首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
以EMS诱变的辣椒绿茎突变体gh1和紫茎野生型樟树港辣椒(ST–8)为材料,测定茎中花青素含量;采用转录组测序技术(RNA–seq)和实时荧光定量PCR(qRT–PCR)分析与辣椒茎中花青素生物合成相关基因的表达水平。结果表明:突变体gh1茎中的花青素含量极显著低于ST–8茎中的花青素含量;与ST–8相比,gh1共获得1794个差异表达基因,包括1003个上调表达基因,791个下调表达基因;与花青素生物合成途径相关的基因包括9个结构基因(DFR、UF3GT、F3H、ANS、CHI、CHS、C4H、PAL、4CL)和3个转录因子(TT8、AN1、TTG1);对与花青素合成相关的差异表达基因进行转录组表达量分析和qRT–PCR分析,筛选出4个结构基因(CHS、CHI、DFR、UF3GT)和1个转录因子(AN1),推测这5个基因可能在辣椒茎中花青素生物合成途径中起重要作用。  相似文献   

2.
测定了紫山药和白山药叶、茎、块茎中的花青素含量、积累量和积累速率,以及花青素合成酶基因PAL、F3H、DFR、ANS和UFGT的实时表达。结果表明:除了DFR基因外其他基因在山药幼嫩组织中的表达水平更高;所有基因在紫山药块茎中的表达水平较高;ANS和UFGT在紫山药中高度表达,而在白山药中低表达或不表达;块茎中花青素的动态积累量呈一个典型的双"S"曲线;PAL和F3H基因只在花青素积累速率最快之前的块茎膨大初期高度表达,而DFR、ANS和UFGT表达水平的两个高峰期与花青素积累速率的两个高峰期符合。推测控制紫山药颜色的关键酶基因可能是ANS和UFGT或两者之一。  相似文献   

3.
测定了紫山药和白山药叶、茎、块茎中的花青素含量、积累量和积累速率,以及花青素合成酶基因PAL、F3H、DFR、ANS和UFGT的实时表达。结果表明:除了DFR基因外其他基因在山药幼嫩组织中的表达水平更高;所有基因在紫山药块茎中的表达水平较高;ANS和UFGT在紫山药中高度表达,而在白山药中低表达或不表达;块茎中花青素的动态积累量呈一个典型的双"S"曲线;PAL和F3H基因只在花青素积累速率最快之前的块茎膨大初期高度表达,而DFR、ANS和UFGT表达水平的两个高峰期与花青素积累速率的两个高峰期符合。推测控制紫山药颜色的关键酶基因可能是ANS和UFGT或两者之一。  相似文献   

4.
采用实时荧光定量PCR技术检测不同叶色茶树嫩梢中花青素合成相关基因的表达水平,并比较各基因表达水平的差异.结果表明,桂皮酸-4-羟化酶(C4H)、类黄酮-3′-羟化酶(F3′H)和花青素合成酶(ANS)等结构基因在紫化茶树品种(系)的相对表达量显著高于白化茶树和常规绿叶茶树.紫化茶树因富含花青素呈紫红色,因此可推测C4H、F3′H和ANS等基因可能正向调控茶树花青素的合成与积累.  相似文献   

5.
克隆了葡萄查尔酮合成酶基因4(CHS4),并采用半定量RT-PCR技术,以actin为内参,分析了CHS4在巨峰葡萄果实发育阶段不同组织的表达。对CHS4的序列分析表明:CHS4含有1个内含子,2个外显子;与CHS1、CHS2、CHS3在核苷酸水平的同源性分别为99.3%、92.6%和76.0%。半定量RT-PCR分析结果表明:CHS4在果皮、果肉、种子、叶片和根系中均有表达,在花后30d的果皮中表达强烈,随后迅速降低,到花后70d表达又增强;CHS4在花后30~45d的果肉中表达强烈,随后迅速降低;在花后45d的种子中也表达强烈,随果实发育,其表达逐渐下降。高温处理抑制CHS4在巨峰葡萄幼叶中的表达,但诱导CHS4在幼根的表达。  相似文献   

6.
以荷花不同花色品种‘青玉'和‘白洋淀红莲'为研究对象,运用高通量测序技术,对松蕾期的花瓣进行转录组测序,并对2个测序文库进行差异表达及实时荧光定量PCR分析。结果表明:共获得1 142条差异表达基因。筛选出与花青素苷合成相关的关键基因ANS、CHS、DFR、UF3GT。4个基因在两种荷花花瓣不同时期中的表达量存在显著差异,在松蕾期或初花期的表达量最高。  相似文献   

7.
为了解低温条件下羽衣甘蓝白鸽叶片失绿的血红素调控机制,以常温条件作为对照,系统研究了低温处理对白鸽植株血红素含量及血红素、叶绿素生物合成相关基因表达的影响。结果表明:常温条件下,白鸽嫩叶表现为正常的绿色,低温条件下,白鸽中心嫩叶明显失绿;低温条件下,白色嫩叶中血红素含量为[(0.021 2±0.007 01)mg/mL],显著高于常温条件下绿色嫩叶中血红素含量[(0.000 973±0.000 542 8)mg/mL];半定量RT-PCR结果显示,血红素和叶绿素共有合成基因的表达水平在常温及低温条件下没有显著差异;血红素合成途径基因FC1在低温白色嫩叶中的相对表达量为(2 000±160.934 8),显著高于常温绿色嫩叶中的相对表达量(1 440±170.587 2);叶绿素合成途径基因PORB、PORC及Chl P在低温条件下显著下调。  相似文献   

8.
植物类黄酮合成途径包括花青素、黄酮醇、原花青素等不同分支。为了解析中国水仙花色单一的原因,我们通过显色反应和HPLC分析了中国水仙(漳州水仙)不同器官中类黄酮的主要成分。结果显示:花瓣和副冠中类黄酮的主要成分是黄酮醇;鳞茎盘中的主要成分是原花青素;几个器官中都没有花青素。因此,缺乏花青素可能是中国水仙花色单一的主要原因。为了进一步了解中国水仙不能合成花青素的原因,我们进行了鳞茎盘转录组测序。De novo组装出36,006个unigene,平均读长706bp。通过Blast数据库比对、序列分析等方法鉴定类黄酮合成途径中表达的结构基因,共获得了4个Nt CHS、2个Nt CHI、3个Nt F3H、3个Nt UFGT、1个Nt F3’H、1个Nt DFR和1个Nt LAR;同时还获得了与类黄酮代谢相关的调控因子MYB,b HLH和WD40等基因。但没有发现花青素合成途径的ANS基因以及原花青素合成分支途径的ANR基因。通过q PCR研究获得的16个结构基因在中国水仙全开、半开和花蕾期三个时期的花瓣、副冠以及叶片和鳞茎盘中的表达。结果发现,在花瓣和副冠中Nt DFR的表达量低,Nt FLS的表达量很高;鳞茎盘中Nt DFR和Nt LAR的表达量都很高,Nt FLS的表达量低。结构基因的表达水平与这三种器官中类黄酮的主要成分相吻合。通过HPLC进一步分析了鳞茎盘中原花青素单体的成分,发现主要是儿茶素单体(catechin),说明中国水仙鳞茎盘中经过Nt DFR作用生成无色花青素(leucoanthocyandin)后,直接在Nt LAR的作用下合成原花青素,没有经过ANS和ANR的作用步骤,与转录组测序中没有发现ANS和ANR基因表达相一致。因此我们推测,中国水仙花瓣和副冠中也缺少ANS基因的表达,没有ANS基因的表达可能是中国水仙不能合成花青素的主要原因,有待进一步验证。  相似文献   

9.
以拟南芥Col–0(CK)和酪氨酸降解最后一步缺陷突变体sscd1为试验材料,采用外源尿黑酸处理幼苗,研究尿黑酸对花青素生物合成的影响。结果显示:外源尿黑酸能诱导拟南芥幼苗花青素的积累,而且在sscd1突变体中花青素的积累效果更显著;荧光定量PCR分析发现,尿黑酸处理能促进花青素生物合成基因(包括花青素生物合成的下游基因DFR、LDOX、UF3GT和上游基因PAL、CHI、CHS)的表达,且在sscd1突变体中,这些基因表达上调的幅度更大。以上结果表明,尿黑酸处理能激活花青素生物合成途径,从而促进花青素的积累;酪氨酸降解最后一步缺陷能促进尿黑酸诱导花青素的生物合成。  相似文献   

10.
花色苷是一种天然的水溶性色素,常分布于植物的花、果实、茎、叶细胞中,能赋予植物丰富的色彩。花色苷对植物具有重要的生理生态功能,能帮助植物适应和抵御不良环境,对人类还具有疾病预防和保健作用。研究结果证明,花色苷的生物合成至少需要苯丙氨酸解氨酶(PAL)、查尔酮合成酶(CHS)、查尔酮异构酶(CHI)、黄烷酮-3-羟基化酶(F3H)、类黄酮-3′-羟化酶(F3′H)、类黄酮-3′,5′-羟化酶(F3′5′H)、二氢黄酮醇-4-还原酶(DFR)、花色素合成酶(ANS)、类黄酮3-O-葡萄糖基转移酶(3GT)等酶共同参与,同时受内在因素与外在因素的共同调控,本文重点从花色苷生物合成及影响因素两方面进行综合评述,为花色苷的生物合成及开发和利用研究提供基础。  相似文献   

11.
依据已发布的氨基酸保守序列设计引物,从香水文心兰Oncidium Sharry Baby.红色花萼中克隆得到花色相关基因CHS、ANS、DFR3个结构基因的保守序列,所获保守序列长度分别为611、288、554bp。序列分析表明:这3个结构基因与其他植物来源的花色相关基因均具有较高的同源性,分别为77%~89%、72%~99%和57%~96%。半定量RT-PCR分析表明:3个基因在蕾期或始花期表达量最高,盛花期表达量降低;在红色花萼中有表达,在叶片和黄色唇瓣中均没有表达。  相似文献   

12.
UV-A诱导大豆芽苗菜下胚轴中花青苷积累的分子机理   总被引:1,自引:0,他引:1  
【目的】研究长波紫外光(UV-A)、白光(W)和蓝光(B)对大豆芽苗菜下胚轴中花青苷含量、花青苷合成相关酶活性、花青苷合成途径相关基因及光受体基因表达量的影响,以探明UV-A诱导大豆芽苗菜下胚轴中花青苷生物合成的分子机理,为光质调控技术应用于大豆芽苗菜工业化生产提供理论依据。【方法】以大豆‘东农690’为试材,以黑暗培养为对照,连续的UV-A、白光(W)和蓝光(B)光照培养作为试验处理,在处理0 h、12 h、24 h和36 h后各采样一次,分别测定花青苷含量,苯丙氨酸解氨酶(PAL)、查尔酮异构酶(CHI)以及类黄酮半乳糖苷转移酶(UFGT)活性,相关基因(PAL、CHS、CHI、DFR、ANS、UFGT、MYB75、CRY1、CRY2、UVR8)表达量。花青苷含量采用分光光度法测定,苯丙氨酸解氨酶(PAL)及查尔酮异构酶(CHI)活性采用分光光度法测定,类黄酮半乳糖苷转移酶(UFGT)活性采用超高效液相色谱法(UPLC)测定。材料总RNA采用Trizol试剂法提取,基因表达量采用qRT-PCR测定。【结果】黑暗培养下的大豆芽苗菜子叶为黄色,而白光(W)、蓝光(B)和UV-A培养下的大豆芽苗菜子叶为绿色。与黑暗培养及其他光质处理相比,UV-A显著提高大豆芽苗菜下胚轴中花青苷含量;随着处理时间的延长,花青苷积累逐渐增加。0 h处理下,大豆芽苗菜下胚轴中花青苷含量较低,约2 U·g-1FW。经36 h的UV-A处理,大豆芽苗菜下胚轴中花青苷含量达到最大值(43 U·g-1FW),显著高于黑暗及其他光照处理。0 h处理下,PAL和CHI酶活性较高。与黑暗培养及其他光质处理相比,24 h及36 h UV-A处理显著提高了PAL酶活性;12 h及24 h UV-A处理显著提高了UFGT酶活性。0 h处理下,不同处理间的花青苷合成相关基因表达均无差异。与黑暗培养及其他光质处理相比, UV-A处理36 h显著上调了MYB75CRY1CRY2UVR8的表达,分别上调约12倍、30倍、6倍和2倍;UV-A处理12 h显著上调了花青苷合成相关结构基因(PAL、CHS、CHI、DFR、ANS、UFGT)的表达,分别上调约5倍、58倍、10倍、6倍、44倍和47倍。【结论】UV-A通过提高PAL、UFGT酶活性及上调花青苷合成和光受体相关基因的表达,诱导了大豆芽苗菜下胚轴中花青苷的积累。  相似文献   

13.
‘凤丹’牡丹花色变化过程中花瓣色素及相关基因表达   总被引:1,自引:0,他引:1  
针对‘凤丹’牡丹在开放过程中花色由紫红色变白的现象,以‘凤丹’5个不同开放时期的花瓣为试验材料,分别运用色差仪、高效液相色谱仪和荧光定量PCR测定花色表型、花色素成分及质量分数和花青苷合成途径中相关基因的表达,进而分析花瓣色素与花青苷合成相关基因表达之间的关系。结果表明:随着花的开放,红色大幅减退,明度变大,彩度降低;‘凤丹’花中检测出2种花青苷(芍药花素-3,5-二葡糖苷和矢车菊素-3,5-二葡糖苷)和8种单体酚。花开放过程中,总花青苷和总黄酮质量分数逐渐减少,总花青苷质量分数降低幅度更大。花青苷合成相关结构基因PAL、DFR、ANS和转录因子MYB22、bHLH1的表达模式与总花青苷质量分数的变化趋势一致,而且这些基因的表达量与总花青苷质量分数均具有极显著正相关性。研究发现,‘凤丹’花色变化的主要原因是总花青苷质量分数大量减少。PAL、DFR、ANS是参与‘凤丹’花青苷合成的关键结构基因,转录因子MYB22及bHLH1可能对结构基因DFR和ANS的表达起着重要的调控作用。  相似文献   

14.
Anthocyanidin in plants, an important pigment, is of great interest to researchers, consumers, and commercial entities due to its physiological functions. Anthocyanin content and mRNA levels of anthocynin biosynthesis genes were investigated in storage root of different purple-fleshed sweet potatoes (PFSP) genotypes to understand the regulation mechanism of anthocyanin under weak light conditions. Anthocyanin content, its amount of accumulation, and the expression of CHS, DFR, F3H, GT, and ANS genes in the PFSP storage root under weak light conditions were studied. The results demonstrated that the anthocyanin content of the treatments was decreased and was obviously lower than that of the control until 30 days after shading in Ayamurasaki, while it was lower than that of the control from the beginning of shading in Jishu 18. Their accumulation rates of both treatmeants were lower than its control before 10-20 d of shading in Jishu 18, while those of Ayamurasaki weren't in their treatments. This indicated that Jishul 8 is more sensitive to light as compared to Ayamuraska. Under the different weak light conditions, mRNA levels for ibCHS, ibF3H, ibDFR, and ibANS were obviously decreased, while the expression of ibGT was increased. These results indicated that anthocyanin content was regulated by light at the mRNA levels and the enzymatic level in sweet potato. Therefore, the development dynamic response to anthocyanin content varied in different genotypes of PFSP, and mRNA levels of anthocyanin biosynthesis were inhibited under the weak light condition.  相似文献   

15.
为探索花青素生物合成的调控机制,以模式植物拟南芥野生型Col–0和酪氨酸降解途径缺陷突变体sscd1为试验材料,分析5种浓度(0、0.1、0.5、1.0、2.0mmol/L)外源苯丙氨酸处理后花青素的积累和花青素生物合成相关基因的表达,探讨酪氨酸降解途径受阻是否影响苯丙氨酸诱导花青素的积累。结果发现:外源添加不同浓度苯丙氨酸能提高拟南芥幼苗花青素的含量,而且花青素的含量随着苯丙氨酸浓度的增加而增多;苯丙氨酸处理后,sscd1突变体幼苗中花青素的积累增多,同时花青素生物合成基因,如PAL、CHI、CHS、DFR、LDOX、UF3GT的表达水平在sscd1突变体中都显著上调,表明SSCD1基因突变会阻断酸酪氨酸降解,增加苯丙氨酸诱导花青素的合成。  相似文献   

16.
【目的】探明光质在血橙果皮花色苷合成中的调控作用,为精确解答生产中血橙果面花色苷着色规律和研发血橙提质增效方法提供科学依据。【方法】对血橙果实进行遮光处理,采用可见光(390~780 nm)、紫外+可见光(300~780 nm)、长波紫外线(365 nm)和中波紫外线(311 nm)在果实转色期间照射,以不作照射的遮光果实为对照,动态测定各处理血橙果皮中总花色苷和可溶性糖含量,使用实时荧光定量PCR测定果皮中7个花色苷合成相关基因的动态表达情况。【结果】血橙转色期间,遮光条件下经对照、可见光和长波紫外线照射的果实,其果面均无花色苷着色;紫外+可见光和中波紫外线照射果实,其果面在照射46 d时均呈现花色苷着色,果皮花色苷含量分别为1.78和1.75 mg/kg,照射61 d时,果皮花色苷含量分别为8.78和6.15 mg/kg。试验期间,对照和各补光处理的血橙果皮中果糖和葡萄糖含量持续累积,尤其在紫外+可见光、长波紫外线和中波紫外线光质照射下,果皮果糖和葡萄糖含量明显高于可见光处理。转色期间,血橙果皮中7个花色苷合成相关基因(4CL、CHS、DFR、ANS、UFGT、GST和Ruby)在不同补光条件下的表达量均呈增长趋势,尤其在紫外+可见光和中波紫外线照射果实中,上述7个基因在各采样期的表达均明显高于同期其他处理,补光61 d时果皮中7个基因的表达量分别比同期其余处理至少高2.42和2.76倍、26.46和23.91倍、46.68和44.24倍、10.94和9.70倍、2.09和2.09倍、42.84和36.28倍、5.58和4.99倍。【结论】中波紫外线是诱导血橙果皮花色苷合成的真正光质,血橙转色过程中,其激发果皮中花色苷合成相关基因的大量表达,促进果糖、葡萄糖的快速积累,最终促成花色苷在果皮中的快速合成。  相似文献   

17.
植物花青素合成与基因调控(英文)   总被引:1,自引:0,他引:1  
文章在阐述植物花青素生物化学合成的基础上,综述了植物花色素苷合成的基因调控及环境、激素化学物质等外在因子对花青素基因调控的影响。结果表明:在植物花青素代谢中,温度、光照、紫外线、施肥状况、激素水平等因素能诱发花青素合成的调节基因或反义基因的表达,从而诱导或抑制了花青素的合成。在调控基因中,一些对花青素合成的结构蛋白表达产生促进作用,一些则具有抑制效应。不同外在因子激活或抑制调控基因的种类与数量不同,因此,产生了不同的花青素组型或相同组型的不同配比,使植物器官表现不同的颜色。  相似文献   

18.
为甘蓝作物中花青素的合成代谢研究提供理论基础,以"早红"(紫甘蓝)和"中甘11"(青甘蓝)为试验材料,利用UV-A和UV-B不同的时间组合照射生长4周的甘蓝幼苗,测定甘蓝中花青素的含量和代谢相关的主要的结构基因和转录因子在不同处理中的表达。试验表明:紫甘蓝和青甘蓝在经过UV-A和UV-B处理后,花青素含量均显著提高,并均在6h达到最大值;UV-B处理比UV-A处理提高甘蓝花青素的含量方面更有效,在紫甘蓝和青甘蓝中分别提高41%和45%。分析花青素生物合成与代谢相关的结构基因和转录因子的表达情况可知UV-A和UV-B促进花青素积累的调节机制不同,甘蓝中不同品种积累花青素的机制也不同,综合分析结果显示,DFR和LDOX这2个下游结构基因在UV-A和UV-B不同处理以及紫甘蓝和青甘蓝不同品种间表达量都提高了,说明紫外照射提高花青素生物合成的下游结构基因的表达与甘蓝花青素的含量提高具有非常密切的关系。  相似文献   

19.
【目的】花色苷是一类通过类黄酮途径合成的水溶性次生代谢产物,既能使植物的不同器官呈现红、紫、蓝等颜色,还有利于人体健康。紫茄富含花色苷,但是有关茄萼花色苷生物合成的分子机制还不是很清楚。本研究旨在通过克隆茄萼花色苷合成相关基因DFR和MYB,测定其在不同发育时期不同颜色茄萼中的表达量,探究DFR和MYB在茄萼花色苷合成中的作用。【方法】选用绿萼和紫萼长茄(Solanum melongena L.)果萼为试材,测定不同p H条件下茄萼花色苷含量;通过RACE方法分离克隆DFR和MYB cDNA全长序列,分析DFR和MYB的保守结构域及序列特征;分别对DFR和MYB及其同源蛋白序列进行系统进化分析,构建系统进化树来进一步分析鉴定基因;使用Ex PASy网站提供的在线分析软件SOPMA预测蛋白质二级结构;利用实时荧光定量PCR方法检测目的基因在不同发育阶段果萼中的表达情况。【结果】从绿萼和紫萼长茄果萼中克隆了DFR和MYB片段,分别命名为ouSmDFR、dongSmDFR和ouSmMYB、dongSmMYB,Gen Bank登录号分别为:KX224250、KX224251和KX224253、KX224254。ouSmDFR和dongSmDFR全长分别为1 285 bp和1 249 bp,开放阅读框为858 bp和864 bp,分别编码285个和287个氨基酸;ouSmMYB和dongSmMYB全长分别为969 bp和959 bp,开放阅读框均为462 bp,编码153个氨基酸。蛋白质二级结构分析表明α-螺旋和无规则卷曲均为两个DFR蛋白和两个MYB蛋白的主要二级结构元件。序列比对表明DFR蛋白具有NADPH结构域(NADPH binding domain)和底物特异性结合结构域(Substrate specific binding domain),属于NADB-Rossmann超基因家族;MYB蛋白属于R2R3-MYB转录因子,具有R2、R3两个MYB结构域和b HLH结合域。ouSmDFR和dongSmDFR与St DFR和Sl DFR具有相对较高的同源性;ouSmMYB和dongSmMYB与Es MYB同源性较高。花色苷含量测定显示,紫萼果茄萼花色苷含量较高且随着果实的发育成熟而逐渐增加;而绿萼茄萼几乎检测不到花色苷。荧光实时定量PCR分析表明,DFR和MYB在紫萼长茄果萼中表达量均远高于绿萼长茄;从初蕾期到盛花期,紫萼长茄果萼中DFR和MYB表达量逐渐升高,而绿萼长茄则几乎没有变化,与两个品种茄萼颜色变化相一致。【结论】ouSmDFR和dongSmDFR属于NADB-Rossmann超基因家族,ouSmMYB和dongSmMYB为典型R2R3-MYB转录因子,DFR和MYB在紫萼长茄果萼中表达明显高于绿萼长茄。推测DFR和MYB在茄萼呈色中发挥作用,并且参与花色苷生物合成。  相似文献   

20.
[目的]分析蓝果忍冬果实花青素含量及其合成相关调控基因表达情况,为蓝果忍冬种质的挖掘、利用及花青素的合成调控研究提供参考依据.[方法]利用高效液相色谱检测技术定性定量分析不同蓝果忍冬品种(蓓蕾、HSY-4和日本-5)果实花青素成分及含量,并以实时荧光定量PCR(qRT-PCR)对3个品种不同成熟期花青素合成相关基因及转录因子的表达量进行分析.[结果]在525 nm波长下,从成熟蓝果忍冬果实中检测出8种花青素,含量最高的花青素是矢车菊3-葡萄糖,占总花青素含量的76.61%~86.67%,其中蓓蕾的花青素含量最高,达500.14 mg/100 gFW,日本-5最低,为162.79 mg/100 gFW.半转色期花青素合成相关基因表达量最高,与花青素积累情况相符;PAL、ANS和bHLH基因的表达量随花青素合成积累量增加呈先升高后降低的变化趋势.[结论]蓝果忍冬果实含8种花青素,以矢车菊为苷元的花青素种类最多,其合成相关基因中PAL、ANS和bHLH基因在花青素合成过程中起调控作用.蓓蕾、HSY-4和日本-5的花青素合成相关基因表达情况相似,但品种间存在差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号