首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
以玉米秸秆为原料,利用2%NaOH溶液对原料进行预处理,并研究预处理温度、时间、秸秆粒度对纤维素、半纤维素、木质素的含量以及脱除率的影响。结果表明,当温度为100℃、时间为4 h、粒度为16目时,半纤维素和木质素的脱降率达90.6%和86.4%,纤维素含量达53%。采用浓硫酸法对预处理后的秸秆进行水解工艺研究,在比较了液固比、时间、温度、酸浓度等单因素影响后,采用正交试验进行优化,得到最佳水解工艺的条件:温度为50℃、时间为10 min、硫酸浓度为72%、液固比为10 mL∶1 g。  相似文献   

2.
项巍  朱建良 《安徽农业科学》2011,39(20):12560-12561,12580
[目的]研究固体酸催化玉米秸秆半纤维素水解的基础动力学。[方法]单因素试验确定最佳固体酸种类、固固比、固液比,然后在以上最优条件下,综合考察反应温度和时间对半纤维素水解产率的影响。[结果]固体酸催化玉米秸秆半纤维素水解的最适反应条件:2号固体酸为催化剂,固固比1∶1,固液比1∶15,反应温度100℃,反应时间10 h。在该最适条件下,可溶性总糖浓度为34.7 g/L,半纤维素水解产率为93.8%。[结论]该研究为固体酸降解玉米秸秆工艺的优化和放大设计提供了基础动力学数据。  相似文献   

3.
甲酸具有较好的溶出木素的能力,同时也能水解纤维素和半纤维素等碳水化合物.本研究以蔗渣为原料、甲酸为蒸煮药液,采用有机溶剂法制浆,通过测定蒸煮废液中己糖和戊糖的含量来表征碳水化合物在甲酸溶剂法蒸煮过程中的水解情况.试验表明,在木素脱出的同时,碳水化合物也发生了不同程度的降解,其中半纤维素迅速溶出,其降解速率随甲酸浓度的提高而迅速增加,在90%甲酸条件下,40 min内半纤维素基本上被水解;而纤维素的降解则较缓和,对于蔗渣原料在100℃,90%甲酸条件下,80 min后才发生明显降解.  相似文献   

4.
【目的】 研究稀硫酸预处理下,酸浓度、固液比、处理时间及温度对杂交狼尾草木质纤维素降解效率的影响,分析稀硫酸对木质纤维素降解的作用机理,并筛选最佳预处理工艺。【方法】 以杂交狼尾草为研究对象,以H2SO4浓度(0.5%、1.0%、1.5%、2.0%、2.5%)、固液比(1﹕6、1﹕8、1﹕10、1﹕12、1﹕14)、时间(15、30、45、60、90 min)和温度(80、100、110、120、125℃)4个单因素进行试验,每个因素取5个水平,3次重复,分析单因素对固体分解率、纤维素降解率、半纤维素降解率、木质素脱除率及水解糖的影响。在单因素试验基础上,采用4因素2水平的L8(24)正交试验确定主要影响因素,并对最佳工艺条件预处理下的杂交狼尾草进行SEM分析和XRD分析。【结果】 单因素试验结果表明,各因素下半纤维素降解率均高于木质素降解率。其中,硫酸浓度的增加使纤维素和半纤维素的降解率增加,木质素脱除率降低;由纤维素水解产生的葡萄糖产量也随着浓度的增加而增加,但木糖含量逐渐降低;低浓度的硫酸(0.5%—1.5%)促进杂交狼尾草固体物质降解消化,继续增加硫酸浓度(>1.5%)杂交狼尾草的固体降解无显著变化。固液比对各指标的影响差异较小,固液比增加至1﹕10时,固体分解率、半纤维素和木质素脱除均达到最大。预处理时间的长短对固体分解率、半纤维素和木质素的降解影响不明显,但促进半纤维素降解和葡萄糖生成。温度对固体分解率、纤维素、半纤维素和木质素的降解及水解糖产量的影响效果明显,100℃是重要的临界温度,有效降解木质纤维素需要温度达100℃以上。正交试验结果表明,影响半纤维素降解的因素依次为:温度-浓度-时间-固液比。稀硫酸预处理后杂交狼尾草木质纤维素结构塌陷,非纤维物质被显著脱除,纤维束裸露(SEM);纤维素结晶聚合度增加(XRD)。【结论】 稀硫酸预处理杂交狼尾草主要降解半纤维素,对木质素的降解效果较差。温度是最主要的影响因素,其次为酸浓度。4 因素影响下的最佳工艺条件为:浓度1.5%,固液比1﹕6,时间15 min,温度120℃。  相似文献   

5.
采用NaOH、乙醇复合溶剂对葵花秆进行预处理,通过单因素试验研究了反应时间、温度、固液比、溶剂质量分数及复合溶剂比例对葵花秆木质素去除率的影响,然后利用正交试验法对预处理条件进行优化,得到最佳预处理条件为温度170℃,2%NaOH和70%乙醇的复合溶剂体积比为2∶1,固液比1∶25(g∶m L),反应时间1 h,该条件下木质素去除率为53.75%。酶解试验表明,木质素去除率越高,葡萄糖产率越高。最后通过红外光谱、扫描电镜对预处理前后的葵花秆进行结构分析,发现预处理后的葵花秆结构遭到破坏,出现不规则的裂痕,木质素与半纤维素之间的结构被破坏,暴露出更多的纤维素和半纤维素。  相似文献   

6.
将高温稀酸水解同乙醇萃取相耦连,对麦草中的3种主要木质纤维素组分纤维素、半纤维素、木质素进行分级分离.结果表明,细粉后的麦草在140℃、H2SO4体积分数0.5%、固液比1:20(W/V)的条件下处理10 min.麦草中的半纤维素含量由原来的34.6%降到4.34%.半纤维素水解木糖得率高达74.1%,固体残渣回收率为65.3%.此条件下处理后的固体残渣进行乙醇萃取分离木质素,最佳萃取条件为温度180℃、乙醇体积分数40%(含0.3%NaOH)、固液比1:50(W/V)、保温时间30 min,粗木质素得率高达89.5%.经以上两步分段处理后的粗纤维素疏松质软,回收率达到83.2%.  相似文献   

7.
旧瓦楞纸箱稀酸水解制还原糖的研究   总被引:1,自引:0,他引:1  
张晶晶  万金泉  赵银中  王艳 《安徽农业科学》2009,37(35):17312-17314
[目的]探讨稀H2SO4水解旧瓦楞纸箱(OCC)制还原糖的影响因素。[方法]采用稀酸在高温下水解OCC,进行正交优化试验。[结果]稀H2SO4水解OCC的最佳工艺条件为:硫酸质量分数3%,水解温度180℃,水解时间60min,液固比16:1(ml:g),还原糖得率为68.481%。其还原糖得率明显高于稻草、玉米秸秆等原生植物纤维的得糖率,而酸浓度又远远低于浓跋水解的酸浓度。[结论]对于OCC酸水解过程,前30rain半纤维素先于纤维素水解,30—60min主要为纤维素水解,60~120min炭化作用超过了纤维素的水解作用。  相似文献   

8.
[目的]采用超声波预处理协同固体酸水解蔗渣制备还原糖。[方法]探讨了超声波预处理后水解温度、固体酸用量、水解时间、液固比对水解液中还原糖得率的影响。采用响应面法建立二次回归模型,并对水解工艺进行优化。[结果]当水解温度97.52℃、固体酸用量5.76%、反应时间3.10 h、液固比18∶1时,还原糖的得率可达75.65%,比在相同工艺条件下未经超声波处理的得率提高了21.91%。[结论]超声波预处理能够促进蔗渣的水解。  相似文献   

9.
[目的]将柠条转化为可被牲畜高效利用的优良饲料。[方法]采用柠条作为单一碳源的筛选培养基、苯胺蓝筛选培养基从牲畜粪便以及柠条腐质中分离筛选出对柠条木质素具有降解作用的菌株D-11。[结果]经微生物形态学和16S rDNA鉴定,D-11为地衣芽孢杆菌,同时对D-11降解条件进行优化。菌株D-11的最佳降解条件如下:最佳氮源为蛋白胨;温度为28~32℃;pH为7;添加诱导剂Mn~(2+)的浓度为0.6 mmol/L。在最优条件下,菌株D-11对柠条木质素降解率为18.21%,半纤维素的降解率为16.11%,纤维素的降解率为13.19%。[结论]采用菌株D-11对柠条进行发酵降解,使其转化为可被牲畜利用的优良饲料。  相似文献   

10.
玉米秸秆中木质素、半纤维素和纤维素的组分分离研究   总被引:1,自引:0,他引:1  
针对分离植物茎秆中的木质素、半纤维素和纤维素需高温和高压处理的苛刻条件以及所得组分纯度和回收率均较低的缺陷,采用乙醇和硝酸相结合的方法对玉米秸秆在常压下进行预处理,经稀碱溶液蒸煮及过氧化氢处理,实现高效分离和回收木质素、半纤维素和纤维素组分的目的。正交试验确定的最佳条件为:固液比1∶14、硝酸与乙醇体积比1∶2、76℃下反应3 h,原料的木质素脱除率达76.3%,木质素回收率为44.5%;预处理后的原料以4% NaOH为溶剂、固液比1∶40、95℃下蒸煮2.5 h,其半纤维素脱除率98.8%,半纤维素回收率达66.0%(滤液∶乙醇1∶0.8、pH 7、沉淀2 h);粗纤维素以2.5%H2O2为溶剂、固液比1∶30、pH 11.5、(46±1)℃下处理6 h,其纤维素纯度99.28%,回收率59.7%。该方法具有工艺条件温和及绿色环保等优势,为玉米秸秆的分级利用提供了一条新的途径。  相似文献   

11.
NaOH-乙醇预处理提高甘蔗渣酶法制备低聚木糖效率   总被引:1,自引:0,他引:1  
目的对甘蔗渣酶法制备低聚木糖(XOS)的工艺进行研究,并通过NaOH-乙醇预处理提高低聚木糖的生产效率。方法首先,对预处理前后甘蔗渣的化学组成进行表征,确定预处理对原料组分的影响。其次,利用接触角和X射线衍射分析技术,探讨预处理对底物湿部化学(润湿性)特性和物理结构的影响。最后,通过高效液相色谱(HPLC)分析检测木聚糖酶水解样品,比较不同预处理强度对酶水解生产低聚木糖质量浓度的影响。结果对于NaOH-乙醇预处理促进木聚糖酶水解的工艺而言,最佳的预处理条件为10 g/L NaOH-乙醇(乙醇的体积分数为50%)预处理。在该预处理强度下,大量的木质素被脱除,脱除率可以达到78.10%;而且,该预处理方式能够有效改善物料的亲水性能,使接触角从61.5°降低到55.4°,同时将纤维原料的结晶度从28.6%提高到32.3%。通过分析酶水解样品可知:当NaOH用量为10 g/L时,可以实现最高低聚木糖质量浓度(1.85 g/L),与未处理原料(0.83 g/L)相比,提高了122.89%。结论对于甘蔗渣制备低聚木糖的工艺而言,采用木聚糖酶水解的方式能够实现从半纤维素到低聚木糖的有效转化,并且采用NaOH-乙醇预处理可以有效提高甘蔗渣的酶解效率,促进低聚木糖的生产。   相似文献   

12.
高效利用木质素·半纤维素的草菇菌株初筛试验   总被引:2,自引:0,他引:2  
[目的]为筛选出可高效利用木质素、半纤维素的草菇菌株,以促进草菇生产。[方法]以V9、V11、V广、V展1、V展2、V信丰6个草菇菌株进行透明圈法测定,愈创木酚氧化显色观测,过氧化酶显色观测。[结果]6个菌株均能利用木质素、半纤维素,但其能力有差异。V展1、V信丰能高效利用木质素、半纤维素。[结论]从草菇品种中筛选了可高效利用木质素、半纤维素的菌株V展1和V信丰,对促进草菇生产有积极的意义。  相似文献   

13.
乳酸分离稻草中纤维素和木质素的研究   总被引:1,自引:1,他引:0  
[目的]为稻草中纤维素和木质素的进一步利用提供技术指导。[方法]采用乳酸分离稻草中的纤维素和木质素,研究温度对分离效果的影响,并分析不同温度下酸处理纤维素的组成和性质。[结果]温度低于115℃时,酸处理纤维得率随温度的升高快速降低;乳酸木质素得率随温度的升高呈先升高后降低趋势,但温度高于130℃时,乳酸木质素得率降低。随着温度的升高,酸处理纤维中纤维素的含量先升高后降低,125℃时纤维素含量最高;温度低于110℃时,酸处理纤维中木质素含量随温度升高呈降低趋势,温度高于110℃时,升高温度对木质素含量影响不大。红外光谱分析结果表明,分离得到的乳酸木质素中含有较多的极性基团。[结论]在该试验条件下,最佳保温温度为125℃。  相似文献   

14.
【目的】利用浓度为4.5%、pH 11.5的双氧水(alkaline hydrogen peroxide,AHP)预处理苹果渣,研究其对苹果渣化学组分、木质素的去除率和纤维素酶的酶解得率的影响。【方法】以木质素的去除率为指标,优化AHP预处理的温度和时间,经过过滤收集固体组分、干燥后,制得预处理后的苹果渣。根据AHP预处理前苹果渣中纤维素、半纤维素的含量、木质素的含量以及酶解总糖含量,分析AHP在最优预处理温度下,不同预处理时间对苹果渣纤维素、半纤维素的含量及回收率,木质素的含量及去除率、酶解糖得率的影响。通过扫描电镜(scanning electron microscope,SEM)、热重分析法(thermogravimetry/differential thermogravimetry,TG/DTG)和傅里叶变换红外光谱(fourier transform infrared,FTIR)表征AHP处理前后的苹果渣物理结构、化学组分的变化。【结果】预处理的时间和温度对苹果渣木质素的去除率有显著的影响。综合考虑各方面的因素,尤其是经济效益,当预处理时间为2 h、温度为50℃时,木质素的去除率最优,可达到56.68%。在最优的预处理温度下,分析不同预处理时间后苹果渣的组分变化及酶解得率。当预处理时间为2 h时,纤维素、半纤维素回收率可达99.86%,非常接近未处理果渣中的含量;苹果渣的酶解糖得率可达到0.54 g·g-1,是未处理果渣酶解得率的2倍。扫描电镜(SEM)图像对比说明AHP预处理使得果渣的物理结构变得多孔而疏松,纤维束变得宽松而粗糙,内表面积无限增大。热重分析法(TG/DTG)表明AHP预处理明显提高了纤维素组成单体的纯度,减少了预处理后果渣中木质素及残留物的含量。红外光谱(FTIR)研究揭示AHP预处理可以破坏木质素的化学结构,组成木质素的愈创木基、紫丁香基和对羟苯基等基本物质的结构被AHP破坏,从而使得AHP处理后果渣中木质素的含量明显降低。【结论】双氧水是一种有效的苹果渣预处理剂,其预处理效果与预处理的温度和时间有密切联系。  相似文献   

15.
[目的]探讨三生烟叶片及烟花的高质量原生质体制备方法。[方法]通过优化纤维素酶和离析酶浓度配比、酶解时间、渗透调节剂甘露醇浓度等参数,研究三生烟叶片与烟花原生质体的最优制备方法。[结果]三生烟烟叶材料最佳制备条件为1%纤维素酶和0.5%离析酶、甘露醇浓度0.6 mol/L、酶解时间4 h,完整率达88.22%。烟花材料最佳制备条件为0.8%纤维素酶和0.4%离析酶、甘露醇浓度0.7 mol/L、酶解时间2 h,完整率达83.59%。[结论]三生烟叶片与烟花原生质体由于材料来源不同,酶解条件存在差异,制备时需要针对不同组织材料予以优化。  相似文献   

16.
小麦麸皮纤维稀酸水解糖化工艺研究   总被引:1,自引:1,他引:0  
郭娜  姜绍通  李兴江  李硕 《安徽农业科学》2012,40(24):12232-12234
[目的]提高小麦麸皮纤维糖化率,使小麦麸皮得到高效利用。[方法]以小麦麸皮为原料,采用正交试验的方法,以还原糖浓度和水解率为考察指标,研究了稀酸浓度、温度、时间、底物浓度对小麦麸皮纤维酸水解糖化的影响。[结果]温度对酸水解制备还原糖影响非常显著,酸浓度对水解影响明显,时间和底物浓度对小麦麸皮酸水解的影响不明显。小麦麸皮酸水解糖化工艺最佳条件为温度100℃,酸浓度1.5%,时间3.0 h,底物浓度0.067 g/ml;该条件下,小麦麸皮纤维酸水解后还原糖浓度达到38.137 mg/ml,水解率为51.485%。[结论]该研究提高了小麦麸皮纤维酸水解制糖能力,可为小麦麸皮的工业加工应用提供理论依据。  相似文献   

17.
[目的]为提高枸杞浊汁出汁率,用响应面法优化枸杞浊汁酶解工艺。[方法]用果胶酶、纤维素酶处理枸杞果浆,在酶解条件单因素试验的基础上,采用响应面法研究了果胶酶加量、纤维素酶加量、酶解温度、酶解时间对枸杞浊汁出汁率的影响。[结果]试验表明,当果胶酶加量为77.59μl/kg、纤维素酶加量为12.89μl/kg、酶解时间为68.14 min,酶解温度为46.92℃时,枸杞浊汁出汁率可达88.34%。[结论]研究得出的酶解条件可靠,可为枸杞果汁生产提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号