首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
采用蛇床子素作为原料,通过酶法从蛇床子中提取蛇床子素,并以蛇床子素提取率为指标,研究料液比、酶种类、酶用量等因素的影响。在单因素试验基础上,选取酶用量、酶解温度、酶解时间以及酶解p H值进行了4因素3水平的Box-Behnken试验设计。结果表明,最优提取条件为料液比1 g∶30 m L、酶用量(纤维素酶∶果胶酶=1∶1)10.4 mg/g、酶解温度46℃、酶解时间125 min、酶解p H值4.6,在此条件下蛇床子素的提取率可达95.13%。  相似文献   

2.
陈琴  严成 《湖北农业科学》2016,(10):2622-2626
采用酶解法提取鱼腥草(Houttuynia cordata)叶中多糖,并采用响应面试验法设计及建立回归方程模型,以优化酶法为提取工艺。以多糖提取量为指标,考察液料比、纤维素酶添加量、酶解时间、酶解温度等因素对多糖提取量的影响。结果表明,影响鱼腥草叶多糖提取量的主次顺序为:液料比酶解温度酶解时间酶添加量;确定最佳提取工艺条件为纤维素酶添加量0.9%、液料比52∶1(m L∶g)、酶解温度31℃、酶解时间174 min。在此条件下,纤维素酶法提取鱼腥草叶多糖的提取量为32.95 mg/g,表明采用响应面优化酶法提取鱼腥草叶多糖是合理可行的。  相似文献   

3.
应用响应面法优化复合酶提取绣球菌多糖工艺   总被引:1,自引:1,他引:0  
采用纤维素酶、果胶酶和木瓜蛋白酶3种酶复合提取绣球菌多糖,在酶解p H值、酶解时间、酶解温度、液料比等单因素试验的基础上,采用响应面法分析优化工艺参数。结果表明,在添加果胶酶0.4%、纤维素酶0.6%、木瓜蛋白酶0.6%时最佳提取工艺为:酶解p H值4.16、酶解时间3.41 h、酶解温度53.73℃、液料比15.63∶1。在此提取条件下多糖得率达到14.33%。  相似文献   

4.
赵广河 《南方农业学报》2012,43(10):1553-1557
[目的]确定猴头菇氨基酸营养液的最佳制备工艺,为以猴头菇为原料的氨基酸强化食品开发提供参考.[方法]以猴头菇营养液中的氨基酸总量为指标,采用单因素试验和正交试验对影响氨基酸总量的酸性蛋白酶用量、纤维素酶用量、酶解温度、酶解时间、酶解pH、液料比等因素进行优化.[结果]影响猴头菇营养液中氨基酸总量的主次因素依次为:酸性蛋白酶用量>纤维素酶用量>液料比>酶解时间>酶解温度>酶解pH,其最佳制备工艺参数为:酸性蛋白酶用量1.00%,纤维素酶用量1.50%,酶解温度50℃,酶解时间60 min,酶解pH 3.5,液料比25∶1.与热水浸提法相比,双酶法制备的猴头菇氨基酸营养液中氨基酸总量提高了73.2%、可溶性固形物含量提高了75.0%.[结论]以双酶法制备猴头菇氨基酸营养液是可行的,能有效提高营养液中的氨基酸总量和可溶性固形物含量.  相似文献   

5.
以乙醇溶液为提取剂,采用纤维素酶酶解的方法从玉米(Zea mays)须中提取总黄酮.设计单因素试验分析了酶用量、酶解温度、酶解时间、pH、乙醇体积分数和料液比等6个因素对玉米须中总黄酮提取率的影响,采用响应面法进一步优化总黄酮提取的工艺条件.结果表明,酶法提取玉米须中总黄酮的最佳工艺条件为每5.0 g干燥的玉米须粉末中加入3.0 g纤维素酶、酶解温度45.00℃、酶解时间149.1 min、pH4.49、体积分数30%的乙醇溶液作为提取溶剂、料液比1∶20(m∶V,g/mL),此条件下玉米须总黄酮的提取率可达0.837%.  相似文献   

6.
采用纤维素酶和果胶酶提取柳蒿芽中的多糖,通过单因素试验和正交试验分析了料液比、时间、酶加量、温度、pH值5个因素对提取柳蒿芽多糖的影响.结果表明:酶法提取多糖的适宜条件是纤维素酶为底物质量的0.5%、果胶酶为底物质量的2.0% , 加热时间为0.5h,温度55℃,溶液pH值为5.5 ,料液比(m(柳蒿芽)∶V(提取液))为1g∶20mL,此时的提取率为5.37%.  相似文献   

7.
采用微波协同酶法提取刺玫叶总黄酮,以刺玫叶总黄酮提取率为主要指标对微波协同酶法提取工艺进行了优化,确定了最佳的工艺条件:提取溶剂为75%乙醇、料液比1∶25,复合酶(纤维素酶∶果胶酶=2∶1),酶解温度55℃、酶解时间120 min、酶解提取2次、酶解体系pH 4.5、微波功率600 W,微波处理时间15 min、微波温度60℃、微波提取2次,在此工艺条件下,刺玫叶总黄酮平均提取率为32.21 mg·g-1。表明微波协同酶法可用于刺玫叶总黄酮的提取。  相似文献   

8.
《天津农业科学》2015,(6):74-77
以黑豆皮为原料、黑豆红色素提取率为指标,在单因素试验的基础上,通过正交试验确定双酶法提取黑豆红色素的最佳工艺为酶用量(果胶酶+纤维素酶)(2+1)mg、酶解p H值3.6、酶解温度55℃、料液比1∶25、酶解时间120 min、提取2次,提取率高达26.60%。研究结果显示,采用双酶法提取黑豆红色素简单高效、提取条件温和且无溶剂残留问题,适用于食品工业规模化生产。  相似文献   

9.
为探究无花果干复合酶解的最佳工艺参数,在单因素试验的基础上,采用Plackett-Burman设计对影响无花果干复合酶解的7个因素进行评价,筛选出3个显著因素(果胶酶添加量、纤维素酶添加量和酸性蛋白酶添加量),又采用响应面法Box-Behnken设计进一步优化出无花果干复合酶解工艺主要影响因素的最佳参数水平。结果表明:无花果干复合酶解最佳工艺参数为复合酶添加量0.66‰(果胶酶添加量0.25‰、纤维素酶添加量0.25‰、酸性蛋白酶添加量0.16‰)、料液比1∶20、酶解pH 4.0、酶解温度50℃、酶解时间40 min,此工艺条件下酶解液中可溶性固形物含量为7.73°Bx,酶解效率得到显著提升。  相似文献   

10.
超声辅助纤维素酶提取茶粕中茶皂苷的工艺研究   总被引:2,自引:0,他引:2  
[目的]优化茶粕中茶皂苷的提取工艺。[方法]在纤维素酶作用下,利用超声辅助,通过单因素试验与正交试验,研究料液比、酶解温度、酶解时间、酶的用量等因素对茶皂苷提取得率的影响。[结果]试验表明,茶粕中茶皂苷的最佳提取条件为酶解温度50℃,酶添加量0.3%,酶解时间70 min,料液比1∶20(g∶m L),在此条件下茶皂苷提取得率为9.769%。[结论]采用超声辅助纤维素酶提取,可有效提高茶粕中茶皂苷的提取得率。  相似文献   

11.
猪苓发酵菌丝胞内多糖提取工艺研究   总被引:1,自引:0,他引:1  
【目的】优化猪苓发酵菌丝胞内多糖的提取工艺,以提高猪苓胞内多糖浸提的得率。【方法】通过单因素试验、正交试验和对比试验确定猪苓发酵菌丝胞内多糖的浸提方法、辅助浸提方法和除蛋白方法。【结果】与水浸提相比,弱碱性溶剂浸提猪苓菌丝胞内多糖的效果更好,具体工艺参数为:按料液比1∶40添加40倍体积pH=11的NaOH,90℃浸提4次,每次60 min;酶解辅助法和超声波辅助法可有效提高猪苓发酵菌丝胞内多糖的浸提得率,其中酶解辅助浸提的效果更好,其最佳工艺参数为:复合酶配比为m(纤维素酶)∶m(果胶酶)=1∶1,复合酶用量为10 mg/g,酶解80 min;蛋白酶和Sevag配合的除蛋白方法,是去除猪苓胞内蛋白的最佳方法。【结论】猪苓发酵菌丝胞内多糖的最适提取工艺流程为:猪苓菌丝干粉-添加10 mg/g复合酶〔m(纤维素酶)∶m(果胶酶)=1∶1〕和40倍体积蒸馏水?50℃酶解80 min-NaOH溶液调pH=11,90℃浸提4次,每次60 min-浸提液合并、浓缩-HCl溶液调pH=6.5-蛋白酶酶解1 h-85℃酶灭活-Sevag除蛋白至无蛋白检出-浓缩-醇沉-干燥。  相似文献   

12.
通过单因素试验和正交试验优化酸法和酶法提取香蕉皮果胶的工艺条件,并对它们的提取效果进行比较.结果表明,酸法的最佳工艺条件为:料液比1∶20、提取pH 1.0、提取温度70℃、提取时间90 min,果胶得率为16.57%;酶法的最佳工艺条件为:料液比1∶20、纤维素酶用量0.4%、酶解pH 5.0、酶解温度50℃、酶解时间40 min,果胶得率为17.47%;酶法明显优于酸法.  相似文献   

13.
【目的】研究利用果胶酶和纤维素酶酶解杏皮渣制备皮渣汁最佳工艺条件。【方法】采用单因素试验和正交试验,研究果胶酶用量、纤维素酶用量、酶解温度、酶解时间对杏皮渣出汁率、浸提汁可溶性固形物含量的影响。【结果】杏皮渣制汁的最佳条件是:果胶酶用量0.5%、纤维素酶用量2%、酶解温度49℃、酶解时间4h。出汁率为73.41%,比空白提高15.75%,可溶性固形物质量为22.88 g,比空白对照相比提高9.14 g。【结论】采用果胶酶和纤维素酶,能提高杏皮渣出汁率和可溶性固形物含量,改善杏皮渣制汁效果。  相似文献   

14.
[目的]采用水酶法提取扁桃仁油.[方法]采用单因素试验和正交试验,研究单一酶和复合酶种类及浓度、酶解时间、酶解温度、酶解pH、料液比对出油率的影响.[结果]水酶法提取扁桃仁油的最佳工艺条件为:采用由果胶酶、纤维素酶和木瓜蛋白酶组成的复合酶,酶解温度55℃,酶解时间3h,酶浓度2;,酶解pH7.0、料液比1∶4,在此条件下出油率达77.31;.[结论]单一酶中碱性蛋白酶,复合酶中果胶酶、纤维素酶、木瓜蛋白酶的组合对扁桃仁油的提取率最高;复合酶的出油率比单一酶高.  相似文献   

15.
以松针为原料,采用双酶法-超声辅助提取法研究优化松针多糖的提取工艺。以料液比、超声温度、超声时间、复合酶添加量及酶解时间为因素,研究其对松针多糖提取率的影响,并通过正交试验优化工艺参数。结果表明,料液比、超声温度、超声时间、复合酶的添加量和酶解时间等因素对松针多糖的提取率有明显的影响作用;当料液比为1∶25,超声温度60℃,超声时间25min,复合酶(纤维素∶果胶酶=1∶1)添加量5%,酶解时间2h时,松针多糖的提取率最高,为3.97%。  相似文献   

16.
金针菇废弃菌包中纤维素酶浸提工艺优化   总被引:1,自引:1,他引:0  
以金针菇废弃菌包为原料,采用浸提法制备纤维素粗酶液。通过单因素试验和正交试验,分析了浸提时间、p H值、浸提温度和料液比等因素对纤维素酶浸提的影响。结果表明:在最优的浸提温度30℃、p H 5.0、料液比为0.3∶1的条件下浸提1 h,可以浸提出纤维素酶活力为17.01 U/m L的纤维素粗酶液,较工艺优化前提高27.6%。  相似文献   

17.
以金针菇废弃菌包为原料,采用浸提法制备纤维素粗酶液。通过单因素试验和正交试验,分析了浸提时间、p H值、浸提温度和料液比等因素对纤维素酶浸提的影响。结果表明:在最优的浸提温度30℃、p H 5.0、料液比为0.3∶1的条件下浸提1 h,可以浸提出纤维素酶活力为17.01 U/m L的纤维素粗酶液,较工艺优化前提高27.6%。  相似文献   

18.
紫山药花色苷生物酶法提取工艺优化研究   总被引:1,自引:0,他引:1  
[目的]优化紫山药花色苷生物酶法提取工艺.[方法]选择纤维素酶及果胶酶对紫山药花色苷的提取效果进行对比分析,对纤维素酶法提取紫山药花色苷的工艺进行优化,选用酶用量、时间、温度、料液比进行4因素3水平的正交试验.[结果]试验表明,纤维素酶能显著提高花色苷得率.正交试验结果表明,最佳提取方案为:提取温度50℃,提取时间60 min,酶用量2.0%,料液比1∶15 g/ml.[结论]研究可为紫山药花色苷的提取应用提供参考依据.  相似文献   

19.
采用水酶法提取牡丹籽油,研究了5种酶(纤维素酶、果胶酶、α-淀粉酶、中性蛋白酶和碱性蛋白酶)酶解对牡丹籽出油率的影响,根据酶的最适p H值,将5种酶分成3组,研究3组酶最佳的酶解温度、酶解时间、酶解比例、料液比,在最佳的条件下,利用5种酶提高牡丹籽的出油率。结果表明:纤维素酶和果胶酶的最佳酶解温度、酶解时间、酶组合比例、料液比分别是50℃、2h、1:1、1:5;α-淀粉酶和中性蛋白酶的最佳酶解温度、酶解时间、酶组合比例、料液比分别是60℃、3h、2:1、1:5;碱性蛋白酶最佳酶解温度、酶解时间、料液比分别是60℃、4h、1:5;将3组酶先后酶解牡丹籽后,牡丹籽出油率提升到19.08%。  相似文献   

20.
为研究超声波辅助半纤维素酶提取南瓜皮果胶的最佳工艺条件,以果胶提取率为考察指标,通过单因素及正交试验,研究了半纤维素酶溶液的浓度、料液比、浸提时间、浸提温度、超声功率、超声时间对南瓜皮果胶提取率的影响。结果表明:在半纤维素酶溶液浓度为0.7%、料液比为1∶20、浸提温度为50℃、浸提时间为90min、超声功率为240W、超声时间为10min的条件下果胶的提取率最高,达到11.21%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号