首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于广州市森林资源二类调查数据和广东主要树种的木材密度和碳密度数据,采用 IPCC 方法对广州市森林生物量和碳储量进行评估,结果表明:广州市林业用地中森林生物量为1610.53×104 t,单位面积生物量为54.82 t/hm2,乔木林生物量为60.94 t/hm2,乔木林生物量占总生物量的84.28%;广州市林业用地中森林碳储量为792.60×104 t,乔木林碳储量占85.63%;单位面积森林碳储量为26.98 t/hm2,乔木林生物量为30.47 t/hm2。森林生物量和碳储量主要依赖于森林蓄积量,因此,选择蓄积量大的树种造林,加强森林经营管理是提高森林生物量和碳储量以及城市森林功能的重要途径。  相似文献   

2.
郭天  王之昱 《湖北农业科学》2022,61(6):33-40+47
利用Markov-Flus模型和InVEST模型中的Carbon模块,基于多情景视角模拟并预测南京市2030年碳储量变化与空间分布情况。结果表明,2010—2015年南京市土地利用变化以林地转变为耕地为主要趋势;2015—2018年以生态功能用地转化为建设用地为主要趋势。南京市碳储量空间分布总体上表现为南北两侧高、中部低的特点。耕地是区域最主要的碳汇地类。对比多情景模拟结果可知,生态增汇情景下总体碳储量相较自然发展情景增加0.40×106t,城镇周边生态类用地碳储量增长较为明显;耕地增汇情景下总体碳储量比自然发展情景增加0.61×106t,除城镇地区外各地区碳储量均增长。预测未来南京市生态系统碳储量会进一步下降,采取耕地保护和生态保护相结合的措施能够有效提升区域陆地生态系统碳储量。  相似文献   

3.
【目的】研究安徽森林植被碳储量的分布特征,为森林碳汇功能的评价提供依据。【方法】以安徽省第8次(2014年)森林资源清查数据为基础,采用生物量-蓄积量转换模型法和平均生物量法,结合不同树种含碳率,估算安徽森林植被的碳储量和碳密度,并分析了不同森林类型及不同林级、林种和起源的乔木林碳储量分布特征。【结果】安徽不同森林类型的总碳储量为8.51×10~7 t,平均碳密度为20.55 t/hm~2,其中竹林的碳密度最高,为37.33 t/hm~2。乔木林和竹林的碳储量分别为6.42×10~7和1.45×10~7 t,各占总碳储量的75.47%和17.02%;不同龄级乔木林中,中龄林碳储量最大,达2 490.92×10~4 t,约占乔木林总碳储量的40%;过熟林碳储量最小,为256.24×10~4 t,仅占乔木林总碳储量的3.99%,且表现出林龄越大碳密度越高的趋势。用材林和防护林的碳储量分别为3 798.04×10~4和2 205.68×10~4 t,共占乔木林碳储量的93.48%;各林种碳密度大小为特用林防护林用材林经济林薪炭林。天然林的面积(153.86×10~4 hm~2)略低于人工林(154.81×10~4 hm~2),但由于天然林的碳密度高于人工林,使得天然林的碳储量(3 476.50×10~4 t))反而高于人工林(2 946.29×10~4 t)。【结论】安徽省森林植被具有明显的碳汇能力,但其碳密度较低,应对现有森林进行科学抚育和管理,以提高森林的碳汇能力。  相似文献   

4.
[目的]以河南省第九次森林资源清查数据为依据,估算该地区乔木林碳储量及碳密度,并提出相应对策,为森林质量提升及科学管理提供依据。[方法]基于第九次河南省森林资源清查数据,采用IPCC推荐的材积源生物量法,估算河南省乔木林不同树种、不同龄组、不同起源碳储量和碳密度。[结果]河南省乔木林碳储量和碳密度分别为160.37×106 t和46.02 t/hm2;阔叶混、栎类、杨树、针阔混、马尾松5个树种组碳储量占乔木林碳储量的85.99%;不同林分类型中,阔叶林面积占乔木林面积的85.63%,碳储量占乔木林碳储量的88.09%,阔叶林是乔木林的主体;不同树种中,栎类林的碳密度最大,为57.27 t/hm2,其碳储量占乔木林总碳储量的27.80%;不同龄组碳储量大小表现为幼龄林>中龄林>近熟林>成熟林>过熟林,幼龄林碳储量最大,但密度最小,乔木林以幼、中龄林为主。[结论]天然林保护工程、封山育林、退耕还林等政策的实施,使河南省森林质量得到不断提升,区域森林固碳潜力巨大。  相似文献   

5.
以典型岩溶区贵州省为研究对象,以2015年高分一号和资源三号卫星影像数据为数据源,分别解译出石漠化和土地利用现状,叠置分析贵州省发生石漠化区的土地利用结构。结果发现,贵州省石漠化面积为27 956. 63 km~2,占国土总面积的15. 9%,旱地、灌木林地、草地等6种土地利用类型是贵州发生石漠化的主要土地利用类型,而高达76. 1%的石漠化面积分布在旱地、灌木林地和草地这3种土地利用类型。根据贵州石漠化区土地利用结构,贵州石漠化治理应以封山育林、经济林和草地建设为主,辅以防护林建设,配套相应的农田水利工程及畜牧业工程,实现对石漠化的综合治理。  相似文献   

6.
土地利用/植被覆盖是影响陆地上植被碳循环重要因子之一.该研究采用2000、2005、2010年3期的遥感影像,综合运用GIS和RS技术提取芜湖县2000 ~2010年土地利用变化数据,再根据前人对植被净初级生产力的研究成果,估算芜湖县土地利用变化对植被碳储量的影响.结果表明:在2000~2005年期间,约33.60 km2耕地与19.50 km2林地转化为草地、水域和建设用地,使得芜湖县植被碳储量约减少了9.54×103 t.2005 ~ 2010年林地及草地大面积转化为建设用地,致使植被碳储量持续下降了约9.51×103 t.该研究表明芜湖县植被碳储量减少趋势较为明显,其中林地面积变化对芜湖县植被碳储量影响最大.  相似文献   

7.
广东省森林碳储量与动态变化   总被引:5,自引:0,他引:5  
以广东省1979—2012年森林资源连续清查数据为基础,结合广东省当地分树种生物量扩展因子方程,对广东省近30 a的森林碳储量和碳密度进行估算。结果表明:广东省森林碳储量从1979年的2.766 47×10~7t增加到2012年的1.673 778×10~8t,年均增加4.366×10~6t,年变化率5.45%;平均碳密度从7.57 t/hm~2增加到23.01 t/hm~2。乔木林对森林碳储量的贡献占据主导地位,其中阔叶林贡献比较突出,且增长较快;在林龄结构上,幼龄林和中龄林面积和碳储量都占有较大比例。  相似文献   

8.
河南省乔木林碳储量动态变化及其碳汇经济价值估算   总被引:1,自引:0,他引:1  
为了摸清乔木林在河南省森林碳储量中的地位,基于河南省第六次(2003年)和第七次(2008年)森林资源清查数据,对河南省乔木林的碳储量及其碳汇经济价值进行了估算。结果表明,河南省乔木林总碳储量由2003年的4 629.84万t增加到2008年的7 027.33万t,年均增加479.50万t,其平均碳密度略有下降,介于22.31~23.42t/hm2,远小于全国和世界平均值。其中,阔叶林碳储量和平均碳密度均高于针叶林,5a间其碳储量由4 144.02万t增加至6 497.47万t,年均增加470.69万t,尤其是杨树增加幅度最大,年均增长率达40.27%,成为碳储量最大的树种。与2003年相比,2008年河南省人工乔木林和天然乔木林碳储量均增加,其中人工乔木林增加幅度较大,其碳储量已占到全部乔木林碳储量的53.12%,其中杨树所占比重最大。2008年,河南省乔木林碳汇经济价值达到了191.64亿元,比2003年增加了65.38亿元,其中碳汇经济价值增长最快的是杨树,由2003年的25.72亿元增加到2008年的67.15亿元,其次为硬阔类和阔叶混。  相似文献   

9.
江苏省森林植被碳储量分布结构及变化特征   总被引:2,自引:0,他引:2  
2010年以来,江苏省森林资源呈现出面积下降但蓄积增长的分化走势,森林类型和区域分布发生结构性变化,对全省森林植被碳储量产生较大影响。基于全国第8次(2010年)、第9次(2015年)2期森林资源清查资料,利用生物量转换因子连续函数法对5 a间全省森林植被碳储量、碳密度、地理空间分布格局及动态变化的特征和原因进行了研究。结果表明:1)2015年江苏省森林/林木碳储量分别为3 638.10×104t、4 594.59×104t,相比2010年增长8.94%、11.53%,森林碳密度23.15 t/hm2,增加14.22%。2)2015年全省乔木林碳储量3 321.73×104t,同比增长9.97%,树种(组)碳储量比重标准差下降4.38,其中杨树比重降低17.45 %,树种碳储量更平衡;碳储量林龄分布由2010年时集中于中龄林(53.86%)大幅调整为23∶33∶44(幼∶中∶近成过),结构更为合理。3)2015年全省森林碳储量在地理板块间分布比重为苏北57.26%、苏南32.61%、苏中10.13%,前两者分别降低10.5%、增长10.65%,区域分布结构趋于均衡,不同类型在市域间表现较大差异性。经分析,全省各森林类型间、树种间、林龄间、区域间的碳储量、碳密度结构趋向合理,增长的可持续性得到强化,在不同地区间造林绿化、采伐消耗、森林抚育等针对性措施驱动下,全省碳库潜力巨大,未来增长空间与速度可观。同时,在四旁树和散生木碳储量估算方法、不同树种(组)宜地生物量转换因子甄选、江淮地区灌木经济林和竹林单位面积碳储量因子选取等方面做了讨论,以期为更高精度下基于清查数据估算华东平原省份森林植被碳储量提供借鉴。  相似文献   

10.
基于森林资源二类调查数据,运用生物量转换因子法和单位面积平均生物量法,估算西藏自治区扎囊县森林生物量,再乘以含碳系数估算森林碳储量。根据生物群落演替的顶级理论和空间代替时间法,以成熟林碳储量作为森林生物量碳容量参照,应用森林生物量碳容量与当前( 或某一年) 森林碳储量的差值估算森林固碳潜力。结果表明,扎囊县森林植被碳储量为768 751.91 t。灌木林是青藏高原的原生植被,碳储量占森林碳储量的84%,发挥着重要的固碳作用。扎囊县森林资源以发挥生态防护功能为主要目的,有利于森林自然生长积累碳储量,防护林面积和碳储量占森林面积和碳储量比例均高达99%。乔木林碳储量按起源以人工林为主,占91%;按树种以柳树和杨树为主,占90%;在龄组方面,中龄林、近熟林和成熟林碳储量较大,占88%。随着龄组增大,从幼龄林、中龄林、近熟林、成熟林到过熟林,碳密度依次增大,从1.17 t/hm2到55.67 t/hm2。乔木幼龄林、中龄林和近熟林在乔木林面积中占88%,但是碳密度远低于乔木成熟林的平均碳密度40.28 t/hm2。随着乔木林从幼龄林逐步成长为成熟林,碳储量将显著增大。乔木林固碳潜力为251 782.90 t,是乔木林碳储量的2.21倍。宜林地、无立木林地、未成林造林地和苗圃地固碳潜力与面积大小正相关,固碳潜力为365 947.81 t。相应的措施可以进一步提高森林碳汇:封山(沙)育林等措施促进灌木林资源发展,稳定并提高灌木林面积和覆盖度;全面提升森林经营管理水平,提高森林资源质量;继续推进重点林业工程建设,因地制宜开展人工造林和封山育林,提升森林资源培育水平,确保人工造林成效。  相似文献   

11.
为了明确安徽省森林植被碳储量动态变化特征,基于安徽省1989-2014年6次森林资源连续清查数据,采用生物量-蓄积量转换函数,结合主要树种含碳率,估算了安徽省森林植被的碳储量、碳密度和固碳潜力。结果表明:安徽省森林植被碳储量由1989年的32.98×10~6t C增加到2014年的85.72×10~6t C,碳汇量为52.75×10~6t C,年均增长率为4.06%,碳密度增加了8.51 t C/hm~2。乔木林是安徽省森林植被碳汇的主要贡献者,竹林次之,二者分别占安徽省森林植被碳汇的83.27%、13.41%,各林型平均碳密度大小顺序为竹林、乔木林、经济林、灌木林和疏林;不同龄组乔木林的碳储量大小顺序为中龄林、幼龄林、近熟林、成熟林和过熟林,且表现出林龄越大,碳密度越大的趋势;天然林植被碳储量略高于人工林;安徽省森林植被固碳潜力为35.67 t C/hm~2,栎类固碳潜力最大。因此,安徽省森林植被碳汇能力明显增强,但碳密度较低,加强科学经营管理至关重要。  相似文献   

12.
根据植被的主要组成和结构将药乡林场森林划分为松林、栎林、刺槐林、混交林、板栗林和草地共六种植被类型。通过分类型设置典型样地并结合生物量法测算了药乡林场的森林碳储量。结果表明:药乡林场总碳储量为2.4359×108 kg,不同空间层次碳储量由高到低依次为:土壤层(1.6743×108 kg)、乔木层(7.5902×107 kg)、枯落物层(1.2963×105 kg)、草本层(7.8540×104 kg)、灌木层(4.5670×104 kg);其中,森林碳储量主要集中在土壤层(68.74%)和乔木层(31.16%),二者几乎占据了总碳储量的99.90%。不同植被类型碳密度依次表现为:刺槐(2.6325×105 kg·hm-2)栎林(2.4780×105 kg·hm-2)·混交林(2.4282×105 kg·hm-2)·松林(1.9240×105 kg·hm-2)·板栗(7.3900×104 kg·hm-2)·草地(3.8490×104 kg·hm-2)。另外,药乡林场森林的总碳密度为2.1687×105 kg·hm-2,接近我国森林生态系统平均碳密度(2.5883×105 kg·hm-2)。  相似文献   

13.
基于2016年清新区森林资源档案数据,运用生物量转换因子连续函数法(BEF)对清新区森林生物量和碳储量进行评估。结果表明:该区乔木林的生物量和碳储量分别为7933572t和3570107.4t,乔木林生物量占森林生物量的92.31%,乔木林碳储量占森林碳储量的92.31%;主要树种的生物量为7967160t,碳储量为4000000.86t,平均生物量为64.04t/hm~2,碳密度为32.15t/hm~2,碳密度低于全国和世界的平均水平。  相似文献   

14.
在数字化长潭自然保护区地图的基础上,均匀设置66个标准样地进行群落调查,根据调查数据进行双向指示种分析(Two-way indicator species analysis,TWINSPAN).结果表明:保护区内主要包括常绿阔叶林、杉木林、针阔混交林、以及杉木-马尾松共优针叶林4种群落类型;每种类型按树种组分别计算其蓄积量、生物量和碳储量,并与面积加权后得出该群落的碳密度(单位面积碳储量);4种群落碳密度依次为33.94、34.70、51.00和42.05t.hm-2;长潭自然保护区碳储量总计为2.265×105 t,平均碳密度为44.77 t.hm-2,远大于广东省乔木林平均碳密度(25.47 t.hm-2).相关分析表明,碳密度主要受树高、胸径和群落演替时间的影响,与海拔、坡度等地形因子和林木密度没有明显的相关关系(P>0.05).  相似文献   

15.
位盼盼    昝梅 《西北林学院学报》2020,35(4):158-166
以伊犁地区为研究对象,以2005、2010年和2015年的土地覆被类型数据和植被功能型分类方案为依据,并利用植被固碳模型,分析了近10 a伊犁地区土地覆被变化特征及其对植被碳储量的影响。结果表明:1)伊犁地区土地覆被变化主要表现为农业用地、林地和建筑用地呈增加趋势,年变化率分别为0.007%、0.031%和0.001%,草地和灌木呈减少趋势,年变化率分别为0.003%和0.1%。2)10 a增加农业用地的面积为923.9 km2,主要的转化来源为草地,占转化总量的83.9%,同时也有78.8%的农业用地转化为草地。3)由于土地覆被的变化、植被净初级生产力以及不同土地覆被类型之间碳转化系数的影响,导致植被的碳储量总体上减少了2.48×105 t。从整体上来看,伊犁地区的农业用地和草地的变化最为显著,土地覆被的变化导致的植被碳储量整体呈减少的趋势。由此可以得出,近10 a伊犁地区草地和农业用地的变化是影响植被碳储量的重要因素。  相似文献   

16.
基于第8次森林资源清查数据的广西森林碳储量特征研究   总被引:1,自引:0,他引:1  
以广西第8次森林资源清查数据为基础,采用生物量-蓄积量转换函数和平均生物量法,结合不同树种的含碳率,估算了广西森林植被的碳储量与碳密度,分析了不同优势种和龄组的碳储量分布特征。结果表明:广西不同林地类型的总碳储量为1.97×108t,平均碳密度为14.87 t/hm~2,其中乔木林和灌木林的碳储量占总碳储量的99.86%;不同龄组乔木林的碳储量大小为中龄林幼龄林近熟林成熟林过熟林,其中中龄林和幼龄林碳储量占全省乔木林碳储量的72.21%。天然林的碳储量高于人工林的碳储量,天然阔叶混交林和马尾松林占天然林碳储量的77.28%,人工桉树、杉木和马尾松等林分占人工林碳储量的87.32%;用材林、防护林和经济林三大林种的碳储量占全省乔木林碳储量的93.24%,其中用材林的碳储量最高,占60.08%,而碳密度表现为特用林防护林用材林经济林薪炭林。  相似文献   

17.
以北京市西北部生态涵养区为研究区,探讨未来的土地利用变化对生态系统固碳和产水量服务的影响。利用FLUS模型耦合马尔可夫链(Markov chain)预测了2030年自然演变、生态控制和城市快速发展情景下的土地利用格局,并利用InVEST模型估算了2015和2030年3种土地利用情景下的固碳和产水量服务,最后评价了土地利用变化对生态系统服务的影响特征。结果表明,在城市快速发展情景下,建设用地面积的增长幅度最大(+39.57%),而林地在生态控制情景下预计增加152.38 km2(+3.10%)。生态控制情景具有最大的碳储量和产水量(99.53×106Mg和361.50×107m3),其中林地是重要的供给区域。城市快速发展情景下灌木林地单位面积变化对碳储量的影响强度最大,自然演变情景下未利用地单位面积变化对产水量的影响强度最大。本研究结果可以为决策者制定区域生态保护的土地利用政策提供参考。  相似文献   

18.
利用2008年全国第七次森林资源清查主要数据,建立不同森林类型生物量与蓄积量之间的回归方程,对河南省森林植被的碳储量、碳密度及其碳汇经济价值进行了估算。结果表明,12008年全省森林总碳储量约为8 090.72万t,主要分布在乔木林中,占86.22%;森林平均碳密度约为20.00 t/hm2,远小于全国平均值;2阔叶林是全省乔木林碳储量的主要贡献者,碳储量约为5 584.44万t;杨树和栎类作为主要的两个优势树种,二者碳储量占阔叶林的86.22%;3全省乔木林碳储量主要集中于幼龄林和中龄林中,占全省乔木林碳储量的81.74%;从起源来看,人工林碳储量占55.26%,且固碳潜力巨大,将是河南省森林碳储量的主体;4河南省全部森林碳汇经济价值约为220.63亿元,其中,乔木林为190.24亿元,主要源于杨树和栎类的贡献。  相似文献   

19.
岳锋  杨斌 《安徽农业科学》2011,39(6):3433-3435
通过调查未经防治、经化学防治、物理机械防治和正常思茅松林分,测算了林木不同组分的生物量、含碳率和含碳量,并估算了4种思茅松林的BEF、生物量、碳储量、碳密度和碳汇功能。结果表明,景谷县思茅松人工林林木生物量、林木碳储量、土壤碳储量、林分总碳储量分别为1.51×107、7.83×105、1.42×106、2.28×106t,表现出巨大的碳汇;4种林分思茅松的BEF在0.94~1.00;思茅松不同组分生物量、碳储量的分配为干〉根〉枝〉叶;林分有机碳的分配为土壤层〉林木层〉枯落物层〉灌木层〉草本层。松毛虫危害后,每株总生物量、每株碳储量、林分碳密度、土壤碳密度分别降低15.80 kg、8.10 kg、47.04 t/hm2、32.66 t/hm2,通过化学/物理机械防治后分别提高9.70 kg/6.90 kg、5.00 kg/3.62 kg、25.93 t/hm2/19.50 t/hm2、17.93 t/hm2/13.09 t/hm2。  相似文献   

20.
石漠化的治理是一个综合过程,只有当地林业、种植业、畜牧业部门共同携手发力,才能真正改善当地的石漠化问题。其中,发展牛羊草食畜牧业可以巩固石漠化治理成效、发展草地生态建设,在当地的石漠化综合治理中能起到关键作用。文章对石漠化的现状及危害进行讨论,以此为切入点对牛羊草食畜牧业在石漠化综合治理中的作用进行简要分析,并对石漠化综合治理中牛羊草食畜牧业的发展模式提出一些浅显建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号