首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
黄土丘陵半干旱区梯田土壤水分动态变化及防旱对策   总被引:5,自引:0,他引:5  
通过3a的试验表明,黄土丘陵半干旱区梯田土壤水分明显地表现为春季土壤水分缓慢蒸发期、旱季土壤水分严重亏缺期、土壤水分补偿期和冬春土壤水分相对稳定期4个阶段;梯田土壤物理性状明显改善,较坡耕地土壤含水量高15.7g/kg;梯田土壤水分垂直分布规律平水年20 ̄50cm为活跃层,干旱年50 ̄100cm为活跃层;梯田土壤水分的消耗量和消耗时期与降水相一致,与植被关系密切。根据梯田土壤水分动态变化规律,采取  相似文献   

2.
针对阴山北麓旱作区雨水蓄积利用效率低的问题,探讨本地区主要种植方式对降水的蓄积效应及降水后土壤水分变化动态。本研究采用模拟降水试验方法,对降水后农田土层水分含量的变化情况进行监测和分析,结果表明:1)在4mm降水下,粘壤土不同处理土壤贮水量显著高于对照;在12mm降水下,沙壤土不同处理土壤贮水量显著高于对照。不同降雨量粘壤土和沙壤土贮水量增量表现一致,大小顺序均为垄作全膜垄作半膜平作全膜平作半膜平作(CK)。以8mm降水为例,粘壤土各处理中,垄作全膜处理下土壤贮水增量为6.5mm,是对照的1.76倍,沙壤土各处理中,垄作全膜种植方式贮水增量是对照的3.2倍。2)垄作全膜能够将12mm以上降水蓄积在粘壤土表层,使该层土壤水分变化较小,土壤含水量基本维持在15.0%~16.5%,沙壤土蓄积雨水效果较差。3)在降水后5d内,粘壤土土壤水分变化为0~20cm土壤含水量呈降低趋势,降水后第3天该土层土壤含水量下降变缓,20~30cm土壤含水量先增加后降低,在降水后第3天达到最高,30~50cm土壤含水量均呈增加趋势;沙壤土土壤水分变化为0~30cm土壤含水量下降趋势较明显,30~50cm土壤含水量表现为先增加后降低。因此,在本地区生产条件下,垄作全膜不仅具有良好的集雨效果,而且能够将积蓄雨水主要分布于土壤表层30~50cm,从而对有限的降水资源进行再分配,提高作物的水分利用效率。  相似文献   

3.
三江源北部天然草地土壤水分动态变化规律   总被引:1,自引:0,他引:1  
马宗泰 《安徽农业科学》2009,37(8):3619-3620
利用1999~2006年4~10月兴海的土壤水分资料,分析了O~50cm土壤贮水的年、月和旬际变化规律及垂直分布特征。结果表明,兴海县天然草地土壤贮水量年际变化振荡明显,呈多波动变化,与年降水量相关关系显著;一年中逐月土壤水分变化曲线基本呈“M”型分布,可分为春季缓慢增墒期、春夏快速增墒期、盛夏快速失墒期、秋季快速增墒期和秋末快速失墒期;土壤贮水量在20~30cm层最大,就其垂直变化而言,0~20cm为多变层,20~50cm为缓变层;土壤水分垂直剖面的季节变化按变异系数大小可分为3个阶段.土壤贮水量变异系数雨季(6~9月)大于干季。  相似文献   

4.
黑龙江省东部山地灌木林土壤水分动态变化   总被引:6,自引:0,他引:6  
对东部山地绣线菊灌丛、胡枝子灌丛、接骨木灌丛、珍珠梅灌丛和榛子灌丛几种次生演替灌木林的土壤水分动态进行了研究。结果表明:在整个生长季节内,大气降水是土壤含水量变化的重要控制因子,土壤含水量随大气降雨的分布而变化的趋势十分明显。土壤水分的季节变化可分为土壤水分消耗期(5月~6月)、土壤水分积累期(7月~8月)、土壤水分稳定期(9月~10月)、土壤水分消退期(10月份以后);根据土壤深度及土壤含水量变化趋势,各林地土壤水分的垂直变化大体分为土壤水分速变层(0—20cm)、土壤水分活跃层(20~40cm)和土壤水分稳定层(40cm以下)。  相似文献   

5.
青海湖不同沙漠化治理区土壤含水量动态变化研究   总被引:1,自引:0,他引:1  
研究选择青海湖不同沙漠化治理区,通过野外采样及室内数据分析,对不同季节的土壤含水量进行测定.结果表明:土壤平均含水量在6月和8月最大,4月和9月较低.克土-早期灌丛治理区,4月和6月土壤含水量表层较低,30cm处达到峰值.8月和9月表层土壤含水量最高,20cm处最低.克土-草方格,4月份表层土壤水分偏低,10cm以下开始上升,6月份和8月份土壤水分基本一致.9月份,表层土壤含水量较低,20cm处达到峰值.沙岛固定沙丘及沙棘灌丛,4月、6月和8月土壤含水量表层偏低,10cm以下开始下降,20cm以后逐渐增加,70cm处最高,9月份,表层土壤含水量开始下降,10cm处较低,之后逐渐增高.示范区草方格,表层土壤水分6月和8月高于4月和9月,4月和6月均为逐渐增加趋势,8月,10cm处达到峰值,之后下降,20cm以下变化较稳定,9月份土壤水份垂直变化一直波动.流动沙丘顶部、迎风坡和背风坡表层土壤含水量较低,表层以下土壤含水量逐渐增加.湖东种羊场流动沙丘草方格区,土壤含水量表层较低,表层至30cm处表现为上升,以下变化幅度较弱.  相似文献   

6.
【目的】研究高速公路绿化带边坡的土壤水分动态变化规律,旨在为高速公路生态绿化提供参考。【方法】2009年4-11月对河北固安县廊涿高速各观测点(阳坡、阴坡、平地及中央隔离带)不同土层深度(0~40cm)含水量及降雨量进行连续观测,分析了高速公路绿化带土壤水分的动态变化规律。【结果】4-5月,各观测点土壤含水量持续下降;5-8月,各观测点土壤含水量迅速增加,并保持在较高水平;8-10月,各观测点土壤含水量逐渐降低;10-11月,各观测点土壤含水量稳中有升。各观测点表层(0~10cm)和下层(10~20cm)的土壤含水量波动较大,变异系数平均值为28.39%和24.85%,深层(20~40cm)土壤含水量的变化明显减弱,变异系数平均值为19.41%。在0~40cm土层,中央隔离带的土壤含水量较高,阴坡和阳坡次之,平地最低。【结论】高速公路边坡土壤水分的季节性动态变化规律显著,且与降雨规律一致。5-10月的土壤水分条件最好。土壤水分的空间变化可分为速变层(0~20cm)和活跃层(20~40cm)2个层次。各观测点中,中央隔离带的土壤水分条件最好,阴坡和阳坡次之,平地土壤水分条件最差。  相似文献   

7.
土壤水分是植被恢复的主要限制因子之一。本文选择拉萨半干旱河谷宜林地7个典型立地类型0~20 cm,20~40 cm,40~60 cm深度的土壤为研究对象,研究其土壤水分的变化规律,探讨拉萨半干旱河谷地区土壤水分时空分布格局。研究结果表明:不同立地类型的土壤水分变化走势大致相同,呈单峰状分布,土壤最低含水量与最高含水量分别出现在1月和8月,其变化范围在2.43%~30.03%之间;土壤含水量由高到低排序为:河滩地高水位阴坡上部阴坡下部河滩地低水位阳坡上部阶地阳坡下部;土壤水分时间格局总体上分为土壤水分积累期(6—9月)、土壤水分消耗期(10月至翌年1月)、土壤水分稳定期(2—5月)3个时期,土壤水分空间分布分为土壤水分速变层(0~20 cm)、土壤水分活跃层(20~40 cm)及土壤水分相对稳定层(40~60 cm)3层。本研究对该区植被建设具有一定的指导意义。   相似文献   

8.
【目的】揭示干旱区人工花棒林雨后土壤水分变化及土壤调蓄功能.【方法】以乌兰布和沙漠东北缘的人工花棒林地为研究对象,采用定位监测法,对林地雨后的土壤水分及降水调蓄能力进行分析.【结果】雨后2d,林地内外各层土壤含水量没有显著差异(P0.05);雨后2周,林内林外50cm和75cm深处的土壤含水量差异显著(P0.05);无雨期林地外沙土层土壤含水量在50cm深处达到最大值(4.18%),显著高于林地内(P0.05).林内黏土层含水量均显著高于林外(P0.05).花棒林地0~80cm土壤涵蓄降水量和有效涵蓄量较林外分别高7.60%和7.87%.花棒林地内沙土层(0~90cm)的土壤饱和、吸持和滞留贮水量分别比林外高4.75%、5.36%、0.62%.【结论】花棒林地0~80cm土壤水分受降水影响显著,与裸沙地对比,花棒林减少了表层土壤水分蒸发,增加了植物根系分布范围内土壤水分的消耗;花棒林地的土壤贮水性能和调蓄水功能均优于林外对照裸地.  相似文献   

9.
【目的】揭示沙漠化治理过程中土壤含水量的动态变化规律及其在小尺度上的空间变异特征,进而为该地区防沙治沙及植被的可持续发展提供科学指导。【方法】采用烘干法和TDR300对宁夏白芨滩防沙治沙区浅层土壤含水量进行监测,应用地统计学的理论与方法研究该区域浅层土壤水分季节动态变化和小尺度空间变异特征。【结果】(1) 10 cm和30 cm的土壤含水量变异系数均在0.01~1之间,属中等变异;不同时期的10 cm及30 cm深处的土壤含水量均表现出强烈的空间自相关;4、6和9月的土壤水分(10 cm)的变异函数为球状模型,8月(10 cm)为指数模型,30 cm的土壤水分变异函数均为指数模型。(2)不同时期的表层(10 cm)土壤含水量空间分布表现为4、6和9月空间分布较相似,整体分布相对均匀;8月土壤含水量较6月增加,空间分布表现为从北向南降低,其中西北角土壤含水量最高;9月研究区内土壤表层含水量与其他时期相比最高。【结论】10 cm和30 cm土壤含水量均属中等变异,不同时期含水量均表现出强烈的空间自相关。10 cm和30 cm水分分布格局均受降水影响,9月土壤含水量最高。研究区不同时期10 cm土壤含水量空间分布特征明显不同,30 cm深处的土壤含水量随季节发生变化,两者空间分布特征均受地形、季节影响。  相似文献   

10.
祁连山林区土壤水分与降水的关系分析   总被引:6,自引:0,他引:6  
对祁连山林区森林和阳坡草地的土壤水分特点及其与降水的关系进行分析.表明祁连山林区不同地类的土壤水分季节变化规律基本一致,主要受降水量及其分配的影响.一般年份5月以前为土壤干季,6月土壤湿季开始;但在偏旱年份,表现为土壤湿季在前、干季在后.土壤水分垂直变化的差异表现为,林地土壤水分上部大于下部;绝大多数年份,土壤水分随深度的增加而减少.不同水文年土壤水分的年循环水平及生长期末的贮水量与降水量有关,以土壤贮水量与降水量的关系最为明显.  相似文献   

11.
不同灌溉定额对枸杞土壤水分动态变化规律的影响   总被引:3,自引:0,他引:3  
利用时域反射仪对不同灌溉定额下枸杞园土壤水分的变化特征进行研究,分析不同灌溉定额条件下土壤水分垂直变化特征。结果表明,枸杞园中土壤水分变化的深度一般在0~100cm,0~60cm土层变化尤为激烈,灌水量越大,变化越明显,100~180cm土层各处理土壤水分变化不明显;根据不同处理土壤水分运移规律,将0~180cm土层垂直分为4层,即活跃层(0~30cm)、次活跃层(30~60cm)、缓变层(60~100cm)和均稳层(100~180cm)。  相似文献   

12.
降雨过程中不同密度枯落物对各土层含水率动态影响   总被引:1,自引:0,他引:1  
目的以晋西黄土区典型油松林及刺槐林为研究对象, 对其枯落物层和土壤层水文效应进行初步研究,以期为该区建设水源涵养林及水土保持林提供一定的借鉴依据。方法分别选取对应林分3种密度枯落物后进行野外人工降雨,并对其覆盖下0~20 cm、20~40 cm、40~60 cm、60~80 cm、80~100 cm、100~120 cm 6个土层含水量实时监测。结果(1) 在同一雨量级别下,当枯落物覆盖密度增加时,其在降雨过程中的截留量以及枯落物最终达到饱和截留量的时间也随之增加;此外,随着降雨试验的进行,截留率随之减小,且其随枯落物的密度增加而升高。(2)降雨过程中,随着枯落物密度的增加,两种林地上层土壤(0~60 cm)的含水率均呈现逐渐减小的趋势;其中0~20 cm土层含水率对降雨的响应最为直接和迅速,而20~40 cm与40~60 cm土层的土壤含水率变化有一定的滞后和延长,较深层(60~120 cm土层)土壤含水率对降雨过程几乎无响应过程。(3)降雨结束后,各深度土层的含水率均表现出随时间的持续缓慢减小;降雨结束24 h内,裸地及各密度枯落物覆盖下的土壤含水量最高均出现在0~20 cm层;当入渗48 h后,裸地土壤含水量最高则出现在20~40 cm土层,但是对于有枯落物覆盖的土壤,0~20 cm土层含水率在降雨结束48 h内始终最高,并且随着密度的增加其随时间延续而减小的幅度越小。结论截留量、截留率与降雨历时(降雨量)均符合幂函数关系(R2>0.9);在降雨前后及过程中,不同密度枯落物对其覆盖下的土壤含水率有较大影响;不同深度土层含水率对降雨响应差异显著。   相似文献   

13.
土壤水分是干旱区植被生长的限制因子,研究荒漠—绿洲过渡带植被根区土壤水分时空变化对抵御沙漠化进程具有重要意义。以荒漠-绿洲过渡带3种典型混交灌木梭梭×泡泡刺(SS×PP)、泡泡刺×沙拐枣(PP×SG)、沙拐枣×梭梭(SG×SS)为研究对象,对3种典型混交灌木根区0~100 cm土层土壤进行连续采样并测定土壤含水率。结果表明:1)7-9月,3种混交灌木根区0~100 cm土层土壤含水率的变化范围依次为:梭梭×泡泡刺0.54%~2.75%、1.06%~2.41%、0.73%~4.72%;沙拐枣×梭梭0.42%~2.59%、0.96%~2.35%、0.57%~3.58%;泡泡刺×沙拐枣0.31%~2.38%、0.56%~2.33%、0.79%~3.71%。3种混交灌木在0~60 cm土层土壤含水率随深度增加而增大,60~100 cm土层各类型混交灌木土壤含水率变化逐渐趋于稳定。2)7月,0~100 cm土层混交灌木梭梭×泡泡刺的土壤含水率显著高于沙拐枣×泡泡刺,9月,20~40、60~100 cm土层混交灌木沙拐枣×梭梭的土壤含水率显著低于其他2种混交灌木类型。3)3种混交灌木土壤持水能力大...  相似文献   

14.
辽西北沙地不同土地利用方式对土壤水分的影响   总被引:1,自引:0,他引:1  
2008年在科尔沁沙地的东南部,选择了具有代表性的4种不同土地利用方式,对其土壤水分变化进行了研究。结果表明:各种利用方式下,土壤水分在0 ~ 20 cm的表层稳定,在20 ~ 60 cm的中层变化剧烈,在60 ~ 100 cm的深层土壤水分稳定;各土地利用方式土壤含水量大小为大扁杏Prunus armeniaca × sibirica -花生Arachis hypogaea -玉米Zea mays>大扁杏-麻黄草Ephedra sinica>樟子松Pinus sylvestris var. mongolica纯林>荒地(对照);大扁杏-花生-玉米、大扁杏-麻黄草2种土地利用方式具有改良土壤水分,促进沙化土壤逆转的作用。不断地改进和推广此种优化的土地利用方式对于辽西北干旱地区经济发展及土壤改良都具有重要意义。图1表3参12  相似文献   

15.
为了解茶园土壤剖面磷素分布的有效性规律,采用Bowman-Cole有机磷分级方法、张守敬和Jackson无机磷分级方法,对贵州省典型茶园土壤剖面磷素形态及其有效性进行研究。结果表明:茶园土壤剖面各层总无机磷含量占全磷含量的比例为52.19%~68.99%,以铝磷(Al-P)和铁磷(Fe-P)为主,占总无机磷含量的比例分别为44.52%~51.51%、28.19%~36.40%;有机磷以中等活性有机磷(MPo)和中等稳定性有机磷(MRPo)为主,占总有机磷含量的比例分别为44.26%~60.98%、22.00%~27.99%。土壤垂直剖面各层中有效性磷的来源对应于不同磷素形态,有效磷的活性磷源有0~20 cm土层的MPo、20~40 cm和80~100 cm土层的Al-P,重要转换性磷源有0~60 cm土层和80~100 cm土层的MRPo;潜在的非活性磷源有40~60 cm土层的钙磷(Ca-P)和高稳定性有机磷(HRPo)、60~80 cm土层的闭蓄态磷(O-P)、0~40 cm和80~100 cm土层的HRPo;活性有机磷(LPo)的贡献源有0~20 cm土层的Al-P、20~80 cm土层的Fe-P及80~100 cm土层的HRPo。综上,茶园土壤应重视剖面磷素分布规律及有效性的研究,以促进茶园土壤磷素高效利用。  相似文献   

16.
目的】研究毛乌素沙地杨柴和黑沙蒿灌丛的土壤剖面水分状况和土壤水分消耗与平衡方式。【方法】以该区的杨柴灌丛、黑沙蒿灌丛、杨柴-黑沙蒿混生灌丛为研究对象,采用TDR法对土壤剖面监测水分,灌丛水量平衡方程计算土壤水分收支比。【结果】(1)0~300 cm土壤剖面水分含量随着土壤深度的增加先降低后升高,根据土壤剖面水分时空变化将土层大致分为速变层(0~40 cm)、活跃层(40~100 cm)、次活跃层(100~200 cm)和稳定层(200~300 cm)。速变层受降雨影响较大,在强降雨后,速变层不同样地土壤剖面出现多个“高水分中心”,稳定层土壤水分受植被生长影响较大,杨柴灌丛与混生灌丛土壤剖面出现多个“低水分中心”。(2)不同灌丛化样地对降雨的响应方式不同,裸地与杨柴灌丛对降雨的响应方式为脉冲式响应,混生灌丛与黑沙蒿灌丛对降雨的响应方式为延迟聚积式响应。(3)土壤活跃层(40~100 cm)土壤水分含量在趋势为黑沙蒿灌丛>杨柴-黑沙蒿混生灌丛>裸地>杨柴灌丛,在次活跃层(100~200 cm)土壤水分含量趋势为黑沙蒿灌丛>杨柴-黑沙蒿混生灌丛>杨柴灌丛>裸地,在稳定层(200~300 cm)水分土壤水分含量趋势为裸地>黑沙蒿灌丛>杨柴灌丛>杨柴-黑沙蒿混生灌丛。(4)2019年样地贮水变化量由大到小为黑沙蒿灌丛>杨柴-黑沙蒿混生灌丛>裸地>杨柴灌丛,黑沙蒿灌丛为积累水分型的灌丛,2019年共累积124 mm的降雨;混生灌丛为平衡水分收支型的灌丛,一部分水分进行贮藏另一部分进行蒸散;裸地与杨柴样地都为消耗水分型,蒸散量与全年降雨量大致相等。【结论】杨柴灌丛水分出现负平衡,大气-植被-土壤间的水分不能闭合循环,随着时间尺度增长,土壤水分的植被承载力达到极限,黑沙蒿群落合理的水分平衡策略驱动了杨柴群落向黑沙蒿群落的演替。  相似文献   

17.
【目的】研究拔节期和开花期土层深度测墒补灌对北方小麦旗叶叶绿体超微结构和叶绿素荧光特性的影响,为小麦节水高产栽培提供理论依据和技术参考。【方法】以济麦22小麦品种为试验材料,于2011-2012年和2012-2013年小麦生长季,在大田条件下设置4个测墒补灌土层深度(0-20 cm、0-40 cm、0-60 cm和0-140 cm,各处理土壤相对含水量均补灌至75%,以生育期不灌水为对照),用透射电镜观察旗叶叶绿体超微结构、乙醇提取法测定叶绿素含量、叶绿素荧光仪测定叶绿素荧光参数,研究不同处理对小麦旗叶叶绿素含量、叶绿体超微结构、叶绿素荧光特性及籽粒产量、水分利用效率和经济效益的影响。【结果】(1)依据0-40 cm土层测墒补灌,开花后22 d旗叶叶绿体呈椭圆形,沿细胞膜紧密排列,叶绿体膜和细胞膜完整,基粒片层清晰且沿叶绿体长轴方向排列,基粒片层间由清晰的基质片层连接;依据0-20 cm土层测墒补灌和生育期不补灌的处理旗叶叶绿体超微结构均有损伤,不补灌的处理损伤最重,叶绿体变为圆形,在细胞内排列紊乱,叶绿体膜和细胞膜溶解,细胞壁断裂。依据0-60 cm土层测墒补灌与依据0-40 cm土层测墒补灌叶绿体超微结构无显著差异,测墒补灌土层加深至0-140 cm,叶绿体膜完整,细胞膜部分损伤,基粒片层间出现缝隙。(2)相关分析表明,旗叶叶肉细胞叶绿体数、叶绿体基粒数和基粒片层数均与叶绿素含量呈极显著正相关(r=0.99**,0.99**,0.96**)。依据0-40 cm土层测墒补灌,开花后22 d旗叶叶肉细胞叶绿体数、叶绿体基粒数和基粒片层数比依据0-20 cm土层测墒补灌和生育期不补灌的处理显著增加,是其叶绿素含量较高的主要原因;测墒补灌土层加深至0-60 cm和0-140 cm,旗叶叶肉细胞叶绿体数、叶绿体基粒数和基粒片层数无显著增加,叶绿素含量亦无显著增加。(3)依据0-40 cm土层测墒补灌,灌浆中后期旗叶最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)、表观光合电子传递速率(ETR)和千粒重、籽粒产量及经济效益均比依据0-20 cm土层测墒补灌和生育期不补灌的处理显著增加,水分利用效率比依据0-20 cm土层测墒补灌的处理显著增加。测墒补灌土层加深至0-60 cm或0-140 cm,Fv/Fm、ΦPSⅡ和ETR均无显著增加,千粒重、籽粒产量、水分利用效率和经济效益亦无显著提高。【结论】依据0-40 cm土层测墒补灌,旗叶叶绿体超微结构保持良好,叶肉细胞叶绿体数、叶绿体基粒数和基粒片层数较多,小麦灌浆中后期叶绿素含量和荧光参数较高,是其千粒重和籽粒产量较高的主要原因。综合籽粒产量、水分利用效率和经济效益,依据0-40 cm土层测墒补灌的处理为本试验条件下的最优处理。  相似文献   

18.
以民勤沙区不同变化阶段白刺灌丛沙堆为研究对象,测定白刺灌丛沙堆高度、长短轴、迎风坡与背风坡植被株高、盖度、枯枝和结实等形态特征,分析不同变化阶段土壤温度及水分养分变化特征。结果表明,1)土层0~10 cm处的土壤温度随着时间推移地面温度呈现出先逐渐升高而后缓慢下降的趋势,日变化规律为发育阶段>雏形阶段>稳定阶段>衰退阶段。2)在不同发育阶段土壤含水率在40~60 cm土层中最高, 0~5 cm最低,随着土层深度增加水分含量呈现逐渐升高的趋势。3)不同变化阶段土层pH在5~10 cm最高,不同坡向pH均为迎风坡大于背风坡;衰退阶段背风坡中电导率最高,均大于其他发育阶段的坡向。4)土壤TN、速效磷平均含量发育阶段最高、有机质衰退阶段最高、稳定阶段均最低;土壤TN为雏形阶段、发育阶段和衰退阶段迎风坡中大于背风坡中,稳定阶段则相反;土壤有机质为雏形阶段和发育阶段背风坡中大于迎风坡中,稳定阶段和衰退阶段则相反;土壤速效磷为不同发育阶段迎风坡中大于背风坡中,土壤温度在0~10 cm处日动态呈现出先逐渐升高而后缓慢下降的趋势;土壤含水率在40~60 cm土层中最高,0~5 cm最低;pH在5~10 cm最高;电导率在衰退阶段背风坡中最高;土壤TN、有机质和速效磷在发育阶段表面养分含量达到最高,且显著高于其他几个阶段。研究结果为民勤荒漠区白刺群落植被恢复与保护提供科学理论依据。  相似文献   

19.
黄土高原沟壑区不同种植年限果园土壤水分变化   总被引:9,自引:1,他引:8  
对黄土高原沟壑区不同种植年限果园土壤深层水分变化进行了研究。结果表明,受降水影响0~2m土层水分变化较大,且0~40 cm4、0~80 cm、80~200 cm三个土层土壤含水量之间的差异达到极显著水平;2 m以下由于没有水分的补给,土壤水分含量趋于稳定,出现了干燥现象。随着种植年限的增加,深层土壤的干燥化现象有增加趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号