首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
为筛选新的高产纤维素酶真菌,从长期堆放生物质废弃物土壤中分离到1株产纤维素酶真菌。经形态特征观察、ITS分析,初步鉴定为曲霉属,暂定名为Aspergillus cel403。通过单因素试验研究了不同碳源、氮源浓度和培养基初始p H值对该菌在液体发酵中产纤维素酶的影响,在此基础上运用响应面法分析其最佳发酵条件。结果表明,Aspergillus cel403产纤维素酶最佳条件:培养基组分为CMC-Na 15.60 g、KH2PO41.00 g、Mg SO4·7H2O 0.50g、Na Cl 0.10 g、Na NO32.50 g、Fe Cl31 mg、Ca Cl20.10 g、酵母膏1.09 g,H2O 1 000 ml,p H7.1;30℃、140 r/min摇床培养6 d。该条件下发酵产纤维素酶活性为89.66 U/ml,比未经优化发酵条件对照提高了15.02%。可见,Aspergillus cel403在纤维素降解利用方面具备进一步开发潜力。  相似文献   

2.
产纤维素酶菌株的筛选及产酶条件的选择   总被引:15,自引:0,他引:15  
采用摇床液体发酵试验,对18个菌株产纤维素酶进行滤纸酶活性、CMC酶活性、β-葡萄糖苷酶活性测定,筛选出1株产纤维素酶活性较高的菌株(C真3),并通过正交试验,确定该菌株的最优产酶条件.结果表明,最佳组合条件是液体发酵时间7d,摇床培养温度30℃,起始粗酶发酵培养基pH值5.5.  相似文献   

3.
试验旨在研究高产纤维素酶里氏木霉诱变选育与发酵条件优化。采用常压室温等离子体(ARTP)诱变法处理里氏木霉,获得产纤维素酶高的突变菌,并对其产酶发酵条件进行优化。通过单因素实验研究发酵时间、硫酸铵浓度、微晶纤维素浓度、接种量及搅拌速度等对里氏木霉产酶的影响。在单因素的基础上,通过正交实验对里氏木霉产酶的工艺参数进行优化。结果表明,在诱变时间240 s条件下筛选到1株突变里氏木霉ATR-4,其滤纸酶活(FPU)最高可达2.01 U·mL~(-1)。对突变里氏木霉菌株ATR-4的发酵条件优化,筛选得到最佳产酶培养条件为:发酵时间78 h,硫酸铵浓度1 g·L~(-1),接种量10%,搅拌速度400 r·min~(-1)。在此条件下进行验证实验,最高酶活可达4.57 U·mL~(-1)。本研究结果表明,常压室温等离子体(ARTP)诱变可有效对里氏木霉进行诱变育种,改善其产酶能力。  相似文献   

4.
刘焕民  葛向阳  张伟国 《安徽农业科学》2011,39(23):13918-13919,13922
[目的]筛选L-缬氨酸高产菌株并研究其发酵条件。[方法]以黄色短杆菌(Brebvibacterium flavum)突变株ZGH6128为出发菌株,采用紫外线(UV)、硫酸二乙酯(DES)和亚硝基胍(NTG)3种诱变剂进行诱变处理,通过摇瓶培养筛选出L-缬氨酸高产突变菌株。[结果]经过UV、DES和NTG 3种诱变剂处理菌株ZGH6128,逐步获得菌株JVHK597,并具有Leu营养缺陷、Ile营养缺陷、Met营养缺陷、α-AB抗性、2-TA抗性5种遗传标记。在未优化的条件下,菌株JVHK597摇瓶发酵72 h的产酸量达41.2 g/L。8次传代试验结果表明,菌株JVHK597的产酸能力稳定,经鉴定,菌株JVHK597的基因型为(Leu-,Ile-,Met-,α-ABr,2-TAr),遗传标记具有稳定性。发酵培养基中硫酸镁(MgSO4.7H2O)和磷酸二氢钾的含量分别为0.6和1.4 g/L时,最有利于菌株生产L-缬氨酸。[结论]试验筛选出了L-缬氨酸高产菌株JVHK597,并为其发酵培养提供了指导。  相似文献   

5.
采用摇床液体发酵试验,对绿色木霉产纤维素酶活性进行CMC酶活性测定,筛选出一株产纤维素酶活性较高的菌株T075,并通过试验,确定该菌株的最优产酶条件。结果表明,最佳组合条件是液体发酵培养温度30℃,秸秆粉:麸皮为2:1,接种量6%。  相似文献   

6.
选取绿色木霉化L4C作为纤维素酶的生产菌株,分别研究了碳源、氮源、接种量、培养时间、培养温度和培养基初始p H对液态发酵方法产纤维素酶的影响。并在单因素试验的基础上,采用正交试验研究了绿色木霉化L4C液态发酵产纤维素酶的最佳培养条件。结果表明,培养时间对酶产量影响最大,液态发酵的最佳条件为:分别以稻草粉—纤维素粉混合物和硫酸铵为碳源和氮源,初始p H 5.0,接种量15%,28℃培养5 d。在最佳产酶条件下,羧甲基纤维素酶活性为1 315.16 U·m L-1,滤纸酶活性为1 282.77 U·m L-1。  相似文献   

7.
以灰黄霉素产生菌ji-2为出发菌株经过紫外线与氯化锂诱变处理,选育出灰黄霉素效价高且发酵周期较短的菌株UL 100-80,其效价为91 304μg·mL-1,比出发菌株ji-2提高了47.8%,通过连续传代培养,其遗传稳定性良好。对UL 100-80发酵条件进行优化,优化后液体发酵培养基:大米粉150g·L-1,NaCl 8.0g·L-1,CaCO38.0g·L-1,黄豆饼粉1.0g·L-1,KH2PO46.0g·L-1,KCl 7.0g·L-1,NaNO31.0g·L-1,FeSO41.0g·L-1,pH自然;优化后的培养条件:培养40h的种子液以12%的接种量接种,28℃下培养12d,灰黄霉素的效价从未优化前的91 304μg·mL-1提高到124 965μg·mL-1,提高了36.9%,与出发菌株ji-2相比,UL 100-80产灰黄霉素的效价提高了1.02倍,发酵时间上缩短了48h。  相似文献   

8.
以短小芽胞杆菌M-11为研究对象,选育碱性木聚糖酶高产优良短小芽胞杆菌,并对其发酵条件进行研究。对短小芽胞杆菌M-11用紫外线(UV)诱变,用刚果红平板染色法初筛、摇瓶发酵复筛及稳定性筛选,选育出高产碱性木聚糖酶突变菌株M-11-2,研究发酵条件。结果表明:突变菌株M-11-2基础产酶活力500~600 IU·m L-1,是M-11酶活314.93 IU·m L-1的1.5倍;摇瓶发酵产酶活力811.28 IU·m L-1,是原始菌株M-11(613 IU·m L-1)1.3倍;发酵罐发酵产酶活力2 703.68 IU·m L-1,发酵液产酶能力1 600 000IU·L-1(以成品酶活计),发酵条件:发酵周期24 h,温度37℃,培养基:麸皮7.0%、氯化钠7.0 mmol·L-1、硫酸锌5.0 mmol·L-1、硫酸镁0.02%、酵母膏1.0%、氯化铵1.0%、磷酸氢二钾0.4%,p H调节至8.0。因此,采用紫外线诱变方法,成功选育出高产碱性木聚糖酶的短小芽胞杆菌菌株,稳定性良好,适宜发酵工程应用的优良菌株。  相似文献   

9.
产纤维素酶真菌菌株的分离筛选及产酶条件优化   总被引:3,自引:1,他引:2  
【目的】由于真菌的纤维素酶系较全,且可分泌至胞外,易分离,所以试验致力于筛选高产纤维素酶真菌菌株.【方法】利用羧甲基纤维素钠培养法、刚果红染色法、纤维素酶活性测定法从样品中分离筛选出产纤维素酶菌株,同时结合菌落形态观察、显微镜观察和ITS序列同源性分析进行鉴定.【结果】通过初筛,筛选出15株Hc值较大的产纤维素酶真菌菌株,再经过液体发酵复测羧甲基纤维素酶活和滤纸酶活,筛选出一株产纤维素酶活最高的菌株B-2-3,经鉴定B-2-3为烟曲霉(Aspergillus fumigatus),其羧甲基纤维素酶活为2 341.76U/mL,滤纸酶活为398.18U/mL.经过产酶条件优化,确定其最适产酶条件为温度25℃、接种量4μL、蛋白胨0.5~0.6g/L、CMCNa 0.3~0.35g/L、pH 6.5.【结论】筛选出一株产纤维素酶活较高的烟曲霉菌株B-2-3.  相似文献   

10.
通过调整培养液pH值、无机盐组分和碳源,对筛选的3株秸秆纤维素分解真菌F-1、F-2、F-3进行产酶条件优化研究,并通过紫外诱变处理,选育高纤维素酶活突变株。结果表明,在不同初始pH值液体发酵培养时,3株真菌在培养6 d时的滤纸纤维素酶活力(FPase)达到最高,最适的初始pH分别为8.0、9.0、9.0,培养10 d时羧甲基纤维素酶活力(CMCase)达到最高,最适的初始pH分别为8.0、7.0、7.0;培养一段时间后,各菌株发酵液的pH值均有一定的下降,其中以F-2下降幅度最大;对纤维素酶活力相对最高的F-1进行不同无机盐和碳源培养后发现,适合该菌株产纤维素酶的碳源为谷壳粉,无机盐组分为BA-1;3株真菌经紫外诱变后,获得来自F-1和F-3的4个正突变株,其中F-1-U1、F-3-U1的CMCase分别达到348.22和282.07 U/mL,为出发菌的1.85和2.25倍。  相似文献   

11.
以黑龙江省科学院微生物研究所实验室保存的1株粘质沙雷氏菌S68为出发菌株,进行原生质体紫外线、Na NO2和复合诱变,通过透明圈对比和酶活测定,最终获得1株产酶量高于原始菌株4.3倍的粘质沙雷氏菌诱变菌株,产酶量达到4.98μg·h-1。确定该菌株最佳诱变方法为复合诱变,首先进行紫外诱变(高度为30 cm,诱变时间为12 s),再用化学诱变(0.4 mol·L-1Na NO2诱变5 min),经验证该诱变菌株遗传稳定。  相似文献   

12.
  目的  制作应用于园林绿化废弃物的以木质素降解菌为原材料的高效液体菌剂。  方法  通过苯胺蓝平板褪色圈法和愈创木酚平板变色圈法从分离纯化得到的22株菌中筛选目标菌株,并用内转录间隔区(ITS)测序法对目标菌株进行鉴定,然后通过单因素试验对目标菌株的培养时间、接种量和培养基配方(碳源和氮源)进行优化,最后根据单因素试验结果,采用均匀实验结合人工神经网络算法寻找目标菌株的最佳发酵条件。  结果  根据平板褪色和显色结果,选定菌株Q01为目标菌株。经鉴定,菌株Q01为栓菌属Trametes真菌。根据单因素试验和均匀试验结果,确定菌株Q01的最优发酵条件为培养时间5 d,接种菌液体积分数为12.5%;培养基配方为木质素磺酸钠14.00 g·L?1、蛋白胨12.30 g·L?1、酵母粉5.00 g·L?1、豆饼粉3.00 g·L?1、五水合硫酸铜0.12 g·L?1、氯化钠0.53 g·L?1、pH自然。优化条件后菌株Q01的生物量提高1.27倍,锰过氧化物酶活性提高31.71倍,木质素过氧化物酶活性提高19.12倍,漆酶活性略有降低,但3种木质素酶的总酶活性提高了4.38倍。  结论  菌株Q01在优化后的发酵条件下制得的液体菌剂具有高酶活性和高生物量的特点,在降解园林绿化废弃物木质素方面具有一定应用潜力。图6表3参29  相似文献   

13.
从土壤中筛选到两株能降解棉秆的纤维素分解菌M59、F115,通过构建酶活曲线确定了发酵周期,并进一步检测了不同氮源、不同浓度对菌株降解棉秆酶活的影响。结果表明,M59和F115均能有效降解纤维素,在刚果红纤维素平板上形成的水解圈直径〉0.5cm,降解滤纸的CMC酶活〉7.8 U.ml-1,FPA酶活〉3.9 U.ml-1;两菌株均能降解棉秆且维持较高的酶活(CMC酶活〉7.0 U.ml-1,FPA酶活〉2.5 U.ml-1),发酵周期均确定为10d;氮源及其浓度对两菌株降解棉秆的CMC酶活和FPA酶活影响显著,以0.5%的酵母粉、蛋白胨作氮源,菌株M59的CMC酶活和FPA酶活、F115的CMC酶活均最高,可确定0.5%酵母粉、蛋白胨为两株纤维素分解菌较适宜的氮源。  相似文献   

14.
以乳酸菌作为出发菌株,将其接入豆浆(大豆?水=1?8)进行发酵,根据发酵过程中γ-氨基丁酸(GABA)产量,筛选出GABA的高产乳酸菌菌株,然后利用紫外线对高产菌株进行诱变处理,筛选得到稳定高产GABA突变菌株.结果表明,保加利亚乳杆菌L2为高产GABA乳酸菌菌株,GABA产量达到1.066 g·L-1.对L2进行紫外诱变处理的最佳照射时间为50 s,在此照射时间下,获得高产GABA突变菌株L2-4,其在含有1% L-谷氨酸的改良MRS培养基和豆浆中的GABA产量分别为4.235和1.394 g·L-1,比原菌株的GABA产量分别提高了25.63%和30.77%  相似文献   

15.
A developed method was used for the enhancement of arachidonic acid production by M. isabellina. An orthogonal, rotatable and central composite design was applied to determine the optimum conditions for protoplast regeneration mutagenesis. The results showed that a commixture enzyme (cellulase and glusulase) at the concentration of 4%, enzymolysis temperature at 30℃ and enzymolysis time on 7.5 h were the optimal conditions, in which the lethality of M. isabellina spores was 78.4%. After mutagenesis and re-s...  相似文献   

16.
以产碱性纤维素酶菌株H-1为出发菌株进行紫外线诱变,选育出一株产酶能力是出发菌株2.46倍且产酶性能稳定的高产菌株M-H-l。通过液体振荡培养法,对M-H-l的发酵培养基进行初步研究。结果表明:菌株M-H-l的最适碳源为麸皮,氮源为豆饼粉,无机盐为MgSO4,最适碳氮比为4∶1。  相似文献   

17.
采用淀粉平板和羧甲基纤维素钠(CMC-Na)平板从选取的140株芽胞杆菌中初筛出8株具有产纤维素酶和淀粉酶复合酶芽胞杆菌,经酶活力测定解淀粉芽胞杆菌FJAT-8754(Bacillus amyloliquef aciens)具有较高的淀粉酶、纤维素酶活力。通过研究解淀粉芽胞杆菌FJAT-8754的生长、产酶曲线以及酶学特性,确定在发酵28 h后菌体生长进入稳定期,培养44 h时发酵液中活菌数达到最大为4.41×109 cf u · mL -1,在36 h时纤维素酶、淀粉酶均达到酶活最高峰,酶活分别为135.8、1543.3 U · mL -1;纤维素酶反应最适p H值为5.5、最适温度为50℃,Vmax为5.14×10-3 mg · mL -1· min-1、 Km值为7.71×10-1 mg · mL -1;淀粉酶反应最适pH值为5.5、最适温度为55℃,Vmax为3.35×10-2 mg · mL -1· min-1、 Km值为6.03×10-3 mg · mL -1。采用3因素7水平,即U 7(73)均匀设计法优化解淀粉芽胞杆菌产酶条件,确定产纤维素酶、淀粉酶的最优条件均为:初始pH值6.2、培养温度37.5℃、转速180 r · min-1,优化后解淀粉芽胞杆菌 FJAT-8754纤维素酶活力为202.9 U·mL -1、淀粉酶活力为2392.9U·mL -1。  相似文献   

18.
[目的]优化多黏芽孢杆菌(Paenibacilus polymyxa)液态发酵的条件。[方法]在单因素试验基础上,采用正交试验对多黏芽孢杆菌液态发酵培养条件进行优化。[结果]确定的最佳培养基配方和培养条件为:马铃薯250.0 g/L,白砂糖20.0 g/L,玉米粉30.0 g/L,NaNO3 1.0 g/L,(NH4)2SO4 1.5 g/L,KH2PO4 1.0 g/L,pH6.5,装液量100 ml/250 ml(V/V),接种量5%(V/V),培养温度37℃,摇床转速150 r/min,培养周期72 h。[结论]该研究可为工业化生产多黏芽孢杆菌提供参考。  相似文献   

19.
陈莉  杨双全  徐茹  王修俊  谢欣 《安徽农业科学》2010,38(24):13129-13131
[目的]优化绿色木霉产纤维素酶的条件,为其实际应用提供依据。[方法]采用液体发酵方法对绿色木霉产纤维素酶的条件进行研究,分别考察发酵时间、氮源、接种量和pH值对纤维素酶活力的影响。[结果]绿色木霉产不同酶组分的分泌高峰并不一致,FPA酶活在发酵2d后达到最高值,Cx酶活在发酵3d后达到最高值。发酵培养基以蛋白胨为唯一氮源时,纤维素酶活力最高。发酵培养的最佳接种量为5%,最适初始pH值为4.5。[结论]不同培养条件对绿色木霉产纤维素酶的活力影响各异。  相似文献   

20.
从油脂污染的土壤中分离获得了1株高效产脂肪酶的细菌S31,经鉴定为Burkholderia cepacia(洋葱伯克霍尔德菌)。B.cepacia S31所产脂肪酶具有活性高、耐高温、耐有机溶剂和位置非特异性水解甘油三酯等优良特性。为了进一步提高S31菌株的产酶量,对该菌产酶的发酵条件进行优化。通过单因子试验筛选出最佳碳源为麸皮,最佳氮源为蛋白胨,最佳诱导物为Tween-80。通过对培养基各组分及外部培养条件因素的正交试验,确定S31菌产脂肪酶的摇瓶发酵最优条件为:以20 g.L-1麸皮、10 g.L-1蛋白胨、40 g.L-1Tween-80、0.5 g.L-1MgSO4和2 g.L-1K2HPO4为培养基(pH 7.0),250 mL三角瓶装40 mL培养基,3%接种量,30℃、180 r.min-1培养66 h可获得最理想的酶产量,达283.6 U.mL-1,比优化前提高2.73倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号