首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了明确安徽省森林植被碳储量动态变化特征,基于安徽省1989-2014年6次森林资源连续清查数据,采用生物量-蓄积量转换函数,结合主要树种含碳率,估算了安徽省森林植被的碳储量、碳密度和固碳潜力。结果表明:安徽省森林植被碳储量由1989年的32.98×10~6t C增加到2014年的85.72×10~6t C,碳汇量为52.75×10~6t C,年均增长率为4.06%,碳密度增加了8.51 t C/hm~2。乔木林是安徽省森林植被碳汇的主要贡献者,竹林次之,二者分别占安徽省森林植被碳汇的83.27%、13.41%,各林型平均碳密度大小顺序为竹林、乔木林、经济林、灌木林和疏林;不同龄组乔木林的碳储量大小顺序为中龄林、幼龄林、近熟林、成熟林和过熟林,且表现出林龄越大,碳密度越大的趋势;天然林植被碳储量略高于人工林;安徽省森林植被固碳潜力为35.67 t C/hm~2,栎类固碳潜力最大。因此,安徽省森林植被碳汇能力明显增强,但碳密度较低,加强科学经营管理至关重要。  相似文献   

2.
基于2009年徐州市森林资源二类调查数据,运用生物量换算因子连续函数法研究了徐州城市森林植被碳储量和碳密度。结果表明:徐州城市森林植被碳储量为1.934 8 Mt,植被碳密度为37.218 5 t.hm-2。徐州城市森林植被碳储量均由人工林提供。森林植被碳储量按林分类型划分,从大到小依次为:阔叶林、针叶林、针阔混交林;按不同林龄划分,从大到小依次为:中龄林、幼龄林、近熟林、成熟林和过熟林。森林植被碳密度的特征为:阔叶林>针叶林>针阔混交林,且随着林龄的增加而增大。建议对现有侧柏人工林过密林分,通过间伐、开设林窗等措施,把侧柏纯林改造为针阔混交林。该研究可为今后徐州城市森林的综合经营和管理提供一定的科学依据。  相似文献   

3.
四川省森林植被碳储量及碳密度估算   总被引:1,自引:0,他引:1  
基于第8次全国森林资源连续清查数据,采用生物量扩展因子法,对四川省森林植被资源的碳储量及碳密度进行估算及分析。结果表明:截止2013年,四川省森林植被总碳储量为729.05 Mt,森林植被平均碳密度为43.26 t/hm~2,林分生物量为1 331.66 Mt,林分碳储量为670.09 Mt,林分平均碳密度为56.84 t/hm~2;针叶林碳储量在四川省森林各林型碳储量中贡献最大,成过熟林在不同林龄结构碳储量中占有重要地位;幼龄林及中龄林面积占森林林分面积的42.67%,说明四川省森林植被资源趋于年轻化,具有巨大的发展潜力,随着林龄的增长,林分碳密度与各龄组中单位蓄积量呈逐渐增长趋势。  相似文献   

4.
【目的】研究安徽森林植被碳储量的分布特征,为森林碳汇功能的评价提供依据。【方法】以安徽省第8次(2014年)森林资源清查数据为基础,采用生物量-蓄积量转换模型法和平均生物量法,结合不同树种含碳率,估算安徽森林植被的碳储量和碳密度,并分析了不同森林类型及不同林级、林种和起源的乔木林碳储量分布特征。【结果】安徽不同森林类型的总碳储量为8.51×10~7 t,平均碳密度为20.55 t/hm~2,其中竹林的碳密度最高,为37.33 t/hm~2。乔木林和竹林的碳储量分别为6.42×10~7和1.45×10~7 t,各占总碳储量的75.47%和17.02%;不同龄级乔木林中,中龄林碳储量最大,达2 490.92×10~4 t,约占乔木林总碳储量的40%;过熟林碳储量最小,为256.24×10~4 t,仅占乔木林总碳储量的3.99%,且表现出林龄越大碳密度越高的趋势。用材林和防护林的碳储量分别为3 798.04×10~4和2 205.68×10~4 t,共占乔木林碳储量的93.48%;各林种碳密度大小为特用林防护林用材林经济林薪炭林。天然林的面积(153.86×10~4 hm~2)略低于人工林(154.81×10~4 hm~2),但由于天然林的碳密度高于人工林,使得天然林的碳储量(3 476.50×10~4 t))反而高于人工林(2 946.29×10~4 t)。【结论】安徽省森林植被具有明显的碳汇能力,但其碳密度较低,应对现有森林进行科学抚育和管理,以提高森林的碳汇能力。  相似文献   

5.
江西省兴国县森林碳储量动态变化特征   总被引:1,自引:0,他引:1  
根据第6次森林清查小班数据,运用BEF方法和平均生物量方法对2003年江西省兴国县森林植被生物量和碳储量进行估算。采用空间替代时间的办法,构建了兴国县主要森林类型碳密度拟合方程,在此基础上,估算了1985-2003年的森林植被碳储量,分析了时空动态变化特征。结果表明:(1)2003年森林林分面积22.65×104 hm2,总生物量5.97Tg,植被碳储量4.13TgC,平均碳密度18.25Mg.hm-2。不同森林类型生物量和植被碳储量大小依次为马尾松林>杉木林>经济林>硬阔林>湿地松>毛竹林>混交林>软阔林,不同龄组生物量和植被碳储量大小依次为中龄林>幼龄林>近熟林>成熟林>过熟林,天然林的生物量和植被碳储量分别是人工林的4.3倍和3.9倍。(2)森林植被1985、1990、2003年碳储量分别为1.65、2.97、4.13TgC,总体增长趋势明显。1985-2003年森林植被碳储量逐年增加,年均固碳0.14TgC。森林植被碳储量在兴国县东部和北部地区高,中西部低。(3)从植被碳储量时空动态变化可以看出,20世纪80年代中后期开始实施的飞播造林和人工造林工程,使得2003年森林植被固碳能力达到较高水平并相对稳定,当林分面积到达稳定后,通过合理的森林经营管理措施将可继续保持较高的固碳能力。  相似文献   

6.
[目的]以河南省第九次森林资源清查数据为依据,估算该地区乔木林碳储量及碳密度,并提出相应对策,为森林质量提升及科学管理提供依据。[方法]基于第九次河南省森林资源清查数据,采用IPCC推荐的材积源生物量法,估算河南省乔木林不同树种、不同龄组、不同起源碳储量和碳密度。[结果]河南省乔木林碳储量和碳密度分别为160.37×106 t和46.02 t/hm2;阔叶混、栎类、杨树、针阔混、马尾松5个树种组碳储量占乔木林碳储量的85.99%;不同林分类型中,阔叶林面积占乔木林面积的85.63%,碳储量占乔木林碳储量的88.09%,阔叶林是乔木林的主体;不同树种中,栎类林的碳密度最大,为57.27 t/hm2,其碳储量占乔木林总碳储量的27.80%;不同龄组碳储量大小表现为幼龄林>中龄林>近熟林>成熟林>过熟林,幼龄林碳储量最大,但密度最小,乔木林以幼、中龄林为主。[结论]天然林保护工程、封山育林、退耕还林等政策的实施,使河南省森林质量得到不断提升,区域森林固碳潜力巨大。  相似文献   

7.
江西省森林植被乔木层碳储量与碳密度研究   总被引:2,自引:0,他引:2  
为更好地评估我国森林植被乔木层碳汇功能提供更准确和可靠的基础数据.利用江西省森林资源二类清查资料,运用材积源生物量法对江西省森林植被乔木层的碳储量和碳密度进行了研究.森林植被乔木层碳密度的特征为:全省不同森林植被乔木层类型碳密度由大到小依次为硬阔林、针阔混交林、毛竹林、国外松林、杉木林、软阔林、灌木林、马尾松林和经济林,且乔木层碳密度随着林龄的增加而增大,随其人口密度的增加而降低;森林植被乔木层碳储量的分配规律为:不同森林植被类型依次为杉木林、硬阔林、马尾松林、毛竹林、灌木林、国外松林、经济林、针阔混交林、软阔林,从森林类型分布看,除杉木和国外松林外,其它森林类型天然林的比例远大于人工林;从地理分布看,除南昌、萍乡、新余三市外,其余各市均是天然林远比人工林要多,全省不同年龄森林植被由大到小依次为,中龄林、幼龄林、近熟林、成熟林、过熟林,全省南部和中西部要高于中东部和北部.江西省森林植被乔木层的总碳储量0.210 Gt C,占全国森林总碳储量的5.66%.  相似文献   

8.
广东省森林碳储量与动态变化   总被引:5,自引:0,他引:5  
以广东省1979—2012年森林资源连续清查数据为基础,结合广东省当地分树种生物量扩展因子方程,对广东省近30 a的森林碳储量和碳密度进行估算。结果表明:广东省森林碳储量从1979年的2.766 47×10~7t增加到2012年的1.673 778×10~8t,年均增加4.366×10~6t,年变化率5.45%;平均碳密度从7.57 t/hm~2增加到23.01 t/hm~2。乔木林对森林碳储量的贡献占据主导地位,其中阔叶林贡献比较突出,且增长较快;在林龄结构上,幼龄林和中龄林面积和碳储量都占有较大比例。  相似文献   

9.
陕西省宜君县森林碳密度及空间分布格局研究   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】对宜君县森林碳储量、碳密度及空间分布格局进行研究,为宜君县森林价值及服务功能估算等提供参考。【方法】以宜君县第7次二类森林资源清查资料为数据源,运用材积源生物量法和平均生物量法进行生物量估算,结合不同树种的分子式含碳率,进行宜君县森林碳储量和碳密度的估算,并结合GIS软件进行数据的空间分析,探讨碳储量和碳密度的空间分布格局。【结果】宜君县森林碳储量为1 093 721.91t,森林平均碳密度为15.20t/hm2,总体呈自西向东递减的趋势,西部碳储量和碳密度明显高于东部。林分和灌木碳储量占森林碳储量的94.97%,林分平均碳密度为18.42t/hm2,天然林的碳密度均高于人工林。乡镇与国有林场森林在碳密度结构上存在差异性,国有林场森林碳密度呈自西向东递减的趋势,而乡镇森林碳密度呈自西南向东北递减的趋势。【结论】宜君县林分的碳密度低于陕西省林分的平均碳密度,也低于全国平均水平。  相似文献   

10.
广东省森林植被恢复下的碳储量动态   总被引:16,自引:0,他引:16  
该研究采用材积源生物量法及广东省1994—2003年森林资源档案数据,量化10年间森林植被恢复过程中碳储量动态变化.其中OBPA是指疏林、竹林、经济林和四旁林.研究结果如下: 1994—2003年广东省森林植被共固定碳41.67 Tg,碳密度增加了1.58 Mg/hm2;林下层和凋落物层碳储量占总碳库的38%~44%,凋落物层碳储量略大于林下层;不同类型森林的碳储量排列如下:针叶林阔叶林OBPA针阔叶混交林;马尾松林碳储量在11种林型中最大,南洋楹林最小;10年中近熟林、成熟林、过熟林碳储量皆有增长,幼龄林碳储量大幅度减少,中龄林碳储量小幅度波动,其碳储量始终高于其他4个龄级;阔叶林固碳率大于针叶林和针阔叶混交林,10年间的波动范围是0.19~1.36 Mg/(hm2·a).   相似文献   

11.
福建省森林碳储量及碳密度特征分析   总被引:2,自引:0,他引:2  
【目的】估算福建省森林碳储量及碳密度,进行特征分析,为今后福建省森林的综合经营和管理提供一定的科学依据。【方法】基于第八次全国森林资源清查为数据源,运用转换因子连续函数法,以2012年发布的全国各树种(组)含碳率为基准,进行碳储量和碳密度估算。【结果】福建省森林碳储量约为2.96×108 t,平均碳密度48.87 t/hm2。各森林类型碳储量在36.85×104~15 664.58×104 t,其中以阔叶混交林的碳储量最高,占森林碳储量的52.83%。各森林类型碳密度在25.58~99.93 t/hm2。【结论】福建省森林碳储量及碳密度高于全国平均水平,可通过提高成熟林和过熟林的比例来提升福建省森林的碳密度和碳储量。  相似文献   

12.
贵州省森林植被碳储量、碳密度及其分布   总被引:2,自引:0,他引:2  
利用2006年贵州省森林资源二类清查数据,运用优势树种(组)生物量扩展方程以及平均生物量法,结合不同树种的含碳率,估算了贵州省森林植被的碳储量、碳密度,并分析其地域分布特征。结果表明,贵州森林植被总碳储量为177.235 TgC,平均碳密度20.36 MgC·hm~(-2);其中,碳储量依次为:乔木林灌木林四旁树竹林疏林散生木。林分碳储量为153.143 TgC,占森林总碳储量的86.41%,林分平均碳密度为23.84 MgC·hm~(-2);林分以针叶林为主,杉木和马尾松的碳储量最高,2种林分碳储量合计71.010 TgC,占林分总碳储量的46.36%,阔叶林碳密度大于针叶林;幼、中龄林的碳储量占林分总碳储量的81.83%,碳密度随年龄增长而增加。全省以黔东南州的碳储量和碳密度最大,黔中部地区碳储量和黔西部地区碳密度为最小,研究认为,气候因素是造成全省碳储量和碳密度分布不均的重要因素。通过对现有森林加强抚育和管理,贵州森林碳储量将大幅提升。  相似文献   

13.
基于森林资源清查资料,结合实地调查校正,估算了浙江安吉县森林的碳储量。结果表明:安吉县森林植被的总碳储量为3.91TgC,平均碳密度为21.02tC·hm~(-2);不同的植被类型当中,碳储量最大的为毛竹林,占植被总碳储量的57.3%,其次为马尾松林,占到了7.9%。竹林和马尾松、经济林和硬阔林的碳汇能力在安吉县占据着主导性作用;安吉县幼龄林、中龄林和近熟林的面积分别占林分总面积的57.94%、26.33%和12.10%,加起来总和占到96.37%,全县森林植被碳储量将处于持续增长中,随着林龄的增大,森林植被碳密度将逐步增大;天然林的碳贮量是人工林的7倍之多,占绝对优势。以中龄林为主要碳贮区的碳汇潜力巨大,减少人类活动对天然森林的破坏及采取森林分区经营管理是稳定和增强安吉森林碳汇功能的有效途径。  相似文献   

14.
基于全国第七次、第八次、第九次森林资源连续清查安徽省皖南山区的清查数据,运用生物量换算因子连续函数法,对皖南山区森林碳储量及其动态进行了估算。结果表明:皖南山区森林碳储量从2004年的4 491.01万t增加到2014年的6 223.13万t,年平均净增173.21万t,年平均净增率3.86%。乔木林占森林碳储量主导地位,比重不断提高,由2004年的74.99%增加到2014年的79.85%。乔木林中,中龄林碳储量、面积均占优势,幼幼龄、中幼龄、成熟林碳储量均增加,中龄林面积减少,幼龄林、成熟林面积增加,幼幼龄、中幼龄、成熟林碳密度总体呈增加态势。8个主要乔木树种的碳密度总体上呈增加趋势,杉木、阔叶混交林、马尾松、针阔混交林、栎类在乔木林中占优势,阔叶混交林碳储量和面积表现出显著增加,杉木、马尾松有所减少。总体来看,皖南山区森林碳汇发展水平仍然不高。因此,今后在增加森林面积的同时,仍需采取合理经营管理措施,促使森林质量和碳汇水平不断提高。  相似文献   

15.
利用全国森林资源清查资料中的北京市部分,基于生物量转换因子法,通过建立不同森林类型蓄积量与生物量间的回归方程,估算出北京市不同时期森林的生物量和碳储量,并对碳储量的变化进行了分析。结果表明:北京市森林碳储量在5 a内由796万t增加到852万t,呈现增长的趋势,各森林类型碳储量的变化与相应森林类型面积变化呈正相关关系。在全市森林总碳储量中,栎类Quercus spp.,阔叶类,杨树Populus spp.在碳汇中起着重要的作用。树种年龄组成上的不合理很大程度上限制了北京的森林碳汇能力,幼龄林与中龄林面积大但是碳储量较低,成熟林碳储量所占比例较大,不同植被类型以及不同龄组的森林碳密度呈现略微下降的趋势,碳密度随着龄级的增长而增加,其他林分要素在碳汇中发挥着较为重要的作用。表4参20  相似文献   

16.
上杭县森林碳储量估算与动态分析   总被引:1,自引:0,他引:1  
张昌贵 《安徽农学通报》2016,22(13):108-110
该文以上杭县2002年、2014年两期森林资源二类调查为基础,结合不同森林类型生物量和蓄积量的回归方程,对上杭县森林植被碳储量和碳密度进行了估算与动态变化分析。结果表明,2002—2014年期间,上杭县森林碳储量有所增多,森林碳密度由26.5t·hm-2增至33t·hm-2,森林碳储量年龄结构动态变化中,幼龄林的碳储量有所降低,碳密度有所下降,表明总体森林资源保护较好,但幼龄林的林分质量有待于提高。  相似文献   

17.
在阐述森林碳汇概念及碳汇计量方法的基础上,运用材积源生物量法(Volume-biomass method)对东江源区森林系统碳储量进行估算.结果表明:总碳储量为45.11×106 tC,其中森林植被层碳储量为9.17×106 tC、森林植被枯落物层碳储量为0.94×106 tC、森林土壤层碳储量为35.0×106 tC.运用蓄积、面积估算结果是:总碳储量为40.89×106 tC,其中林分生物量碳储量4.13×106 tC,竹林生物量碳储量0.21×106 tC,经济林碳储量0.61×106 tC,枯落物层和土壤层碳储量不变.最后得出东江源区森林系统总碳储量值43×106 tC,东江源区森林系统碳交易潜在价值约合28亿美元.以此,提出了建立东江源区绿色基金会的构想.  相似文献   

18.
系统估算云南省森林植被的碳储量和碳密度,为研究区域尺度的森林碳储量提供科学依据。以云南第9次森林资源清查数据为基础,采用生物量-蓄积量转换模型法和平均生物量法,结合不同树种的含碳率,分析乔木林中不同优势树种、林种、起源和龄组的碳储量分布特征。结果表明:1)云南不同森林类型的总碳储量为1.05×109 t,平均碳密度44.96 t·hm-2;2)乔木林中不同龄组的总碳储量大小排序为幼龄林>中龄林>近熟林>成熟林>过熟林;3)云南省天然乔木林碳储量为9.07×108 t,占乔木林总碳储量的90.76%;4)天然林的平均碳密度为62.44 t·hm-2,近人工林的3倍。云南省森林碳储量、碳密度与林龄结构和起源关系密切,表现出森林碳密度随林龄增长而增加,森林碳储量随林龄增长而减少的趋势,天然林碳密度和碳储量均远远大于人工林,该研究为区域尺度的森林碳储量提供了科学依据。  相似文献   

19.
基于第8次森林资源清查数据的广西森林碳储量特征研究   总被引:1,自引:0,他引:1  
以广西第8次森林资源清查数据为基础,采用生物量-蓄积量转换函数和平均生物量法,结合不同树种的含碳率,估算了广西森林植被的碳储量与碳密度,分析了不同优势种和龄组的碳储量分布特征。结果表明:广西不同林地类型的总碳储量为1.97×108t,平均碳密度为14.87 t/hm~2,其中乔木林和灌木林的碳储量占总碳储量的99.86%;不同龄组乔木林的碳储量大小为中龄林幼龄林近熟林成熟林过熟林,其中中龄林和幼龄林碳储量占全省乔木林碳储量的72.21%。天然林的碳储量高于人工林的碳储量,天然阔叶混交林和马尾松林占天然林碳储量的77.28%,人工桉树、杉木和马尾松等林分占人工林碳储量的87.32%;用材林、防护林和经济林三大林种的碳储量占全省乔木林碳储量的93.24%,其中用材林的碳储量最高,占60.08%,而碳密度表现为特用林防护林用材林经济林薪炭林。  相似文献   

20.
用材积源生物量(volume-derived biomass)法对祁连山森林植被进行了研究。结果表明,11种森林植被的总生物量4.06×10~7 t,总碳储量1.90×10~7 t,总生长量1.49×10~6 t·a~(-1),年凋落量9.3×10~5 t·a~(-1),净生产量2.4×10~6 t·a~(-1),总生物量、总碳储量较大的是青海云杉林、祁连圆柏林,较小的是杨树林、华北落叶松林,山杨林、桦树林、油松林和混交林居中,主要分配在中龄林和近熟林中;平均碳密度为201.07t·hm~(-2),依次为:白桦林针阔混交林红桦林油松林山杨林针叶混交林杨树林阔叶混交林祁连圆柏林青海云杉林华北落叶松林;总生长量、年凋落量、净生产量较高的是青海云杉林、祁连圆柏林,较低的是油松林、华北落叶松林,在龄组中的分配依次为:中龄林近熟林成熟林幼龄林过熟林;碳交易的潜在价值为1.11×10~9美元(JI)或1.68×10~9美元(CDM),青海云杉林碳交易的潜在价值达到7.01×10~8美元(JI)或1.06×10~9美元(CDM),占总碳交易的潜在价值的62.98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号