈氏腺、十二指肠、空肠、回肠、直肠、盲肠、胰腺、大脑及注射部位肌肉均中检测到GPV抗原;基因疫苗组于免疫鹅的心、十二指肠、空肠、回肠、直肠、盲肠及注射部位肌肉中检测到GPV抗原。②弱毒疫苗免疫雏鹅外周血T淋巴细胞14 d后对ConA的反应开始增强,35 d达到最高值后下降;基因疫苗免疫雏鹅外周血T淋巴细胞OD值先下降,14 d后开始上升并高于空白质粒对照鹅和PBS对照鹅,35 d时达最大值,以后又逐渐下降,第21-63天极显著(P<0.01)高于PBS对照鹅和空白质粒对照鹅,第21-63 天时极显著(P<0.01)高于弱毒疫苗免疫鹅。③弱毒疫苗免疫鹅血清抗体第3天开始高于PBS对照鹅,第28天达到最大值后逐渐下降;基因疫苗免疫鹅血清体从第14天开始高于PBS对照组,第28天达最大值,第21-217天显著(P<0.05)或极显著(P<0.01)高于PBS和空白质粒对照鹅;基因疫苗免疫鹅血清抗体除第28天极显著(P<0.01)高于GPV弱毒疫苗免疫鹅外,其余时间与弱毒疫苗免疫鹅差异不显著。【结论】pcDNA-GPV-VP3免疫雏鹅后能在免疫部位皮肤、心肌和各肠段中表达并能够诱导鹅体产生良好的细胞免疫和体液免疫,基因疫苗诱导鹅体产生免疫应答的能力优于弱毒疫苗,结果为阐述pcDNA-GPV-VP3的免疫机制和临床应用提供了数据资料。  相似文献   

3.
将本实验室构建的鸭α-干扰素基因疫苗(pcDNA-SDIFN-α)分别按每只50、100、200μg3个剂量肌肉注射免疫樱桃谷鸭,以PBS、空载体质粒pcDNA3.1(+)和鸭瘟弱毒疫苗为对照,免疫15d后攻击感染鸭瘟强毒,于攻毒后2h、6h、12h、24h、3d、6d、9d、14d、22d、26d、33d和40d采全血,同时取死亡鸭的各组织器官,采用实时荧光定量PCR对鸭瘟病毒在鸭外周血中的动态变化和在各组织器官中的分布及含量进行检测。结果表明:①3个剂量pcDNA-SDIFN-α和鸭瘟弱毒疫苗都对鸭产生良好保护作用,免疫鸭未发生死亡;而PBS和空载体对照组3只鸭中有1只鸭死亡,死亡鸭心、肝、脾、肾、胰和各段肠管中均检测到鸭瘟病毒DNA且其含量大于pcDNA-SDIFN-α免疫鸭外周血病毒DNA含量;②3个剂量pcDNA-SDIFN-α免疫鸭外周血鸭瘟病毒DNA含量比PBS和空载体对照组低,差异显著(P<0.05),特别是在2h差异极显著(P<0.01);攻毒后24h内,3个剂量pcDNA-SDIFN-α免疫鸭外周血鸭瘟病毒DNA含量均低于鸭瘟弱毒疫苗免疫鸭,差异显著(P<0.05);3个不同剂量pcDNA-SDIFN-α免疫组之间外周血鸭瘟病毒DNA含量差异不显著(P>0.05),攻毒初期,200μg免疫鸭外周血鸭瘟病毒DNA含量最低,100μg次之,50μg最高。研究表明,pcDNA-SDIFN-α肌肉注射免疫鸭后能产生一定的抗鸭瘟强毒感染的作用,并在攻毒初期表现出一定的量效关系。  相似文献   

4.
240日龄健康溆浦鹅种鹅180羽,随机分成5组,每组3个重复,每个重复12羽,1组为注射组(每隔10 d注射LHRH-A3,10μg/羽),另外4组分别口服(拌料饲喂)0、5、10、15μg/羽LHRH-A3.经21 d预试和60 d试验,结果显示:口服10μg/羽LHRH-A3,溆浦鹅产蛋率显著提高;各口服处理组蛋品质、受精率、孵化率和健雏率无显著影响.  相似文献   

5.
为了研究Tα1的免疫增强效果,以120只1日龄SPF鸡作为试验对象,联合应用表达Tα1的重组质粒pcDNA-Tα1和H5亚型禽流感灭活疫苗,观察不同剂量Tα1对免疫鸡只血清HI抗体水平、免疫器官指数以及抗病毒作用的影响。结果表明:Tα1各剂量处理组在鸡只免疫后7~21 d对HI抗体水平有轻微抑制,28 d与正常免疫组达同一水平;鸡只的法氏囊、胸腺和脾脏免疫器官指数均显著增加(P<0.05),尤以低剂量组(50μg/只)效果最佳;攻毒后,Tα1各剂量组对鸡只的保护率均为100%。可见,Tα1对禽流感H5N1疫苗有较强的免疫促进作用,且呈现一定的剂量关系,以低剂量(50μg/只)的免疫增强效果最为理想。  相似文献   

6.
 【目的】以DPV gC基因疫苗(pcDNA-DPV-gC)为模型,采用复凝法制备壳聚糖/pcDNA-DPV-gC纳米微球,对其在雏鸭体内的抗原表达和分布进行初步研究。【方法】将壳聚糖/pcDNA-DPV-gC基因疫苗以肌注、滴鼻和口服3种途径免疫20日龄雏鸭,于免疫后不同时间点(4h、12h、1d、3d、5d、7d、2 w、4 w、6 w和10 w)分别随机宰杀2只雏鸭,采集肝、脾、肺、肾、胰、脑、胸腺、哈氏腺、法氏囊、食道、十二指肠、盲肠和直肠,应用间接免疫组化检测DPV gC基因在雏鸭体内的抗原表达和分布。【结果】①肌注组免疫雏鸭1 d,肝脏、法氏囊、十二指肠、盲肠和直肠检测到DPV gC蛋白;滴鼻组免疫雏鸭12 h,肺脏出现阳性信号,1 d哈氏腺和法氏囊检测到DPV gC蛋白;口服组免疫雏鸭12 h,食道出现中等强度的阳性信号,1 d法氏囊、十二指肠、盲肠和直肠检测到DPV gC蛋白;②在3种免疫途径中,肝脏、肺脏、法氏囊、哈氏腺、食道、十二指肠、盲肠和直肠是DPV gC抗原表达的主要器官;阳性信号主要在肝细胞、肺上皮细胞、法氏囊和哈氏腺淋巴细胞、食道上皮细胞和肠道粘膜上皮细胞及固有层细胞等部位;③不同免疫途径免疫的壳聚糖/pcDNA-DPV-gC基因疫苗在雏鸭体内的抗原表达量和持续时间的总体表达规律为:肌注组>滴鼻组>口服组。【结论】壳聚糖能促进DPV gC基因在雏鸭体内的表达和分布,肌肉注射是壳聚糖/pcDNA-DPV-gC基因疫苗首选的免疫方式。  相似文献   

7.
胡嘉俊 《饲料博览》2003,(12):49-49
此病主要侵害20日龄以内雏鹅,发病率和死亡率可高达90%~100%,超过3周龄雏鹅仅少数发生,1月龄以上雏鹅基本不发生。1.雏鹅免疫:活苗免疫,未经免疫种鹅或免疫后期种鹅的雏鹅,在出壳48h内用1∶50~1∶100稀释的鹅胚化雏鹅弱毒苗进行免疫,每雏鹅皮下注射0.1mL,免疫后7d内严格隔离饲养,防止强毒感染,有较高的保护率。2.种鹅免疫:①活苗免疫。一次免疫法:种鹅产蛋前15d左右用1∶100稀释的鹅胚化种鹅弱毒苗(简称种鹅苗)1mL皮下或肌肉注射。在免疫12d后至4个月内,鹅群所产蛋孵化的雏鹅能抵抗病毒感染,有较高的保护率。4个月后雏鹅的保护率有所下降…  相似文献   

8.
将60只小鼠随机分为空白对照组,太子参茎叶多糖(RPSLP)低、中、高剂量组,每组15只.空白对照组小鼠灌服0.2m L·d~(-1)蒸馏水,低、中、高剂量组小鼠分别灌服50、100和200 mg·kg~(-1)·d~(-1)RPSLP,14 d后检测各组小鼠的免疫器官指数和血清免疫球蛋白、补体含量,研究RPSLP对小鼠免疫功能的影响.结果表明:与空白对照组相比,高剂量组小鼠的脾脏指数显著提高(P0.05),胸腺指数显著降低(P0.05);低、中剂量组小鼠的IgA含量显著提高(P0.05),低剂量组小鼠的IgM含量显著提高(P0.05),高剂量组小鼠的IgM含量显著降低(P0.05);中、高剂量组小鼠的C_3含量显著提高(P0.05);各剂量组小鼠的IgG和C_4含量无显著差异(P0.05).由此可见,一定剂量的RPSLP可以促进小鼠免疫器官的发育,增强免疫力.  相似文献   

9.
黄曲霉毒素B_1致雏鸭肝脏细胞DNA的损伤效应   总被引:1,自引:0,他引:1  
【目的】(1)研究黄曲霉毒素B1(AFB1)不同染毒水平(3,30,300μg·kg-1BW)染毒后,在不同时间点导致雏鸭肝细胞DNA损伤情况;(2)探明AFB1染毒剂量及染毒时间与雏鸭肝细胞DNA损伤之间的关系,为AFB1遗传毒性提供研究模型。【方法】96只雄性北京鸭雏鸭,随机分为16组,每组6只。第1组为对照组,第2至6组为低剂量(染毒)组、第7至11组为中剂量(染毒)组、第12至16组为高剂量(染毒)组。对照组、低剂量组、中剂量组、高剂量组雏鸭分别灌胃25%DMSO水溶液,0.25,2.5,25μg·mL-1溶液各1mL,对照组于灌胃1h后,各剂量染毒组分别于灌胃染毒1、2、8、24、48h用彗星试验检测肝细胞DNA损伤。【结果】试验表明,雏鸭对于AFB1导致的肝细胞DNA损伤非常敏感,肝细胞DNA损伤程度与AFB1摄入量以及摄入时间有关。经口染毒2h左右DNA损伤达到高峰,所有染毒组在尾长、尾部DNA百分含量、尾矩、Olive尾矩等指标上均显著高于对照组(P0.05);随着AFB1染毒剂量增加,DNA损伤程度加深、持续时间延长。【结论】(1)AFB1致雏鸭肝细胞DNA损伤的效应非常强,低剂量(3μg·kg-1BW)AFB1暴露就能够引起雏鸭肝细胞DNA发生显著损伤。(2)经口染毒AFB12h后雏鸭肝细胞DNA损伤达到高峰,此时DNA损伤程度与AFB1暴露之间的量效关系最为明显。(3)雏鸭是研究AFB1遗传毒性的一个良好动物模型,彗星试验能够反映AFB1致雏鸭肝细胞DNA损伤的量效关系。  相似文献   

10.
为探讨微囊藻毒素-LR(microcystin-LR,MC-LR)对鱼类的免疫毒性,采用急性毒性实验方法,分别对草鱼经腹腔注射不同剂量的MC-LR并于24、48、72 h和96 h后取免疫器官脾脏和头肾进行组织显微结构分析。结果显示,随着MC-LR剂量的增加和时间的延长,脾脏组织呈现出细胞空泡化并伴随着黑色素巨噬细胞先增多后减少的现象,尤其在75μg MC-LR·kg~(-1)BW和100μg MC-LR·kg~(-1)BW剂量组染毒48 h后,黑色素巨噬细胞中心体积显著增大;头肾组织显微结构变化主要表现为血窦、血管扩张,在75μg MC-LR·kg~(-1)BW和100μg MC-LR·kg~(-1)BW剂量组中的草鱼染毒72 h和96 h后,淋巴组织松散、排列混乱,淋巴细胞空泡化甚至细胞裂解。此外,采用荧光定量PCR分析了草鱼经不同剂量MC-LR处理96 h后脾脏和头肾中BAFF和APRIL基因表达的变化。结果显示BAFF和APRIL的表达均被不同程度地抑制,其中脾脏组织中BAFF基因在75μg MC-LR·kg~(-1)BW剂量组中被显著抑制(P0.05),头肾组织BAFF基因在75、100μg MC-LR·kg~(-1)BW剂量组中均被显著抑制(P0.05),而APRIL除了在25μg MC-LR·kg~(-1)BW剂量组的脾脏组织中表达下调不显著外,在其他处理组均被显著抑制(P0.05)。以上研究结果表明,MC-LR可导致草鱼免疫器官一系列的病理变化,并有时间和剂量效应,此外,MC-LR还可抑制B淋巴细胞分裂相关基因的表达。  相似文献   

11.
【目的】利用高密度SNP芯片完成了对北京油鸡血清免疫球蛋白Y含量等9个免疫性状的关联分析,筛选得到了与性状显著关联位点和候选基因。基于该研究结果,以集中分布在16号染色体的候选基因CD1b、 BMA1(B locus M alpha chain 1)、TRIM27(tripartite motif-containing 27)和ZNF692(zinc finger protein 692)作为研究对象,以北京油鸡为实验材料,在聚肌胞(Polyinosinic acid-polycytidylic acid, Poly I:C)和细菌的处理下进一步对候选基因表达特性进行分析和鉴定。【方法】随机选取80只12日龄北京油鸡分为3组:空白对照组、聚肌胞处理组和肠炎沙门氏菌(Salmonella enteritidis, SE)处理组,分别饲养在独立的隔离器内。两处理组分别胸肌注射聚肌胞注射液和SE菌液,对照组注射生理盐水,于处理后12 h、24 h、3 d和6 d(days post infection, DPI)检测血清炎症因子的变化水平和候选基因表达规律。【结果】经过聚肌胞和SE处理后,体重在24 h之后显著低于空白组(P<0.05),体温24 h以内显著升高;血清IFN-α、IL-4和IL-6水平先升高后降低,在第24小时或第3天达到峰值,TNF-α水平持续升高,3 d后极显著高于空白组(P<0.01)。两种处理条件下CD1b的mRNA表达没有组织特异性,其他3个基因在胸腺和法氏囊中高表达。在胸腺组织中,CD1b在两处理间12和24 h的表达量存在显著差异(P<0.01),在聚肌胞处理组整个感染阶段没有显著性变化,在SE组是先升高后降低的趋势,感染后24 h时表达量最高(P<0.01);BMA1在12 h和3 d时两处理组间差异显著,聚肌胞处理组在12 h时表达量低于SE处理组,而在3 d时显著高于SE处理组(P<0.01);TRIM27在聚肌胞感染6 d时表达量显著高于空白组(P<0.05),ZNF692的表达量在3组间没有差异。在法氏囊中,CD1b表达量在两个处理组中存在差异,在SE组12 h时表达量高;BMA1和TRIM27的表达量在两组间没有差异,TRIM27在3 d时表达量最高(P<0.01),ZNF692在SE组感染24 h时相对表达量高于聚肌胞处理组,在两组中都在3 d时表达最高。【结论】CD1b、BMA1、TRIM27和ZNF692参与了聚肌胞和肠炎沙门氏菌引起的免疫反应过程,是与免疫相关的功能基因;CD1b主要在肠炎沙门氏菌感染的前期发挥作用;BMA1和ZNF692分别参与胸腺和法氏囊的免疫反应。  相似文献   

12.
探究人工感染条件下,鸭源小鹅瘟病毒QH-L01株对樱桃谷雏鸭各器官组织病理学变化的影响,以期阐明QH-L01的病理发生规律及特征。实验组以每只0.2 mL(106.54 ELD50)的剂量肌肉接种30只2日龄樱桃谷肉鸭鸭源小鹅瘟病毒,对照组的鸭接种等量的灭菌生理盐水,分别在1、3、6、9 d观察各组织器官的病理变化。感染后1 d,先出现肺点状出血,部分肺小叶扩张,十二指肠、回肠和盲肠等肠道组织绒毛上皮细胞坏死脱落。感染后3 d,脑、肾、胸腺、法氏囊出现病理变化,十二指肠、回肠和盲肠等肠道组织绒毛和黏膜层轻度坏死、脱落。感染后6 d,脾脏淋巴细胞增多,十二指肠、回肠和盲肠等肠道组织绒毛和黏膜层中度坏死、脱落。感染后9 d,各组织病变减轻或者恢复正常。整个感染期死亡率为20%。  相似文献   

13.
【目的】研究阿维菌素在草鱼体内的药物代谢动力学,为实际生产中阿维菌素的使用提供理论指导。【方法】用初始质量浓度为0.3 μg/L的阿维菌素水溶液药浴草鱼,于给药后0.5,1,2,3,4,6,8,10,12,24,48,72,96,144,216,336,528和576 h采取血浆、肌肉+皮、肝脏、肾脏、鳃等样品,采用高效液相色谱荧光法测定阿维菌素在草鱼血浆中的质量浓度及在组织中的含量,数据经3P97药动学软件分析。【结果】在(26.0±1.0) ℃的水温条件下,阿维菌素单剂量浸泡给药0.3 μg/L,血药经时过程符合二室开放式模型。主要药动学参数如下:分布半衰期(T1/2α)34.2 h,吸收半衰期(T1/2(ka))15.61 h,消除半衰期(T1/2β)163.22 h,药时曲线下面积(AUC)2 486.02 (μg·h)/L,达峰时间(Tpeak)40.75 h,峰质量浓度(Cmax)11.92 μg/L。药后72 h时草鱼肌肉、肝脏、肾脏和鳃中阿维菌素含量均达到最高值,其中肝脏中的含量最高,达到17.8 μg/kg,其后依次为肾脏(12.1 μg/kg)、肌肉(10.7 μg/kg)和鳃组织(5.2 μg/kg),血浆中阿维菌素含量在48 h达到最高(11.2 μg/L)。肝脏、肾脏和鳃组织中阿维菌素含量均呈“双峰”曲线,前两者在144 h时都有第2次吸收高峰,分别为15.0和8.4 μg/kg。【结论】草鱼血浆及各组织中阿维菌素在给药后24 d未检出,考虑到临床应用情况的复杂性及理论值与实测值之间的差距,建议对草鱼单剂量(0.3 μg/L)药浴阿维菌素后的休药期为24 d。  相似文献   

14.
本实验用免疫酶组化法分析雏鸡接种IBDV后,病毒在体内分布和病理变化,接种后6,12,24,48,72,96,120,144,168,192,216,240小时扑杀,每次扑杀5只。对照组雏鸡与实验组同步扑杀,每次扑杀3只。结果表明:雏鸡感染IBDV后,要从其法氏囊,胸腺,脾脏,盲肠扁桃体,哈德氏腺,肝脏,肾脏,腺胃,小肠,盲肠和肺脏等器官检出IBDV。  相似文献   

15.
应用常规石蜡切片方法,H.E染色,观察鹌鹑免疫器官组织形态学特征。结果表明:1)鹌鹑法氏囊黏膜层有6~10个大小不一的皱襞,每个皱襞由10~12淋巴小结组成;2)胸腺被结缔组织分成许多不完全分开的胸腺小叶,胸腺小叶的髓质连在一起,髓质内含有胸腺小体,还有许多网状细胞团;3)脾脏包括被膜和实质,脾脏的被膜较厚,实质主要由淋巴组织构成,其中分布有大量已形成和正在形成的血管。该研究揭示了8日龄鹌鹑免疫器官的具体发育状况,为鹌鹑发育生物学提供资料,为其疾病诊断及治疗提供依据。  相似文献   

16.
【目的】为了建立鸭源出血性大肠杆菌(Enterohaemorrhagic E. coli, EHEC)O46分离株的实验病理模型并观察其在雏鸭体内的动态分布及组织病理学和超微病理学变化。【方法】本研究以 O46分离株通过口服、肌肉和皮下注射3种途径感染10日龄健康雏鸭,感染剂量均为0.5 mL/只 (2×108CFU•mL-1),感染后2、4、6、12、24h剖杀、取样,以后每隔12h剖杀、取样并对剖解变化进行详细观察,在每个安排的时间点平行采集2只雏鸭的心、肝、脾、肺、肾、脑、食道、胸腺、十二指肠、空肠、盲肠、直肠、法氏囊、胰腺和气管等组织制备组织切片和超薄切片,通过H.E染色、醋酸铀、柠檬酸铅染色和免疫组化染色,对感染雏鸭的组织病理学变化及超微病理变化、细菌抗原定位进行观察。【结果】实验病理模型能复制出与自然感染相同的病例,除气管未检测到细菌抗原外,其余的组织均检测到细菌抗原,心、肺、脾、肾和肠道是感染的主要靶器官,抗原主要存在其感染细胞的细胞质中,阳性信号最早出现于心脏。尸体剖解、组织病理学及超微病理学观察表明,雏鸭人工感染鸭源EHEC O46分离株后主要病理学损害为浆膜广泛性纤维素性炎症,心、肝、脾、肺、肾、法氏囊、小肠、胰腺、脑等器官充血、出血、炎性细胞浸润,肾小管上皮细胞、肝细胞、心肌细胞、肠上皮细胞等实质细胞变性、坏死或凋亡,法氏囊淋巴细胞减少。超薄切片电镜观察可在心、肺、脾、肝和小肠中观察到大肠杆菌,其侵害的主要靶细胞包括淋巴细胞、巨噬细胞、肠道上皮细胞、心肌纤维细胞。【结论】鸭源EHEC O46分离株能使雏鸭发病和死亡,实验病理模型能复制出EHEC引起的出血性肠炎和溶血性尿毒症等病理变化,该分离株能在鸭体内进行大面积的侵嗜,心脏、肺脏、脾脏、肾脏和肠道是O46分离株感染的主要靶器官。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号