首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用样带调查与对比分析方法,研究大兴安岭人工落叶松沼泽林的生态系统碳储量(植被、凋落物及土壤)和 年固碳量沿湿地过渡带环境梯度(0 ~400 m)分布格局,并与相应生境天然湿地对比分析,揭示排水造林对湿地碳 储量及固碳能力的影响规律。结果表明:1)人工沼泽林与天然湿地的植被碳储量(6.49 ~ 59.95 和3.24 ~ 78.97 t/ hm2 )沿过渡带环境梯度均呈递增趋势,排水造林使过渡带100 ~300 m 生境植被碳储量显著提高了43.9% ~240.8% (P 0.05),300 ~ 400 m 生境植被碳储量显著降低了24.1% (P 0.05);2)两者凋落物碳储量(1.61 ~ 4.69 和 1.51 ~4.34 t/ hm2 )沿过渡带环境梯度也呈递增趋势,排水造林使100 ~ 200 m 生境凋落物碳储量显著提高了 84.1%(P 0.05);3)土壤碳储量(163.03 ~308.68 和192.09 ~ 382.91 t/ hm2 )沿过渡带分别呈先高后低且恒定与 递减趋势,排水造林使0 ~300 m 生境土壤碳储量显著降低了19.4% ~43.4% (P 0.05);4)两者生态系统碳储量 (227.68 ~316.78 和275.40 ~387.67 t/ hm2 )分别呈现0 ~ 100 m 高、100 ~ 400 m 低且恒定和0 ~ 300 m 高且恒定、 300 ~400 m 低的不同分布格局,且排水造林使0 ~ 300 m 生境生态系统碳储量显著降低了18.3% ~ 31.2% (P 0.05);5)净初级生产力与年固碳量(3.67 ~10.34、8.03 ~10.77 t/ (hm2·a);1.59 ~ 4.87、3.24 ~ 5.07 t/ (hm2· a))沿过渡带分别呈递增与恒定分布,排水造林使过渡带0 ~ 100 m 生境净初级生产力与年固碳量显著降低了 54.3%和50.9%(P 0.05),100 ~ 400 m 生境净初级生产力与年固碳量有所增加或减少但不显著( -19.3% ~ 18.7%和-20.1% ~17.3%,P 0.05)。因此,排水造林显著降低了沼泽湿地生态系统碳储量,但对其固碳能力影 响相对较弱。   相似文献   

2.
采用碳/氮分析仪测定法与标准木解析法,研究大兴安岭5种典型天然沼泽湿地(草丛沼泽、灌丛沼泽、毛赤杨沼泽、白桦沼泽和落叶松沼泽)的生态系统碳储量(植被和土壤)、净初级生产力、植被年净固碳量及其沿沼泽至森林方向过渡带水分环境梯度的分布格局,揭示其空间变异规律性,并定量评价寒温带5种典型天然沼泽湿地的碳储量与固碳能力及其长期碳汇作用。结果表明:①5种天然沼泽湿地的植被碳储量分布在(0.48±0.08)-(8.33±0.66)kgC/m2之间,沿过渡带环境梯度呈递增趋势;②土壤碳储量分布在(19.21±6.17)-(38.28±4.86) kgC/m2之间,沿过渡带环境梯度却呈递减趋势;③生态系统碳储量分布在(27.54±7.16)-(38.76±4.58) kgC/m2之间,沿过渡带环境梯度基本呈恒定分布规律性,且以湿地土壤碳储量占优势地位(69.8%-98.8%);④植被净初级生产力分布在(0.68±0.10)-(1.08±0.12) kg·m-2·a-1之间,毛赤杨沼泽最高,草丛沼泽、灌丛沼泽、白桦沼泽居中,落叶松沼泽最低,且总体上低于温带森林湿地而高于寒温带天然落叶松林;⑤植被年净固碳量分布在(0.32±0.09)-(0.51±0.06) kgC·m-2·a-1,毛赤杨沼泽最高(高于全球植被平均年净固碳量)、灌丛沼泽和白桦沼泽居中(达到或接近全球平均值)、草丛沼泽和落叶松沼泽最低(略低于全球平均值),故这5种沼泽湿地均属于碳汇功能相对较强的湿地植被类型。  相似文献   

3.
小兴安岭天然白桦林生态系统碳储量   总被引:2,自引:0,他引:2  
采用相对生长方程与碳/氮分析测定法,测定小兴安岭天然白桦林在7个立地类型(阳坡上、中、下部和阴坡上、中、下部及谷地)的生态系统碳储量(植被和土壤)、净初级生产力与年净固碳量,揭示立地类型对白桦林碳汇功能的影响规律。结果表明:1)小兴安岭白桦林植被碳储量((49.39±3.09)~(89.20±10.17)t/hm2)在谷地、阳坡下部和阴坡上、中部4个立地类型显著高于阳坡上、中部及阴坡下部3个立地类型(38.2%~80.6%,P<0.05)。2)其土壤有机碳储量((147.30±21.39)~(273.67±22.67)t/hm2)在阴坡上、中部和谷地最高,显著高于阳坡上、中部和阴坡下部(27.9%~85.8%,P<0.05),阳坡下部居中,仅显著高于阴坡下部(53.3%,P<0.05),阳坡上、中部和阴坡下部相对较低。3)其生态系统碳储量((207.88±16.07)~(357.85±20.80)t/hm2)在谷地、阳坡下部和阴坡上、中部4个立地类型显著高于阳坡上、中部和阴坡下部3个立地类型(33.2%~72.1%,P<0.05)。4)其植被净初级生产力((5.80±0.26)~(8.87±1.17 )t/(hm2·a))在阳坡下部和阴坡上、中部3个立地类型相对较高,显著高于阴坡下部(31.2%~52.9%,P<0.05),阳坡上、中部与谷地3个立地类型居中,高于阴坡下部(15.5%~26.4%,P>0.05),阴坡下部最低。5)其年净固碳量((2.76±0.10)~(4.15±0.32)t/(hm2·a))在阳坡下部和阴坡上、中部3个立地类型相对较高,显著高于阴坡下部(27.9%~50.4%,P<0.05),阳坡上、中部与谷地3个立地类型居中,高于阴坡下部(12.3%~23.9%,P>0.05),阴坡下部最低。因其植被年净固碳量低于我国陆地植被平均固碳量(15.3%~43.7%),故小兴安岭天然白桦林属于碳汇功能相对较低的森林类型。   相似文献   

4.
【目的】揭示温带半干旱区嫩江流域泰湖国家湿地公园天然植物群落的生态系统碳储量沿湖岸至高地环境梯度的空间分布格局及成因,为我国温带半干旱区天然植被长期碳汇实践提供科学依据。【方法】采用相对生长方程、碳/氮分析仪测定法,同步测定沿湖岸至高地环境梯度依次分布的狭叶香蒲沼泽(XYP)、小香蒲沼泽(XP)、芦苇沼泽(L)、草丛沼泽(C)、拂子茅草甸(F)、湿生羊草草地(S)、旱生羊草草地(H)和沙丘榆树疏林(Y)8种植物群落的生态系统(植被和土壤)碳储量、植被净初级生产力与年净固碳量及其相关环境因子(水位、土壤有机质、全氮和全磷等),揭示其空间分异规律及其形成机制。【结果】(1)植被碳储量(0.98~27.86 t/hm2)沿湖岸至高地环境梯度呈先降后升的变化趋势(Y>L,XYP,XP>C,F,S,H),草本层碳储量(0.30~8.11 t/hm2)呈阶梯式递减趋势(L,XYP,XP>C,F,S>H,Y)。(2)土壤碳储量(38.49~321.72 t/hm2)沿湖岸至高地环境梯度呈阶梯式递减规律,且存在明...  相似文献   

5.
林地抚育对黔中地区杉木人工幼林生态系统碳储量的影响   总被引:3,自引:2,他引:1  
林地抚育(松土、割灌、锄草)是提高人工林林分成活率,促进林木生长的重要措施,但对其固碳功能的影响研究仍鲜见报道。本研究以杉木人工林为研究对象,分析了林地抚育(松土、割灌、锄草)对黔中地区杉木人工幼林生态系统碳储量及其组分(植被层、枯落物层、作为主根系层的0~60 cm土壤层的碳储量)的影响。结果表明:林地抚育使得杉木人工林林木的保存率、林分郁闭度、林木胸径、树高等均显著高于对照林分,林木单株生长的固碳能力大幅提高,其碳储量是对照林分的4.93倍。抚育杉木人工幼林生态系统的总碳储量(106.37 t/hm2)显著高于对照(78.61 t/hm2),其中植被碳库储量(26.07 t/hm2)是对照(4.64 t/hm2)的5.62倍,抚育后枯落物碳储量较对照高0.38 t/hm2。但是,林地抚育后表层土壤(0~10 cm)有机碳含量较对照下降5.44 g/kg,而10 cm以下土层较对照均表现为增加,土壤碳储量较对照总体增加3.30 t/hm2。因此,造林初期林地抚育可促进林木生长,提高植被、土壤和生态系统的碳储量,显著增强杉木幼龄林的碳汇功能。   相似文献   

6.
目的植被群落随山地海拔升高呈现有规律的垂直分布,能够引起样地微气候及土壤性质的改变,进而影响碳氮在土壤中的沉积。因此,不同典型植被类型土壤碳氮储量的空间分布特征是山地生态系统碳氮循环研究的重要内容。本文旨在探明南滚河自然保护区不同典型植被类型土壤有机碳及全氮储量沿海拔梯度的变化及其与环境因子的耦合关系。方法选取南滚河自然保护区沿海拔形成的3种典型植被类型(沟谷雨林、半常绿季雨林和中山湿性常绿阔叶林)为研究对象,研究不同植被类型之间土壤有机碳及全氮储量的变化规律,并运用线性回归和RDA冗余分析等方法研究环境因子沿海拔变化对土壤有机碳及全氮储量的影响。结果不同典型植被类型土壤有机碳与全氮储量随海拔升高呈现显著增加的变化趋势(P < 0.05),即沟谷雨林(89.10 t/hm2,11.94 t/hm2) < 半常绿季雨林(190.30 t/hm2,25.34 t/hm2) < 中山湿性常绿阔叶林(508.05 t/hm2,56.55 t/hm2),这种变化规律与凋落物厚度、年均降水量、土壤含水量、总有机碳及全氮沿海拔的变化相一致;不同植被类型土壤有机碳储量均随土层深度增加呈先增后降的垂直变化规律,而土壤全氮储量则随土层深度增加呈逐渐降低趋势;土壤有机碳及全氮储量与海拔、土壤含水量、总有机碳、全氮、凋落物厚度和年均降水量呈极显著正相关(P < 0.01),与土壤密度、pH、年均气温和土壤温度呈极显著负相关(P < 0.01),冗余分析表明凋落物厚度与土壤含水量是影响有机碳和全氮储量的主导因子。结论热带地区植被类型沿海拔梯度有规律的分布,能够通过改变样地微气候(如温度、水分)、凋落物输入(凋落物厚度)及土壤理化环境(如土壤密度、C与N含量等),进而显著影响土壤有机碳及全氮储量的空间分布。   相似文献   

7.
采用样带网格调查方法和标准木解析法,研究了大兴安岭林区天然森林沼泽群落、演替森林沼泽群落和人工森林沼泽群落的树种组成结构、径级分布、蓄积量、生物量、生产力及其沿过渡带环境梯度的变化规律,定量评价了人工造林途径和自然演替途径的恢复效果,以探讨退化森林沼泽群落的有效恢复途径,为退化森林湿地生态系统的恢复与重建提供科学依据。研究表明:演替群落与天然群落建群种沿森林沼泽过渡带环境梯度具有明显更替规律性,人工森林沼泽群落建群种却比较单一;演替群落与天然群落的径级分布均以较小径级林木占绝对优势,人工群落径级分布却以较大径级林木占优势地位;演替群落(6.006~1.316m3/hm2)与天然群落(6.690~2.137m3/hm2)的蓄积生产力沿沼泽至森林方向过渡带环境梯度呈递减趋势,人工群落蓄积生产力(4.350~6.991m3/hm2)则呈递增趋势;演替群落(453.7~113.0g·a-1·m-2)与天然群落(335.7~195.6g·a-1·m-2)的生产力沿沼泽至森林方向过渡带的环境梯度呈递减趋势,人工群落(198.8~334.0g·a-1·m-2)的生产力呈递增趋势。干扰森林沼泽群落生产力与天然沼泽林群落生产力有所不同,并与干扰后的恢复途径和森林沼泽过渡带的环境梯度存在密切的相关性。  相似文献   

8.
【目的】研究安徽森林植被碳储量的分布特征,为森林碳汇功能的评价提供依据。【方法】以安徽省第8次(2014年)森林资源清查数据为基础,采用生物量-蓄积量转换模型法和平均生物量法,结合不同树种含碳率,估算安徽森林植被的碳储量和碳密度,并分析了不同森林类型及不同林级、林种和起源的乔木林碳储量分布特征。【结果】安徽不同森林类型的总碳储量为8.51×10~7 t,平均碳密度为20.55 t/hm~2,其中竹林的碳密度最高,为37.33 t/hm~2。乔木林和竹林的碳储量分别为6.42×10~7和1.45×10~7 t,各占总碳储量的75.47%和17.02%;不同龄级乔木林中,中龄林碳储量最大,达2 490.92×10~4 t,约占乔木林总碳储量的40%;过熟林碳储量最小,为256.24×10~4 t,仅占乔木林总碳储量的3.99%,且表现出林龄越大碳密度越高的趋势。用材林和防护林的碳储量分别为3 798.04×10~4和2 205.68×10~4 t,共占乔木林碳储量的93.48%;各林种碳密度大小为特用林防护林用材林经济林薪炭林。天然林的面积(153.86×10~4 hm~2)略低于人工林(154.81×10~4 hm~2),但由于天然林的碳密度高于人工林,使得天然林的碳储量(3 476.50×10~4 t))反而高于人工林(2 946.29×10~4 t)。【结论】安徽省森林植被具有明显的碳汇能力,但其碳密度较低,应对现有森林进行科学抚育和管理,以提高森林的碳汇能力。  相似文献   

9.
为了明确安徽省森林植被碳储量动态变化特征,基于安徽省1989-2014年6次森林资源连续清查数据,采用生物量-蓄积量转换函数,结合主要树种含碳率,估算了安徽省森林植被的碳储量、碳密度和固碳潜力。结果表明:安徽省森林植被碳储量由1989年的32.98×10~6t C增加到2014年的85.72×10~6t C,碳汇量为52.75×10~6t C,年均增长率为4.06%,碳密度增加了8.51 t C/hm~2。乔木林是安徽省森林植被碳汇的主要贡献者,竹林次之,二者分别占安徽省森林植被碳汇的83.27%、13.41%,各林型平均碳密度大小顺序为竹林、乔木林、经济林、灌木林和疏林;不同龄组乔木林的碳储量大小顺序为中龄林、幼龄林、近熟林、成熟林和过熟林,且表现出林龄越大,碳密度越大的趋势;天然林植被碳储量略高于人工林;安徽省森林植被固碳潜力为35.67 t C/hm~2,栎类固碳潜力最大。因此,安徽省森林植被碳汇能力明显增强,但碳密度较低,加强科学经营管理至关重要。  相似文献   

10.
为了探究油松人工林的固碳特征及其影响因素,以内蒙古东部区的油松人工林为研究对象,利用空间代替时间的方法,对研究区内不同林龄的油松人工林各器官和土壤的碳含量进行测定,分析其植被和土壤的固碳特征。结果表明:随着林龄的增加,乔木层和土壤层碳储量均逐渐增加,各器官平均碳含量为502.49 mg/g,乔木层平均碳储量为39.59 t/hm2,土壤层平均碳储量为60.30 t/hm2,土壤层平均碳储量为60.30 t/hm2,植被和土壤的总平均碳储量为99.88 t/hm2,植被和土壤的总平均碳储量为99.88 t/hm2,相同林龄碳储量均表现为土壤层高于乔木层。气候特征、林分结构、土壤深度等是影响油松人工林碳储量大小的主要因素,边缘分布区与中心分布区的碳储量存在差异,这主要与气候梯度变化和人工林的经营管理措施相关。  相似文献   

11.
福建省森林碳储量及碳密度特征分析   总被引:2,自引:0,他引:2  
【目的】估算福建省森林碳储量及碳密度,进行特征分析,为今后福建省森林的综合经营和管理提供一定的科学依据。【方法】基于第八次全国森林资源清查为数据源,运用转换因子连续函数法,以2012年发布的全国各树种(组)含碳率为基准,进行碳储量和碳密度估算。【结果】福建省森林碳储量约为2.96×108 t,平均碳密度48.87 t/hm2。各森林类型碳储量在36.85×104~15 664.58×104 t,其中以阔叶混交林的碳储量最高,占森林碳储量的52.83%。各森林类型碳密度在25.58~99.93 t/hm2。【结论】福建省森林碳储量及碳密度高于全国平均水平,可通过提高成熟林和过熟林的比例来提升福建省森林的碳密度和碳储量。  相似文献   

12.
以长白山金沟岭林场作为研究区域,研究了主要森林类型碳储量和碳密度的时空变化,为我国森林生态系统碳平衡提供基础资料。结果表明:1)金沟岭林场森林植被碳储量从1997年的7 621.842 2 t 增加到2007年的8 018.125 9 t,净增加了466.283 7 t。碳储量分布以中龄林与近熟林为主,1997年与2007年所占的比例分别为87%与79%,是一个潜在的巨大碳库;2)森林植被的平均碳密度随着龄级结构的增长而增加,1997年与2007年分别为47.541 7 mg·hm-2与50.186 6 mg·hm-2,高于全国2008年森林平均植被碳密度42.82 mg·hm-2,但是低于世界的平均水平86.00 mg·hm-2;3)利用1997年与2007年两期数据分析了该林场森林植被的年固碳增量为39.63 t·hm-2·a-1,平均年增长率0.51%,低于我国森林的平均年增长率1.6%,该林场森林植被仍具有潜在的固碳空间;4)对森林植被的碳汇效益进行了计量, 1997年与2007年分别为2 728.130 8万元与2 744.954 8万元,净增长了16.824 0万元。应加强对现有森林经营,尤其是中幼龄林抚育,提高森林质量,从而增加现存森林的碳密度,以此来提高森林固碳潜力。  相似文献   

13.
不同经营措施对毛竹林碳储量及碳分配影响   总被引:2,自引:0,他引:2  
以无经营毛竹纯林为对照(Ⅰ),以垦复(Ⅱ)、施用除草剂(Ⅲ)、劈草毛竹纯林(Ⅳ)为研究对象,研究不同经营措施对毛竹林碳储量及碳分配影响,结果表明:(1)与对照相比,垦复、施用除草剂、劈草均增加了植被层碳储量;各林分植被碳储量分别为30.98、33.04、33.19、31.21 t/hm2,地上乔木层碳储量占主体,分别为23.68、25.01、26.34、25.21 t/hm2。(2)施用除草剂增加毛竹林生态系统碳储量及土壤碳储量,垦复、劈草降低了毛竹林生态系统碳储量和土壤碳储量;毛竹林生态系统碳储量分别为113.15、98.13、131.90、112.59 t/hm2,土壤碳储量占主体,分别为86.17、65.09、98.71、80.39 t/hm2。(3)毛竹林植被碳素(CO2)年固定量分别为9.33、11.29、9.94、9.95 t/(hm2.a),相当于固定CO234.21、41.38、36.47、36.48 t/(hm2.a),地上乔木层碳固定量的增加是毛竹林植被碳素年固定量增加的主要原因。  相似文献   

14.
不同抚育间伐强度对落叶松人工林生态系统碳储量影响   总被引:4,自引:2,他引:2  
以三江平原丘陵区佳木斯市孟家岗林场的长白落叶松人工幼龄林(17年生)为对象,设置5种长期、多次、不同强度的间伐试验:2次高强度间伐(L1,35.6%~43.4%)、2次中强度间伐(L2,23.1%~24.3%)、3次中强度间伐(L3,15.3%~23.8%)、4次低强度间伐(L4,5.8%~17.1%)和对照(CK,历次间伐时仅移出枯立木)。通过5种处理后幼龄林生长至成熟林时(56年生)生态系统各组分碳储量调查,结合1974—2013年历次间伐木和枯死木碳储量,从枯死木、间伐木和成熟林活立木生物量碳、土壤碳、生态系统碳分配和林分累计固碳量方面,评价长期间伐对落叶松人工林碳储量的影响。间伐不仅能够明显降低成熟林累计枯死木生物量碳,由CK处理的40.3 t/hm2降低至8.3(3.1~14.1)t/hm2,而且能够提供32.8(21.9~50.1)m3/hm2的间伐材和10.4(6.9~13.8)t/hm2的生物量碳用作生物质燃料。间伐虽然降低成熟林枯枝落叶层碳储量(比CK降低14.8%),但能增加矿质土壤碳储量(比CK提高5.6%),尤其是L3处理后矿质土壤碳储量明显增加(比CK提高15.5%);间伐没有改变成熟林活立木生物量碳和生态系统碳储量分配特征(林分尺度活立木生物量碳中树干、树根、树枝、树皮和树叶比例依次为67.7%~68.7%、17.5%~18.0%、6.8%~7.0%、4.8%~4.9%和2.2%~2.3%。生态系统碳储量中活立木、0~30 cm矿质土壤层、枯枝落叶层、枯立木、灌木层和草本层所占比例依次为69.7%~72.0%、24.7%~27.7%、1.5%~2.2%、0~1.3%、0.1%~1.3%和0.1%~0.2%);但能提高地下碳储量(活立木和枯立木树根+矿质土壤层+枯枝落叶层+灌木层+草本层)占生态系统碳储量比例(间伐为40.5%~42.4%,CK为40.0%),降低树干、树枝和树皮之和所占比例(间伐为56.0%~57.9%,CK为58.3%),维持针叶比例恒定(1.6%)。成熟林主伐时,仅利用干材而枝桠留地时,能使活立木生物量碳的26.5%~27.4%留存于林地(CK为27.7%),而将枝桠随树干一起移出系统时,能使活立木碳储量的19.7%~20.3%(CK为20.5%)、生态系统碳储量的42.1%~44.0%(CK为41.7%)留存于系统。落叶松幼龄林(17年生)多次间伐后至成熟林时(56年生)活立木生物量碳、生态系统碳储量和林分累计固碳量能够恢复至CK相近似水平,分别仅比CK降低1.7%(-4.3%~1.5%)、1.7%(-5.9%~1.4%)和1.1%(-4.0%~0.8%),L3和L4处理,尤其是L4处理在上述指标方面甚至高于CK 处理1.5%、1.4%和0.8%。5.8%~23.8%的3~4次中、低强度抚育间伐至成熟林时既可提供间伐材和生物质燃料又能维持高的活立木生物量碳、生态系统碳储量和林分累计固碳量。   相似文献   

15.
选取贵州黔东南地区3 种典型林分为研究对象,通过外业调查和室内测定,研究常绿阔叶次生林、马尾松和 柏木人工林的碳储量差异及在乔木层、林下层和土壤层的分布规律。结果表明:1)常绿阔叶次生林、马尾松和柏木 人工林乔木层碳储量分别为42.31、30.82 和8.34 Mg/ hm2 ,林下层碳储量表现为常绿阔叶次生林显著大于柏木人 工林和马尾松人工林,常绿阔叶次生林土壤层有机碳密度为112.60 Mg/ hm2 ,分别是马尾松和柏木人工林的1.8 和 4.8 倍。2)林分碳储量分布均表现为土壤层(0 ~30 cm) 乔木层 林下层,土壤碳储量占林分总碳储量的66% 以 上,乔木层碳储量占林分碳储量的26%以上。3)较少受到干扰的植被常绿阔叶次生林碳储量为155.87 Mg/ hm2 , 显著高于马尾松和柏木人工林,表明研究区植被恢复有较高的固碳潜力。研究区植被恢复应以马尾松人工林为 主,适当辅以乡土常绿阔叶树种,将有利于当地森林碳汇效益的增加。   相似文献   

16.
[目的]为探明群落演替过程中碳贮量分布格局。[方法]对苏北低山丘陵区典型群落进行样地调查,并对其生态系统碳贮量进行研究。[结果]土壤碳贮量随群落演替进程逐渐提高,乔木阶段(58.61 t/hm2)灌丛阶段(44.58 t/hm2)草本阶段(20.37 t/hm2);不同森林植被类型碳贮量的差别较大,其中凋落物和植被碳贮量的差异并不大,碳贮量差异较大的原因在于土壤碳贮量差异较大;碳贮量随群落演替进程逐渐增加,栓皮栎群落碳贮量(40.53 t/hm2)最高,白草群落碳贮量(1.24 t/hm2)最低;生态系统碳贮量随演替进程而增加,草本阶段(20.13t/hm2)灌木阶段(52.34 t/hm2)乔木阶段(92.98 t/hm2)。[结论]该研究可为苏北地区植被建设提供理论指导。  相似文献   

17.
基于全株收获法和价值量评估方法,测定新疆塔里木河中游的盐生地、沙地、岩性土地等3种立地条件下柽柳灌丛碳储量及固碳价值,结果表明:(1)沙地柽柳灌丛的碳储量远大于盐生地和岩性土地,3者的碳储量之比为C沙地∶C盐生地∶C岩性土地=9.92∶4.62∶1。(2)沙地、盐生地柽柳灌丛的地上部分碳储量分别是其地下部分碳储量的1.21倍和3.53倍。(3)沙地柽柳灌丛不同器官的固碳量排序为:根枝干,盐生地和岩性土地各器官固碳量排序为:干枝根。(4)塔河流域中游柽柳林固碳价值为39 192.63元/hm2,其中柽柳灌丛固碳价值占80.79%,土壤占19.21%。  相似文献   

18.
桉树林取代马尾松林对森林生态系统碳贮量的影响   总被引:2,自引:0,他引:2  
以广西钦州市钦南区巨尾桉人工林(10a)和马尾松天然林(15~20a)为研究对象,采用平均木法和样方收获法测定林分生物量,分别样地采集植物和土壤样品,采用重铬酸钾-水合加热法测定碳含量,探讨桉树林取代马尾松林对森林生态系统碳含量、碳贮量及其分配规律的影响.结果表明:巨尾桉植株的碳含量(经各器官生物量加权)平均为47.32%,比马尾松(50.17%)的低5.7%.巨尾桉人工林生态系统总碳贮量为123.086t/hm2,是马尾松天然林(88.238t/hm2)的1.40倍;其植被(含凋落物)生物量和碳贮量分别为115.082t/hm2和53.712t/hm2,依次是马尾松天然林(生物量40.686t/hm2和碳贮量19.421t/hm2)的2.83倍和2.77倍,差异极显著(p<0.01).两种森林植被碳贮量的差异与其生物量的差异相一致,表明桉树人工林取代马尾松天然林可以提高森林植被生产力及其固碳能力.  相似文献   

19.
西南5省市区森林植被碳储量及碳密度估算   总被引:2,自引:0,他引:2  
基于2009-2013年第8次全国森林资源连续清查数据,利用生物量扩展因子法,采用改良的计算参数,从不同龄组、林型等方面进行考虑,对西南5省市区森林资源的生物量、碳储量及碳密度进行了估算。结果表明:我国第8次森林资源清查中,西南5省市区森林植被总生物量为5 308.18×10~6t,碳储量总量为2 752.05×10~6tC,林分碳储量为2 546.74×10~6tC;西藏藏族自治区森林植被碳储量在西南5省市区碳储量中占最大份额,为980.46×10~6tC,占西南5省森林植被碳储量的35.63%;重庆市其森林植被碳储量只占西南5省市区森林植被碳储量的2.55%。在碳密度方面,西藏藏族自治区林分平均碳密度最大,高达108.73t·hm~(-2)。针阔混交林其碳密度在各林型中普遍高于林分平均碳密度,在扩大森林面积,增加森林植被碳储量中,可适当扩大针阔混交林面积,将有利于提高森林植被碳储量。  相似文献   

20.
为将植被的固碳增汇效应纳入到贵州喀斯特山区植被恢复与重建工程中,研究了贵州典型喀斯 特峰丛洼地环境下5 种植物配置模式的碳储量、空间分布特征及其固碳效益。结果表明:不同配置模式植被 各层碳储增量表现为草本层>藤本层>灌木层>乔木层,其中草本层碳储量增量占植被层碳储量比重变化范 围为36.56%~78.07%,在植被层中居主导地位;不同配置模式土壤层碳储量与对照相比没有明显变化,女 贞林、国槐林、任豆林和白蜡林较对照有略微增加,而构树林则稍有下降,且土壤层的碳储量在各配置模 式碳储量中占据主导地位;研究区实施植被恢复后各配置模式碳储量均有所升高,女贞林、国槐林、任 豆林、白蜡林和构树林的碳储量分别增加了0.579、1.813、3.254、1.227、1.349 t/hm2,固碳效益表现为任豆林 (848.97 元/hm2)>国槐林(473.01 元/hm2)>构树林(351.95 元/hm2)>白蜡林(320.12 元/hm2)>女贞 林(151.06 元/hm2)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号