首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
以芦笋品种 NJ978为试材,研究了 NaCl 胁迫对芦笋幼苗生长及体内 Na +,K +,Ca2+吸收和分布的影响,结果表明:盐分对芦笋幼苗生长的抑制作用随 NaCl 浓度的增加而加剧,低盐胁迫下(NaCl ≤50 mmol/L ),芦笋生长与对照没有显著差异,高盐胁迫(200~300 mmol/L NaCl)显著抑制了幼苗生长。随 NaCl 浓度的增加,芦笋体内Na +含量增加,K +,Ca2+含量降低。芦笋根系对 Na +有一定的截留能力,低盐环境下(NaCl ≤100 mmol/L ),根部Na +迅速增加,而地上部 Na +增加缓慢,从而抑制了 Na +向地上部运输,并维持了地上部相对稳定的 K +,Ca2+平衡;外界 NaCl 浓度高于根系 Na +截留阈值后(100 mmol/L),大量的 Na +运输至地上部并限制了 K +,Ca2+的吸收,表现为 K +/Na +和 Ca2+/Na +迅速下降。芦笋根系对 K +,Ca2+,Na +选择吸收性(ASK ,Na ,ASCa ,Na )随盐胁迫增加而变高;根部向地上部运输 K +,Ca2+能力(TSK ,Na ,TSCa ,Na )在0~100 mmol/L NaCl 水平下逐渐升高,之后迅速下降。以上结果表明:根部对 Na +的截留和 Na +,K +,Ca2+在器官水平上的再分布是芦笋适应盐胁迫的重要机制之一。  相似文献   

2.
盐胁迫对梭梭幼苗渗透调节物质含量的影响   总被引:1,自引:0,他引:1  
采用浓度为0,50,100,200,350,500 mmol/L的 NaCl和 Na2 SO4两种单盐溶液对梭梭幼苗进行处理,取样周期为10 d,取样3次,测定梭梭幼苗中渗透调节物质的含量,研究盐胁迫对梭梭幼苗体内渗透调节物质含量的影响.结果表明:两种盐胁迫下,梭梭幼苗同化枝中可溶性糖含量随盐浓度的增加和胁迫时间的延长而增大,但增幅较小,说明梭梭幼苗可溶性糖的积累对盐分的响应并不敏感.两种盐胁迫下梭梭幼苗同化枝中淀粉含量变化趋势相似,淀粉含量随盐浓度的增加和胁迫时间的延长而显著下降(P <0.05),说明梭梭幼苗接收到盐胁迫信号后通过降解淀粉生成可溶性糖来减轻盐伤害.两种盐胁迫下梭梭幼苗同化枝中可溶性蛋白的变化趋势相似,可溶性蛋白含量随盐浓度的增加和胁迫时间的延长而下降,说明盐胁迫下梭梭幼苗体内可溶性蛋白转变成氨基酸(包括脯氨酸),以此来降低渗透势维持平衡.350 mmol/L和500 mmol/L NaCl处理下梭梭幼苗脯氨酸含量呈极显著增加(P <0.01),以此来降低其渗透势,减小盐害程度.两种盐胁迫下,梭梭幼苗同化枝中脯氨酸含量随盐浓度的增加而增加,与 Na2 SO4处理相比,NaCl处理下梭梭幼苗中脯氨酸含量较高.  相似文献   

3.
盐碱胁迫对甘草渗透及pH调节物质的影响   总被引:1,自引:0,他引:1  
以药用植物甘草为材料.采用砂基培养法培养幼苗,以含有不同浓度的NaCI或NazCO3的营养液对其分别进行不同强度的盐胁迫或碱胁迫处理.结果表明,随盐浓度的增加,甘草渗透及pH调节物质积累.Na+、脯氨酸、柠檬酸含量增加,K+含量下降.在相同[Na+]胁强下,碱胁迫下的胁变反应均比盐胁迫强烈.  相似文献   

4.
中华补血草生长及有机渗透调节物质对盐胁迫的响应   总被引:1,自引:0,他引:1  
李妍 《农业与技术》2007,27(2):82-85
测定了0、100、200、400、500、600mmol/L NaCl浓度处理下中华补血草中重要有机渗透调节物质的含量变化;其中在100mmol/L NaCl浓度处理时SS含量增加,然后随盐浓度增加又逐渐减少,MDA含量则与其呈相反趋势;OA含量随盐浓度增加而下降,FAA和Pro含量随盐浓度而增加。结果表明低浓度的盐处理有利于中华补血草的生长,有机渗透调节物质对其在盐胁迫环境下生长起到了一定作用。  相似文献   

5.
以NaCl作为渗透胁迫剂研究耐盐植物芙蓉菊在盐胁迫条件下的生长表现和生理响应,测定新梢生长量、新根数以及Na /K 、游离脯氨酸含量、叶绿素含量、SOD活性等生理指标。结果表明:(1)随盐浓度的升高和盐胁迫时间的延长,Na /K 、游离脯氨酸含量、叶绿素含量、SOD活性均随盐浓度的升高而呈阶梯状上升,长期胁迫(30 d)较短期胁迫(10 d)上升趋势更为明显,芙蓉菊生长表现良好;(2)Na 、K 、Cl-无机离子以及游离脯氨酸芙蓉菊短期胁迫的主要渗透调节物质;(3)叶绿素含量增加是盐生植物适应的一种生理响应。  相似文献   

6.
NaCl胁迫对胡杨幼苗叶生理生化指标的影响   总被引:2,自引:0,他引:2  
[目的]研究不同NaCl浓度胁迫下胡杨幼苗叶生理生化指标变化特征,探讨胡杨幼苗的耐盐生理机制,为胡杨造林与资源的合理利用提供理论依据.[方法]采用盆栽沙培,以2年生胡杨实生苗木为试验材料,设置5个NaCl浓度0.3;、0.6;、0.9;、1.2;和2;进行盐胁迫试验,测定胡杨幼苗叶片中脯氨酸(Pro)、可溶性蛋白、超氧化物歧化酶(SOD)、丙二醛(MDA)、Na+、K+和Cl-的含量.[结果]随着NaCl浓度的增加,胡杨幼苗叶片中脯氨酸、MDA、Na+和Cl-的含量增加,K+含量和K+/Na+值降低,SOD活性和可溶性蛋白含量则呈先降低后上升的趋势.高盐处理对以上测定生理指标有较大影响.[结论]NaCl胁迫下,胡杨幼苗叶片生理生化过程对盐分具有一定的适应性:(1)盐胁迫下,脯氨酸含量显著增加,是胡杨幼苗抵御盐胁迫重要的渗透调节物质;(2)盐胁迫下,可溶性蛋白明显降低,对胡杨幼苗抗盐胁迫贡献较小;(3)较高盐分浓度胁迫下,叶片中SOD活性增加,增强了胡杨幼苗抵御盐胁迫的能力;(4)在较低盐胁迫下,胡杨幼苗仍保持较高的K+的吸收水平,具有一定的抗盐胁迫能力.  相似文献   

7.
将Na2 SO4:NaCl和Na2 CO3:NaHCO3均按1:2混合,模拟不同浓度的盐、 碱处理对油莎豆幼苗在生长、 渗透调节物质含量及抗氧化酶活性方面的胁迫作用.结果表明,随着盐、 碱胁迫浓度的升高,油莎豆幼苗的苗长、 根长等生物量相比CK均呈降低趋势.其中,盐、 碱胁迫处理组的苗长、 根长在高浓度时分别比对照降低...  相似文献   

8.
以芦笋品种NJ978为试材,研究了NaCl胁迫对芦笋幼苗生长及体内Na+ ,K ,Ca2 吸收和分布的影响,结 果表明:盐分对芦笋幼苗生长的抑制作用随NaCl浓度的增加而加剧,低盐胁迫下(NaCl≤50mmol/L),芦笋生长 与对照没有显著差异,高盐胁迫(200~300mmol/LNaCl)显著抑制了幼苗生长.随NaCl浓度的增加,芦笋体内 Na 含量增加,K ,Ca2 含量降低.芦笋根系对Na 有一定的截留能力,低盐环境下(NaCl≤100mmol/L),根部 Na 迅速增加,而地上部Na 增加缓慢,从而抑制了Na 向地上部运输,并维持了地上部相对稳定的K ,Ca2 平 衡;外界NaCl浓度高于根系Na 截留阈值后(100mmol/L),大量的Na 运输至地上部并限制了K ,Ca2 的吸收, 表现为K /Na 和Ca2 /Na 迅速下降.芦笋根系对K ,Ca2 ,Na 选择吸收性(ASK,Na,ASCa,Na)随盐胁迫增加而变 高;根部向地上部运输K ,Ca2 能力(TSK,Na,TSCa,Na)在0~100mmol/LNaCl水平下逐渐升高,之后迅速下降.以 上结果表明:根部对Na 的截留和Na ,K ,Ca2 在器官水平上的再分布是芦笋适应盐胁迫的重要机制之一.  相似文献   

9.
【目的】探讨等渗盐胁迫下油菜素内酯(BR)对番茄生长及渗透调节特性的影响,为施用外源BR应对设施土壤盐渍化问题和设施番茄抗逆栽培提供理论依据。【方法】以番茄为试材,以日本山崎番茄配方营养液(对照)添加100 mmol/L Ca(NO_3)_2和150 mmol/L NaCl模拟等渗盐胁迫环境,通过水培法研究等渗盐胁迫下BR(0.1μmol/L)对番茄幼苗干鲜质量、叶片相对含水量、根系活力及渗透调节特性(组织汁液渗透势以及可溶性蛋白、可溶性糖、游离氨基酸和脯氨酸含量)的影响。【结果】与对照相比,等渗Ca(NO_3)_2和NaCl胁迫下番茄植株生长均受到显著抑制,叶片相对含水量均显著降低,NaCl胁迫显著降低番茄根系活力,且NaCl胁迫对植株生长的抑制效应更为明显;同时,等渗盐胁迫下,随处理时间延长叶片渗透势呈先降低后升高的"V"形变化,而可溶性糖含量则呈先升高后降低的倒"V"形变化,可溶性蛋白含量随处理时间延长在NaCl胁迫下含量积累、在Ca(NO_3)_2胁迫下含量有所降低,游离氨基酸和脯氨酸含量随时间延长呈不同程度的增加趋势。等渗盐胁迫下,外源BR显著提高了盐胁迫植株的干鲜质量、叶片相对含水量,且处理第3天时,与对照相比,等渗盐胁迫下施用外源BR番茄叶片渗透调节物质含量均显著升高;处理第5天时,Na+BR处理渗透调节物质含量显著升高,Ca+BR处理脯氨酸和游离氨基酸含量显著降低。【结论】等渗盐胁迫下外源BR可有效增强番茄幼苗渗透调节能力,改善叶片水分状态,促进植株生长,且对NaCl胁迫的整体缓解效应更显著,等渗盐胁迫条件下外源BR诱导渗透调节物质积累应答Ca(NO_3)_2、NaCl胁迫的具体模式存在差异。  相似文献   

10.
【目的】研究棉花幼苗在混合盐碱胁迫下渗透调节物质耐盐响应机制。【方法】以新陆早57号为研究对象,将NaCl、Na2SO4、NaHCO3和Na2CO3 4种盐按不同比例混合进行人工模拟混合盐胁迫条件,以碱性盐比例逐步增大的顺序分成A、B、C、D、E 5组不同浓度处理。【结果】棉花幼苗叶片渗透调节物质与盐碱比例、盐碱浓度呈极显著相关(P<0.01),且盐碱比例与盐碱浓度的交互作用对棉花幼苗叶片的渗透调节物质影响呈极显著相关;随着盐碱浓度的增大脯氨酸含量均呈现上升趋势,在200 mmol/L下含量达到最大;在B处理下(NaCl、NaHCO3)随着浓度的增大脯氨酸含量增加的趋势明显大于其他处理,且在150、200 mmol/L下含量差异较小;在C处理下(含有NaCl、Na2SO4、NaHCO3、Na2CO3),在浓度为25 mmol/L下,叶片的脯氨酸含量增加幅度最大,其随着浓度的增加,脯氨酸含量增加幅度明显降低;丙二醛、可溶性糖变化趋势与游离脯氨酸变化趋势相似,而可溶性蛋白含量随着处理浓度的增加而增加,但增加幅度较小;且差异不显著。【结论】棉花幼苗叶片渗透调节物质与盐碱比例、盐碱浓度呈极显著相关(P<0.01),且盐碱比例与盐碱浓度的交互作用对棉花幼苗叶片的渗透调节物质影响呈极显著相关,在同一种混合盐处理下,脯氨酸、可溶性糖、丙二醛的含量、游离脯氨酸含量随着盐浓度的增加而增加;可溶性蛋白含量,随着浓度的增加,增加幅度较小,但在同一盐浓度不同盐碱比例中差异显著,混合盐碱胁迫下棉花幼苗叶片可溶性蛋白含量是评价棉花耐盐性的主要渗透调节物质。  相似文献   

11.
NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性   总被引:8,自引:2,他引:6  
【目的】明确盐分胁迫下栽培型番茄离子吸收、分配和转运特性。【方法】以栽培番茄为试材,以NaCl溶液为盐分胁迫条件,通过苗期耐盐性鉴定,采用原子吸收光谱法测定不同耐盐性番茄品种体内离子含量,对盐分胁迫下番茄体内离子积累、分布和转运机制进行系统分析。【结果】番茄对Na+的吸收随盐分处理浓度和时间的增加而增加,在各器官的积累量顺序为根>茎>叶。对于较耐盐品种,Na+在体内的积累总量低于盐敏感品种。盐分胁迫后,番茄叶片、茎和根系中Na+/K+比均随NaCl浓度的升高而升高。耐盐品种的Na+/K+比低于盐敏感品种。离子在体内的区域化分布情况是,较耐盐品种的Na+在根茎中的分配比例较高,盐敏感品种趋向于向叶片分配。K+在较耐盐品种的分布集中于叶片。在盐胁迫初期,盐分处理浓度超过200 mmol&#8226;L-1时,番茄植株对K+向地上部的选择运输性随着胁迫时间的延长呈现出下降的趋势。低于200 mmol&#8226;L-1时,表现出很好的选择运输性,耐盐品种的Sk/Na(运输)高于盐敏感品种,根系表现出更强的向地上部运输K+的能力。【结论】盐分胁迫下,叶片中较低的Na+含量和更强的向地上部运输K+的能力是番茄耐盐性的重要特征。  相似文献   

12.
苍耳对盐碱胁迫的生理响应   总被引:1,自引:0,他引:1  
采用不同浓度的NaCl、NaHCO_3溶液对苍耳幼苗进行胁迫处理,分析胁迫处理对苍耳幼苗的生长、光合指标、无机离子、有机溶质及渗透调节剂的渗透调节贡献率的影响,重点研究苍耳对碱胁迫的生理适应机制。结果表明:盐碱胁迫显著抑制了苍耳的生长和光合。随胁迫强度的增加,叶内Na~+质量摩尔浓度、Na~+质量摩尔浓度与K~+质量摩尔浓度的比增加,碱胁迫下增加幅度更大。盐胁迫下,在根部和叶内,Na~+、K~+和游离脯氨酸均是主要的渗透调节物质;3者渗透调节中的平均贡献率的总,在根部为73.89%、在叶内为61.96%。碱胁迫下,根部和叶片显示出不同的渗透调节机制:在根部,Na~+和游离脯氨酸是主要的渗透调节物质,平均贡献率分别为58.44%和16.25%,K~+的渗透调节作用很小;在叶内,Na~+、K~+、游离脯氨酸均起到重要的渗透调节作用。与盐胁迫相比,碱胁迫对植物的伤害作用更大。苍耳通过Na~+、K~+、游离脯氨酸等渗透剂对根部和叶内渗透调节的积极参与,对碱胁迫具有一定的适应能力。  相似文献   

13.
  目的  明确耐盐锻炼黑果枸杞适应长期盐渍化胁迫的机理,为其修复极端干旱区盐渍化土壤提供依据。  方法  应用回归分析及主成分分析低盐胁迫(MSS)、中盐胁迫(HSS)和高盐胁迫(SS)土壤黑果枸杞各器官K+、Na+和Ca2+区隔化特征,器官干质量和根系形态对盐胁迫的响应。  结果  (1)NaCl浓度小于183.63 mmol/L,耐盐锻炼黑果枸杞植株成活率随着NaCl浓度增加而增大,NaCl浓度 ≥ 355.88 mmol/L植株全部死亡。随着NaCl浓度升高,花期到初果期果实相对生长速率显著减缓,初果期到果实完全成熟期果实相对生长速率加快。(2)HSS处理的根K+和Na+显著高于MSS和SS,茎中K+、Na+和Ca2+含量均显著低于MSS和SS。HSS处理的根和茎中K+/Na+和Ca2+/Na+差异不显著。SS处理的叶Ca2+分别是MSS和HSS的5和3倍。SS处理的根和茎Na+含量没有显著差异,根和叶Ca2+含量也没有显著差异。胁迫程度从MSS上升到SS,茎中Na+含量平均增加0.78 g/kg。(3)PCA分析表明,主成份1(PCA1)和主成份2(PCA2) 共解释了黑果枸杞适应盐胁迫的73.9%。PCA1可解释黑果枸杞盐胁迫的57.8%信息,其中,地上器官干质量对PCA1贡献最大,按照对PCA1贡献率大小排序为叶干质量、茎干质量、根干质量和主根直径。PCA1与根Na+含量、地上器官Na+含量和侧根直径呈显著负相关。株高、根Ca2+含量、茎粗、地上器官K+/Na+、根干质量、主根直径与PCA1呈正相关。植株K+/Na+、根系K+/Na+、根际土壤K+/Na+、根Ca2+含量和地上器官Ca2+含量可以解释PCA2盐胁迫的16.1%信息,上述指标均与PCA2呈显著负相关。  结论  随着盐胁迫程度增加,叶维持高浓度Ca2+调控植株体K+/Na+,根和茎富集储存Na+能力显著增强,说明经过耐盐锻炼黑果枸杞倾向于不同器官协同分担盐胁迫以适应长期盐胁迫。   相似文献   

14.
为了研究Na+和Cl-对番茄产量和品质的影响,以栽培番茄品种辽园多丽为试材,分析了等渗的NaCl(50mmol/L)、Cl-盐和Na+盐胁迫对番茄光合特性及叶片中糖代谢的影响。结果显示,等渗的NaCl、Cl-盐和Na+盐胁迫均导致番茄叶片净光合速率下降,胁迫7d后分别较对照(hoag-land营养液)降低15.18%、6.23%和10.11%;3个胁迫处理均降低了番茄叶片的气孔导度、胞间CO2浓度和蒸腾速率,并降低了番茄叶片中叶绿素a和b的含量,以上光合参数的变化都是Na+盐处理的影响大于Cl-盐处理。在等渗的NaCl、Cl-盐和Na+盐胁迫下,番茄叶片中的果糖和葡萄糖含量较对照显著增加,Na+盐胁迫增加的幅度大于Cl-盐胁迫,而蔗糖和淀粉含量较对照有所降低;等渗的NaCl、Cl-盐和Na+盐胁迫增加了番茄叶片中的蔗糖转化酶活性,其中NaCl处理增加的最多,Na+盐胁迫次之。表明NaCl、Cl-盐和Na+盐胁迫均破坏了番茄叶片的光合机能,降低了光合作用效率,Na+的影响大于Cl-;NaCl、Cl-盐和Na+盐胁迫改变了番茄叶片中的糖代谢方向,显著促进了淀粉和蔗糖的分解,提高了叶片中的果糖和葡萄糖含量,Na+对番茄叶片中糖代谢的影响显著大于Cl-。  相似文献   

15.
盐分胁迫下番茄盐分离子和重金属的分布特征   总被引:3,自引:1,他引:2  
采用盆栽试验方法研究了不同盐分含量处理下番茄不同器官盐分离子(Na+、K+、Ca2+)和重金属离子(Cd2+、Pb2+、Cr2+、Zn2+、Cu2+、Ni2+)的分布特征,探讨盐分离子对番茄不同器官吸收重金属离子的影响机制,为重金属污染盐渍土壤的农业可利用性评价提供科学依据。结果表明,番茄根、茎、叶和果实Na+含量均随盐分含量增加而增加;番茄根K+含量随盐分含量增加小幅上升,茎K+含量则显著下降,叶K+含量无显著变化;番茄各器官Ca2+含量随盐分含量增加无明显变化。番茄根Cd、Pb、Cr、Zn和Cu含量以及番茄茎、叶Cd含量均随盐分含量增加而增加;番茄根Ni含量、番茄茎叶Pb、Cr、Ni、Zn和Cu含量以及番茄果实各重金属含量受盐分含量变化影响不大。因此,土壤盐分含量的增加对番茄根部吸收重金属(Ni除外)有促进作用。  相似文献   

16.
应用扫描电镜和X射线能谱仪测定不同浓度NaCl胁迫下构树幼苗根、茎、叶3器官中离子的相对含量,并对其组织分布特征进行分析。结果表明:盐胁迫下构树幼苗各器官中Na^+和Cl^-相对含量均高于对照,K^+、Ca^2+和Mg^2+相对含量则低于对照;随着盐处理浓度的增加,根部皮层和髓细胞中的Na^+和Cl^-相对含量增幅较高,茎中的Na^+和Cl^-主要积累于表皮细胞,皮层中分布较少,叶中Na^+和Cl^-在表皮细胞中积累较多,而栅栏组织和海绵组织中含量相对较少;在高盐胁迫下,地上部分Ca^2+含量明显高于根部;NaCl胁迫下构树幼苗不同器官K^+含量下降的幅度不同,根和茎中K^+含量均降低,而叶片中K^+含量与对照相比变化不明显,在组织水平上,K^+在海绵组织和栅栏组织中的相对含量有所增加;盐胁迫对P^3+含量影响较小,其分布特点是主要积累于根部。  相似文献   

17.
盐胁迫下外源SA对菊花体内离子含量和净光合速率的影响   总被引:2,自引:0,他引:2  
【目的】研究盐胁迫下外源SA对菊花植株的耐盐响应机理。【方法】采用SA叶面喷施法,研究NaCl胁迫下外源SA对菊花根、叶片和叶绿体中Na+、K+、Ca2+、Mg2+含量及叶片净光合速率的影响。【结果】NaCl处理的菊花根系、叶片和叶绿体中Na+的含量与对照相比均显著增加,而K+、Ca2+、Mg2+的含量均显著减少。在盐胁迫第10天时,SA+NaCl处理的菊花根系K+、Ca2+、Mg2+含量与NaCl处理相比,分别增加37.70%、16.44%和20.54%,而Na+含量则减少27.13%。SA+NaCl处理的菊花叶片K+、Ca2+、Mg2+含量与NaCl处理相比,分别增加56.52%、53.23%和87.53%,而Na+含量则减少53.41%,叶片Pn也增加40.74%。SA+NaCl处理的菊花叶片叶绿体中K+、Ca2+、Mg2+含量与NaCl处理相比,分别增加67.97%、79.40%和89.32%,而Na+含量则减少76.06%。与NaCl处理相比,SA+NaCl处理时,根系、叶片和叶绿体中的SK, Na、SCa, Na和SMg,Na均显著增加。相关性分析表明,Pn与Na+具有显著的负相关性;而与K+、Ca2+、Mg2+显著正相关。【结论】盐胁迫下外源SA可以通过调节菊花体内对K+、Ca2+、Mg2+的选择性吸收和运输,缓解盐胁迫对菊花植株的伤害程度。  相似文献   

18.
采用盆栽实验研究不同NaCl添加量(质量分数分别为0、0.1%、0.2%、0.3%和0.4%)对红叶石楠地上部鲜重、株高、叶片Na含量、K+/Na+、细胞膜透性、叶片含水量、脯氨酸含量、抗氧化酶活性,以及花青素含量的影响。结果表明,在0.2%及更高浓度的NaCl处理下,红叶石楠生长受到抑制,叶片Na含量、细胞膜透性、脯氨酸含量显著(P<0.05)增加,K+/Na+、叶片相对含水量显著(P<0.05)下降。盐胁迫造成红叶石楠叶片的H2O2及丙二醛(MDA)含量显著(P<0.05)增加,0.4%NaCl处理下,H2O2及MDA含量在新叶上的增幅分别为162%和128%,在老叶上的增幅分别为114%和33%。随着盐胁迫加剧,新叶氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性显著(P<0.05)升高,过氧化物酶(POD)活性和花青素含量显著(P<0.05)下降。与之相反,老叶的SOD和CAT酶活显著(P<0.05)下降,而POD活性和花青素含量显著(P<0.05)上升。由此可见,花青素在抵御盐胁迫诱导的氧化伤害中具有重要作用,其在叶片中的含量与CAT酶活性呈现此消彼长的关系。  相似文献   

19.
对海雀稗耐盐体系进行优化,并通过测定坪用质量和枯黄率对27份海雀稗种质资源进行了耐盐性评价。结果表明,7个不同NaCl浓度(0,5,10,15,20,25,30 g·L?1)处理下,坪用质量、枯黄率和叶色各指标之间存在显著差异(P<0.05)。随着NaCl处理浓度的增加,坪用质量显著下降(P<0.05),枯黄率显著增加(P<0.05),叶色显著变浅(P<0.05)。建立回归方程,以枯黄率50%为标准,确定海雀稗最适盐处理浓度为25 g·L?1。利用25 g·L?1 NaCl对27份海雀稗种质资源进行耐盐性评价,筛选出2种极端耐盐种质:USA17-18(耐盐)和USA17-26(敏盐)。对海雀稗耐盐极端材料的钠钾离子含量进行测定,发现盐处理后,地上和地下Na+含量均显著增加,但K+含量和K/Na值都显著下降。减少Na+的摄入,维持较高的K+含量,可能是海雀稗耐盐的机制。  相似文献   

20.
为明确不同盐分浓度胁迫下,菌根化育苗对加工番茄全生育期的生长和生理特征的影响,采用盆栽试验,设置轻、中、重度盐渍化土壤,及菌根化育苗与非菌根化育苗,共6个处理组合,即非菌根化苗+轻度(T1)、菌根化苗+轻度(T2)、非菌根化苗+中度(T3)、菌根化苗+中度(T4)、非菌根化苗+重度(T5)、菌根化苗+重度(T6),研究不同处理在全生育期,菌根化育苗对盐胁迫下加工番茄植株生长及生理特征的影响。结果表明:盐胁迫造成加工番茄植株生长及干物质积累障碍,而菌根化育苗处理能缓解这种抑制作用。同时,菌根化育苗处理能够增加菌根侵染率和菌根依存度。与非菌根化育苗相比,菌根化育苗提高了番茄植株的N、P、K含量。整个生育期,T2处理植株体内N含量较T1处理提高5.2%~8.6%;T4处理较T3处理增加5.6%~8.8%;T6处理比T5处理提高5.2%~11.9%。在整个生育期,P含量变化表现为先升高后下降趋势,T2、T4和T6处理较T1、T3、T5提高了0.6%~24.8%。K含量在苗期至收获期,T2较T1处理最高增加了10.29 g·kg-1,3种盐渍化土壤中,菌根化育苗处理与非菌根化育苗处理相比,地上和地下部K+/Na+增加11.1%~39.3%。不同盐渍化土壤中加工番茄产量及品质均表现为菌根化育苗处理高于非菌根化育苗处理,且随盐渍化程度的加深而下降。表明菌根化育苗能缓解盐胁迫对加工番茄株高、茎粗及干物质积累的抑制,并提高植株对养分的吸收,进而提高加工番茄产量及品质。这些结果既可为加工番茄耐盐育苗生产提供技术指导,又能为干旱区加工番茄可持续发展提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号