首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
CRISPR/Cas9介导的基因组编辑技术是在DNA双链的特定位置形成双链断裂,然后通过同源重组或非同源末端连接方式进行修复,造成基因组碱基局部缺失或插入而引起基因突变,它具有操作简单、突变效率高等优势。笔者归纳了CRISPR/Cas9系统的基本结构、分类及其在植物基因中的研究进展和未来的发展方向。  相似文献   

2.
3.
当外源DNA通过转基因技术导入植物细胞后,会以同源重组或非同源重组两种不同的方式整合到基因组中,进而获得相应的目标性状。外源DNA与受体细胞序列相同或相近的位点发生重新组合,从而整合到受体细胞的染色体上称之为同源重组;当发生了DNA双链断裂的细胞为了避免DNA或染色体断裂而造成DNA降解或对生命力的影响,而强行将2个DNA断端彼此连接在一起时则为非同源重组。发生非同源重组的细胞其基因组常出现核苷酸片段的插入和/或缺失以及其他突变等多种情况,使得研究者无法得到精确控制的突变结果;而发生同源重组的细胞基因组序列通常不变,通过加入同源重组的供体DNA,可以实现对基因组的精确修饰和改造。由于在植物中产生自发同源重组的概率很低,对植物基因组进行精确修饰和改造非常困难,位点特异性核酸酶的出现和应用,大大提升了同源重组的效率,使基因组编辑变得更加高效和精确,从而使得对包括植物在内的任何物种进行基因组编辑都将成为可能。锌指核酸酶(ZFN)和TALE核酸酶(TALENs)是能够使DNA的靶位点产生DNA双链断裂进而实现基因组定点编辑的常用系统,但在具体应用中发现这两种系统存在着许多缺陷和不足,如脱靶效应、与基因组进行特异结合与染色体位置及邻近序列有关等,另外技术难度大、构建组装时间长也限制了其应用。CRISPR/Cas系统广泛存在于细菌及古生菌中, 是机体长期进化形成的RNA指导的降解入侵病毒或噬菌体DNA的适应性免疫系统。Ⅱ型CRISPR/Cas系统经过密码子优化等改造后已成为继锌指核酸酶ZFNs和TALENs后的新型高效定点编辑的新技术,具有突变效率高、制作简单、易操作及成本低的特点。目前,该技术成功应用于人类细胞、斑马鱼、小鼠以及细菌的基因组精确编辑,编辑的类型包括基因的定点插入、小片段的缺失、多个位点同时突变、基因定点的indel突变等。目前,CRISPR/Cas系统在植物中的应用还比较有限,但该技术为植物基因工程的发展呈现了美好的前景。文中首先简要介绍了CRISPR/Cas系统的组成和基本原理,进而详细综述了该技术在植物内源基因和外源基因定点编辑中的应用,主要列举了自CRISPR/Cas系统改造成功以来利用该系统对单子叶和双子叶植物进行基因组定点编辑的案例,最后对基因组编辑技术在农业和植物基因工程上的应用进行了展望,希望能够为开展该领域研究的科研工作者提供参考。  相似文献   

4.
5.
综述了CRISPR/Cas9基因编辑系统及其在水稻育种中的应用。在水稻基因组水平上进行基因定向编辑改造对水稻育种具有重要意义。CRISPR/Cas9基因编辑系统是近几年来研究发现的一种定点基因组编辑新工具,仅需要短RNA和核酸酶就可以对特定的靶标基因进行突变,因其简便高效而被广泛应用于包括水稻在内的多种生物的基因组编辑中。  相似文献   

6.
基因编辑技术指能够对目标基因进行编辑,实现对特定DNA片段的敲除、加入等技术。目前,该技术主要包括锌指蛋白系统、转录激活因子样效应核酸酶系统和成簇的规律间隔短回文重复序列系统,基本原理都是通过序列特异性核酸酶特异切割DNA靶位点,产生DNA双链断裂,诱导DNA的损伤修复机制,从而实现对指定基因组的定向编辑。本文概述了3种基因编辑技术的原理,对它们的优缺点进行比较,并阐述了CRISPR基因编辑技术在动物和植物育种中的应用,以及基于CRISPR技术的DNA分子检测新方法的建立和应用。其次,阐述了对CRISPR等基因编辑产品筛选和检测鉴定的方法,比较了几种筛选方法的检测周期、灵敏性、人工成本等。最后,对基因编辑技术的发展前景进行了展望。  相似文献   

7.
景润春  卢洪 《中国农业科学》2016,49(7):1219-1229
CRISPR/Cas9系统是近年发展起来的、由导向RNA介导的基因组定向编辑技术。总结了CRISPR/ Cas9基因组定向编辑技术的发展历程,并综述了其在作物遗传育种研究中的多方面应用。CRISPR/Cas系统是存在于大多数细菌与所有古生菌中的一种后天免疫系统,以消灭外来质体或者噬菌体。 根据Cas蛋白组分及氨基酸序列不同,已发现的CRISPR/Cas系统可以分为3种不同类型,Ⅰ型、Ⅱ型和Ⅲ型。其中,Ⅱ型是以Cas9蛋白及导向RNA为核心组份,组成较为简单,是目前经过改造用于开发基因组定向编辑技术的主要类型。自CRISPR/Cas9技术体系首先在人类与动物细胞系中建立后,经过改造的CRISPR/Cas9系统被迅速地应用于拟南芥、烟草、高粱、水稻、小麦、玉米等不同植物基因组的定向编辑研究中。CRISPR/Cas9与ZFNs或TALENs一样都是通过自身的核酸内切酶活性引起靶位点DNA序列双链断裂,然后通过非同源末端连接或同源重组介导的修复2种方式引入突变。至今,在多种作物中已实现诱导产生多种定点突变(包括插入、缺失或修饰等),并可获得较高的突变诱导率和可稳定遗传的基因组编辑后代植株。与ZFNs或TALENs技术相比,CRISPR/Cas9技术可以实现对基因组中多个靶基因同时进行编辑,从而可以用来修饰同一基因家族中的不同成员或同一代谢途径中的不同调控基因,为其一大优势。由于CRISPR/Cas9技术具有突变诱导率高、成本低、易于操作及可以多重基因编辑等特点,已成为具有广阔应用前景的作物遗传改良与育种研究的分子操作系统。CRISPR技术除了可以对基因组中不同靶基因进行定向编辑以外,还可以广泛地应用于基因表达调控研究、细胞定位运输系统研究及新型RNA沉默系统构建等方面。基因组编辑技术是继转基因技术之后人类对生物进行遗传操作的又一个革命性技术。但是,与转基因技术相比,CRISPR/Cas9基因组编辑技术操作更加简单、快捷。应用CRISPR/Cas9基因组编辑技术进行育种可以不引入外源基因,在进行基因组编辑之后可以不留下转基因的痕迹,从而导致定义转基因生物的不明确性,因此,政府监管部门是否应该按照转基因的管理办法来监管CRISPR/Cas9技术的应用尚有待决定。  相似文献   

8.
基因组编辑技术应用于作物遗传改良的进展与挑战   总被引:5,自引:0,他引:5  
  相似文献   

9.
CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated Proteins)是细菌抵抗外来入侵的一种自适应免疫机制,利用CRISPR/Cas9系统可实现双链DNA的剪切并诱导宿主细胞DNA修复机制,从而达到靶向编辑基因的目的。核酸酶失活的Cas9(Nuclease-deactivated Cas9,d Cas9)耦联效应分子可以调控靶标结合位点附近基因的表达、表观遗传修饰及特异染色体区域标记。目前已开发出多种CRISPR/Cas9系统,可对活细胞中重复或低重复序列基因位点进行实时多位点同步成像,广泛应用于动物和植物细胞中。基于CRISPR/Cas系统的活细胞染色体成像技术为研究活细胞染色体动力学和三维染色体结构提供了全新角度。本研究针对CRISPR/Cas系统的生源机制及其在活细胞成像的应用和发展现状进行概述,以期为该领域的相关研究提供参考。  相似文献   

10.
11.
基因编辑是一项对目的基因进行修饰的新技术,由成簇规律间隔短回文重复序列(Clustered regularly in-terspaced short palindromic repeats,CRISPR)及其关联蛋白(CRISPR associated,Cas)组成的系统(CRISPR/Cas)为新一代基因编辑技术,其中Cas9蛋白与CRSPR结合形成的编辑系统CRISPR/Cas9因其简单易操作的特性已广泛应用于植物基因组编辑,发展潜力巨大.文章论述了CRISPR/Cas9系统的作用原理、发展历程及在植物基因组中的定点编辑效应,并分析CRISPR/Cas9在水稻、小麦、玉米等作物育种中的应用现状,发现其在改良水稻产量和质量相关性状、小麦白粉病抗性及玉米乙烯敏感等性状上效果明显.在今后的研究中,应针对不同作物的育种目标,深入了解目标基因的功能作用来设计相应的操作方案,并提高该系统对作物目的基因改良的效率,加强其安全性等,以促进基因编辑在作物育种中的应用,加快育种进程.  相似文献   

12.
基因编辑技术及其在作物育种中的应用与安全管理   总被引:3,自引:0,他引:3  
基因组编辑技术是研究基因功能和对生物体基因进行定向改造的有力工具。随着近几年CRISPR/Cas9技术的快速发展,基因组编辑技术在作物育种领域起着越来越重要的作用。介绍了ZNFs、TALENs和CRISPR/Cas9系统的原理及在作物育种领域的研究进展,重点论述了CRISPR系统相关的变体和该系统在植物基因功能研究和作物育种中的进展。同时,也论述了基因编辑作物的检测方法及不同国家和地区对基因编辑作物的监管态度,重点介绍了美国、欧盟以及我国目前的监管态度,并分析了基因编辑作物存在的问题和发展趋势。为我国基因编辑作物的研究、安全管理和商业化批准提供了参考。  相似文献   

13.
基因编辑技术是一种在基因组水平上对DNA序列进行精准修饰,从而促使基因组序列定向改造的技术。随着近几年CRISPR/Cas9技术的快速发展,基因组编辑技术在作物育种领域发挥了越来越重要的作用。本文综述了基因编辑技术的发展历程,以及CRISPR/Cas9的工作原理,分析了CRISPR/Cas9的局限性并提出了改进方法。重点阐述了植物CRISPR/Cas9基因编辑体系的建立、在植物性状改良方面的应用,以及最终致力于基因编辑产品商业化的应用案例。同时还分析了美国、欧盟、英国、日本和中国这5个代表性国家/地区的基因编辑监管政策和态度,以期为我国科学监管框架的建立提供参考,促进CRISPR/Cas9在我国乃至全球的产业化应用。  相似文献   

14.
基因编辑技术是一种可直接对DNA序列进行稳定、精准改造的技术,其中CRISPR/Cas9技术以简便、高效、经济等优势脱颖而出。在农作物中,CRISPR/Cas9技术被广泛应用于作物遗传育种、植物基因改造、农作物品种改良等多个方面,给农作物领域带来巨大机遇。但机遇与挑战并存,该技术在实际应用中亦遇到一些困难。因此,本文围绕CRISPR/Cas9技术的原理、局限及改进方案进行综合阐述,以期为CRISPR/Cas9技术在农作物中的进一步应用提供理论基础。  相似文献   

15.
基因编辑(gene editing)是生命科学领域目前应用最广泛的技术之一,以其对生物内源基因改变的精确性极大地推动着生命科学的研究进程,而CRISPR技术则是目前适应范围最广、可靠性最高的一类基因编辑技术,与其他技术相比,该技术具有高效、简单等优点。CRISPR等基因编辑技术已在动植物遗传育种、生物医疗等领域广泛应用,其中在海洋生物中的应用也日渐增多。本文以基因编辑技术为切入点,综述了基因编辑技术的发展史、原理、应用过程,以及CRISPR技术在海洋生物遗传育种中的应用现状及发展前景,旨在为推动基因编辑技术在海洋生物资源保护与开发、遗传育种等领域的应用提供科学参考。  相似文献   

16.
DNA碱基编辑技术是由CRISPR/Cas系统发展而来,能对基因组碱基进行精准编辑。目前已开发的DNA碱基编辑器包括介导C·G至T·A转换的胞嘧啶单碱基编辑器、介导A·T至G·C转换的腺嘌呤单碱基编辑器、介导C·G至G·C颠换的糖基化酶单碱基编辑器、介导C·G至T·A和A·T至G·C同时转换的双碱基编辑器、介导任意碱基之间转换的引导编辑器以及线粒体DNA编辑器。本文系统总结了上述6种DNA编辑器的原理、优化历程及最新研究进展,着重介绍了应用到植物研究中的碱基编辑器工具及其在作物遗传改良中的应用,并对碱基编辑技术今后的发展进行了展望。  相似文献   

17.
基因组编辑技术及其安全管理   总被引:5,自引:0,他引:5  
基因组编辑技术利用核酸酶对生物体内的DNA双链进行断裂,并以非同源末端连接或同源重组的方式对基因组DNA特定位点进行突变、缺失或者基因的插入与替换。锌指核酸酶、转录激活因子样效应物核酸酶、成簇规律间隔短回文重复序列是目前基因组编辑技术应用中的3种关键核酸酶。基因组编辑技术已在植物基因功能、育种等领域广泛应用,特别是基于成簇规律间隔短回文重复序列的基因编辑技术CRISPR-Cas9。具有优良性状的基因组编辑大豆、玉米等产品已逐步从实验室走向田间,基因组编辑作物展现了较传统转基因作物更为优越的应用前景。本文简要概述了主要使用的3种基因组编辑技术及其原理。对这些技术的优缺点进行了分析,并依据物种分类梳理了利用上述3种技术在动物、植物中突变体建立、基因功能研究、分子育种等方面的研究进展。同时,针对基因编辑产物的产业化应用前景,讨论了基因编辑技术及其产品较传统转基因技术产品的优势,分析了基因编辑技术及其产品可能因脱靶效应而引发的生物安全风险,介绍了美国、欧盟等国家对基因编辑技术及其产品安全管理和商业化应用的政策。文章结合中国现行法规对转基因生物的定义及安全评价(实质等同、个案分析)原则,讨论了基因编辑技术及其产品的安全管理,初步提出了基于传统转基因生物安全评价框架的基因编辑产品的安全评价和管理思路。针对基因编辑产品需要按照个案原则进行评价和管理,安全评价重点开展分子特征及食用安全评价;同时需要针对基因编辑技术的特点建立更加有效、特异的检测新方法,实现对基因编辑产品的有效监测,以促进基因组编辑产品的商业化应用。  相似文献   

18.
【目的】 回顾近年来基因编辑技术在园艺作物中的研究进展,为园艺作物的基础研究与品种培育提供参考。【方法】 从国内外文献资料中收集查阅CRISPR/Cas9技术在园艺作物研究中的研究报道,对其分析汇总。【结果】 传统育种手段难以满足园艺作物对产量和品质日益增长的需求,CRISPR/Cas9技术为其品种改良开辟新的道路,改变园艺作物育种格局,促进其在抵御生物胁迫,响应非生物胁迫,提高果实品质和作物驯化。【结论】 CRISPR/Cas9技术在园艺作物研究中是育种工作不可或缺的关键性技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号