首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
PP333对小麦叶片结构和光合作用的影响   总被引:3,自引:0,他引:3  
PP33处理可使小麦叶片的表皮细胞,保卫细胞和叶肉细胞体积显著减少,增加叶片内叶肉细胞的层数和叶脉的机械组织的细胞层数,并可加强叶肉细胞的环型结构2,使叶肉细胞之间的排列更加紧密。PP333处理对小麦叶片内叶绿体超微结构的影响表现为叶绿体内基粒数明显增多,高片层垛叠的基粒数比例增加,基质片层较完善,基质内电子密度较浓,类囊体膜系统的发育进程明显加快,PP333处理可显著提高叶片的叶绿素含量,增加叶  相似文献   

2.
【目的】探讨测墒补灌和定量灌溉对2个小麦品种旗叶叶绿素荧光、衰老特性及籽粒产量的影响,为小麦节水高产提供理论依据。【方法】于2013—2015两年度,在大田条件下,选用泰农18(T18)和济麦22(J22)2个小麦品种,设置3个水分处理:W0(全生育期不灌水)、W1(依据0—40 cm土层土壤相对含水量进行测墒补灌,拔节期和开花期目标土壤相对含水量均为65%)、W2(定量灌溉,拔节期和开花期分别灌溉60 mm),研究测墒补灌和定量灌溉对2个小麦品种旗叶叶绿素荧光特性及衰老特性的影响。【结果】W1处理通过调节拔节期和开花期灌水量,保持灌水后0—40 cm土层土壤相对含水量在65%,可防止灌水过多或过少,为小麦生长发育创造适宜的土壤水分环境。W1处理条件下,两小麦品种开花后14、21和28 d的旗叶电子传递速率、光化学猝灭系数、PSⅡ实际光化学效率及旗叶蔗糖含量均显著高于W2处理,磷酸蔗糖合成酶活性在花后14和21 d显著高于W2处理;两小麦品种开花后14、21和28 d的超氧化物歧化酶、过氧化氢酶活性均显著高于W2,但同期旗叶丙二醛含量显著低于W2并保持较高的旗叶可溶性蛋白含量。两年度T18和J22两品种W1处理的籽粒产量、水分利用效率和灌溉效益均显著高于W2。品种间比较可知,T18两灌水处理的旗叶电子传递速率、光化学猝灭系数、PSⅡ实际光化学效率及旗叶蔗糖含量在花后21和28 d均显著高于J22,磷酸蔗糖合成酶活性在花后7、14和21 d亦显著高于J22;T18开花后21和28 d的超氧化物歧化酶、过氧化氢酶活性、可溶性蛋白含量均显著高于J22,但同期旗叶丙二醛含量显著低于J22。同一年度同一处理条件下,T18和J20总耗水量和水分利用效率均无显著差异;在W0处理条件下,J22的籽粒产量显著高于T18;但在W1和W2处理条件下,T18的籽粒产量、灌溉效益均显著高于J22。【结论】在小麦拔节期和开花期依据0—40 cm土层土壤相对含水量进行测墒补灌至65%土壤相对含水量,是两小麦品种同步实现高产与节水的有效措施。在灌溉条件下T18的产量潜力高于J22,但在干旱条件下,其对水分敏感,致使产量低于J22。  相似文献   

3.
测墒微喷补灌对小麦花后旗叶生理特性及产量的影响   总被引:1,自引:1,他引:0  
为探明测墒微喷补灌对小麦产量形成的影响,以济麦22为试验材料,设置雨养(RI)、传统漫灌(FI)和微喷灌(MI)3种模式,其中RI为小麦全生育期不灌溉,FI为拔节期漫灌60 mm,MI为拔节期、孕穗期、开花期和灌浆期依据0 ~ 40 cm土层土壤质量含水量进行测墒补灌,补灌至土壤田间持水量的75%,研究其对小麦花后旗叶生理特性、干物质积累特征和产量的影响。结果表明:(1)小麦灌浆期旗叶表现为MI叶绿素含量显著高于FI和RI,RI最低;MI维持旗叶花后较高的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性,FI保护酶活性次之,RI最低,且MI旗叶灌浆期丙二醛(MDA)含量显著低于FI和RI。(2)MI和FI成熟期总干物质积累量无显著差异,二者显著高于RI,但MI显著提高了花后干物质积累对产量的贡献率;成熟期茎鞘干物质积累量表现为FI显著高于MI,RI最低,叶片、穗轴+颖壳和籽粒中均表现为MI显著高于FI,RI最低。(3)和RI相比,MI和FI增产幅度分别为21.7%和14.2%,RI产量显著降低是由于穗数、穗粒数和千粒重的显著下降,而MI较FI显著提高产量是由于穗粒数和粒重的增加。总之,测墒微喷补灌能显著延缓花后旗叶衰老进程,增强旗叶抗逆能力,促进干物质积累,实现淮北地区小麦的高产生产。  相似文献   

4.
PP333处理可使小麦叶片的表皮细胞、保卫细胞和叶肉细胞体积显著减少;增加叶片内叶肉细胞的层数和叶脉的机械组织的细胞层数,并可加强叶肉细胞的环型结构,使叶肉细胞之间的排列更加紧密。PP333处理对小麦叶片内叶绿体超微结构的影响表现为叶绿体内基粒数明显增多,高片层垛叠的基粒数比例增加,基质片层较为完善,基质内电子密度较浓,类囊体膜系统的发育进程明显加快。PP333处理可显著提高叶片的叶绿素含量,增加叶片的净光合速率,并延长叶片的光合功能期。  相似文献   

5.
利用光学显微镜和透射电子显微镜,观察了小麦扬花结实期旗叶显微结构和超微结构的变化,并统计了不同生育期旗叶叶绿体基粒片层数和基粒垛数。结果表明,从扬花期至灌浆初期,叶片结构变化不明显;叶肉细胞排列紧密有序,细胞间隙少;叶绿体基粒片层排列整齐,基质浓厚,易形成突起;线粒体嵴发达,充满浓厚基质。从灌浆中期至灌浆末期,叶片结构衰老迅速,叶肉细胞和叶绿体开始解体,体积变小,数量减少;叶绿体基粒片层解体,基质淡薄,嗜锇颗粒增多,线粒体嵴和基质减少。还发现从扬花期至灌浆中期,高基粒片层数增加,灌浆中期之后,高基粒片层数减少。  相似文献   

6.
为明确拔节期和开花期土壤相对含水量对小麦开花后旗叶荧光特性及籽粒产量的影响,于2016—2017年小麦生长季,选用主推品种济麦22为材料,在田间试验条件下,设置3个处理,即全生育期不灌水(W0)、拔节期和开花期0~40 cm土层均测墒补灌至土壤相对含水量为70%(W1)或80%(W2),研究不同土壤相对含水量对小麦开花后旗叶叶绿素荧光特性、籽粒灌浆速率以及籽粒产量影响。结果表明:(1)开花后7、14 d和21 d,旗叶叶绿素相对含量为W1﹥W2﹥W0;开花后14、21 d和28 d,W1处理旗叶相对电子传递效率(ETR)、实际光化学效率(φPSⅡ)、光化学猝灭系数(qp)和最大光化学效率(Fv/Fm)均显著高于W0和W2处理。(2)W1和W2处理籽粒灌浆速率于开花后7、14 d和21 d无显著差异,花后28、35 d为W1﹥W2。(3)W1处理的籽粒产量、水分利用效率和灌溉效益最高。本试验条件下,采用测墒补灌方法,拔节期和开花期土壤相对含水量均为70%是小麦节水高产的最佳灌水处理。  相似文献   

7.
大田条件下,设置5个试验处理,即:小麦拔节期和开花期各灌溉60 mm(W1);拔节期和开花期测定0~20 cm(W2)、0~40 cm(W3)和0~60 cm(W4)土层土壤含水量,并补灌至土壤相对含水量为70%;全生育期不灌溉(W0);以此研究不同土层测墒补灌对小麦耗水特性和产量的影响。结果表明:土壤贮水消耗量为W3W1W2、W4W0,60~140 cm土层贮水消耗量W3处理最高;W3的籽粒产量最高,其水分利用效率高于W0和W4处理。这表明依据0~40 cm土层含水量测墒补灌拔节期和开花期目标相对含水量为70%的W3处理达到节水高产的效果。  相似文献   

8.
研究一次深松耕作后土壤水分对冬小麦籽粒产量和水分利用率的影响,为小麦节水高产栽培提供理论依据.于2008-2009和2009-2010两个小麦生长季,选用高产小麦品种济麦22,采取测墒补灌的方法,研究了深松+旋耕和旋耕2种耕作方式下土壤水分对小麦0-200 cm土层土壤含水量、干物质积累与分配、籽粒产量及水分利用率的影响.结果表明,(1)深松+旋耕40-180 cm土层土壤含水量低于旋耕处理;旗叶光合速率和水分利用率,开花后干物质积累量及其对籽粒的贡献率显著高于旋耕处理.(2)W3(补灌至0-140 cm土层土壤相对含水量播种期为85%,越冬期80%,拔节和开花期75%)成熟期0-200cm土层土壤含水量与W1(播种期80%,越冬期80%,拔节和开花期75%)和W2处理(播种期80%,越冬期85%,拔节和开花期75%)无显著差异;W3和W''3(播种期85%,越冬期85%,拔节和开花期75%)60-140 cm土层土壤含水量分别低于W4(播种期85%,越冬期85%,拔节和开花期75%)和W''4(播种期90%,越冬期85%,拔节和开花期75%)处理;W3和W''3灌浆中后期旗叶光合速率较高,开花后干物质积累量及其对籽粒的贡献率显著高于其他处理,获得高的籽粒产量和水分利用率.综合考虑籽粒产量、水分利用率和灌溉效益,在深松+旋耕条件下,两年度分别以W3和W''3为节水高产的最佳处理.  相似文献   

9.
为了给邢台地区小麦节水灌溉提供依据,2018~2019年以高产小麦品种邢麦13号为试材,以小麦全生育期不补充灌溉(T_0)和当地传统灌溉(T_(ck))为对照,在拔节期和开花期0~40 cm土层测墒补灌至目标相对含水量分别为70%(T_(70))、75%(T_(75))和80%(T_(80)),研究了测墒补灌处理对小麦耗水特征和子粒产量的影响。结果表明:小麦全生育期不灌水较灌水处理更能够充分地利用降水和土壤贮水;传统灌溉下,降水和土壤贮水的消耗量占比最低。与传统灌溉相比,测墒补灌可明显降低麦田耗水总量,有效提高降水和160~200 cm土层土壤贮水的利用,其中T_(80)处理的小麦产量(7 000.04 kg/hm~2)、水分利用效率[12.96 kg/(hm~2·mm)]和灌溉效益[13.41 kg/(hm~2·mm)]均为最高。拔节期和开花期0~40 cm土层测墒补灌至目标相对含水量为80%,小麦产量水平与传统灌溉基本相当,水分利用效率和灌溉效益显著提高,能够兼顾高产与节水,是本研究条件下最佳的补灌方案。  相似文献   

10.
于2014—2015、2015—2016年两个小麦生长季,以丰川6号和丰川9号为试验材料,在大田设置5个处理,即全生育期不灌水(W0)、当地传统灌溉(Wck)、拔节期和开花期均补灌至0~40 cm土层土壤相对含水量分别为70%(W70)、75%(W75)、80%(W80),研究不同测墒补灌处理对小麦水分利用特性和籽粒产量的影响。结果表明:W75处理较Wck灌水量少,土壤贮水消耗量及其占总耗水量的比例高;W75处理对20~160 cm土层土壤水分的消耗量显著高于Wck,促进小麦对深层土壤水分的利用。综合两年结果,W75处理籽粒产量、水分利用效率和灌溉水生产效率高,是本试验条件下高产节水的最优处理。  相似文献   

11.
在砂培条件下,研究了不同水平氮锌配施对白三叶草叶片活性氧代谢和叶绿体超微结构的影响。结果表明,在缺锌条件下,随氮水平增加,植株干物重、叶片叶绿素、SOD、类胡萝卜素含量显著下降,MDA含量则明显增加,即白三叶草叶片光合作用和清除活性氧的能力显著下降,氮锌配施在缺锌条件下表现为拮抗效应。在足量供锌条件下,中量供氮,植株干物重、叶片叶绿素、SOD、葫萝卜素含量高于低量供氮,MDA含量则相反,氮锌配施表现为协同效应;与中低水平供氮相比,当高水平供氮时,各组分干物重、叶片叶绿素、SOD、类胡萝卜素含量等显著下降,MDA含量显著增加,氮锌配施表现为拮抗效应。叶片超显微结构表明,低锌条件下,随供氮水平增加,叶绿体结构变差,基粒及基粒片层、基质片层数量下降甚至解体,光合能力显著下降;足量供锌时,以中量供氮叶绿体基粒及基粒片层、基质片层数量最多,内部结构有序性最高,光合能力最强。叶绿体超显微结构变化与叶绿素、SOD、类胡萝卜素含量变化趋势相一致。  相似文献   

12.
选用春小麦品种宁春50号为试验材料,通过3个节水处理研究灌水次数对春小麦耗水特性及产量的影响。结果表明:灌1水的W1处理可显著增加0~120cm同层土壤贮水的利用,尤其增加60~100cm深层同层土壤贮水的利用;而随着灌水的增加,春小麦深层同层土壤贮水及0~120cm同层土壤贮水的利用率随之降低。随着灌水次数的增加,总的耗水量增加,春小麦拔节至开花期的耗水量降低,但春小麦开花至成熟期的耗水量增加。春小麦灌水次数过少的W1处理抽穗期叶面积系数、旗叶叶绿素含量、旗叶叶面积明显高于其他处理,但春小麦开花以后的叶面积系数、旗叶叶绿素含量、旗叶叶面积随灌水次数增加明显增加;生育后期灌水有利于提高抽穗后的干物质积累量,灌水次数过少的W1处理不利于春小麦开花后的干物质积累。增加灌水次数,可提高灌溉水的利用比例,降低土壤贮水的利用比例,增加春小麦籽粒产量和收获指数,但春小麦灌水利用效率明显降低;灌水次数较多的处理春小麦水分利用效率明显降低,生育后期物质向籽粒转移量增加,灌水次数过少的W1处理春小麦穗数、穗粒数明显降低。综合考虑春小麦籽粒产量、水分利用效率、灌水利用效率、物质生产等因子,确定灌二棱水+拔节水2水的处理是春小麦获得高产和高水分利用效率的最佳灌水模式。  相似文献   

13.
徐学欣  王东 《中国农业科学》2016,49(14):2675-2686
【目的】探明微喷补灌对冬小麦开花后旗叶衰老和光合特性、籽粒灌浆速率、产量和水分利用效率的影响,为小麦节水高产提供重要技术支持。【方法】于2011-2013年冬小麦生长季,选用高产冬小麦品种济麦22,设置全生育期不灌水(W0)、微喷补灌(W1)和传统畦灌(W2)处理,研究小麦开花后旗叶水势、超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性、叶绿素荧光参数、群体光合速率和籽粒灌浆速率等的差异。W1与W2处理的灌水时期一致,均于小麦拔节期和开花期各灌水1次。W1处理采用小麦专用微喷带(ZL201220356553.7)补充灌溉,灌水前测定土壤含水量。两年度小麦拔节期均设定0-140 cm土层土壤目标相对含水量为70%,第一年和第二年小麦开花期设定0-140 cm土层土壤目标相对含水量分别为70%和65%,根据灌水定额公式计算所需补灌水量。W2处理采用传统畦灌方式灌溉,改口成数为90%,即当水流前锋到达畦长长度的90%位置时停止灌水,用水表计量实际灌水量。W1与W2处理试验小区的规格一致,畦宽(左侧畦梗中心线至右侧畦梗中心线的垂直距离)2 m,畦梗宽0.4 m,畦长60 m,面积120 m2。小区间设1.0 m保护行。每小区等行距种植8行小麦,实际行距22.9 cm。W1处理的每个试验小区在自边行向内数第4行与第5行小麦之间沿小麦种植行向(畦长方向)铺设一条专用微喷带。微喷带进水端装有压力表、水表和闸阀,进水端水压设为0.02 MPa。灌溉水水源为井水,从水源至微喷带和畦田进水端采用PVC水龙带输水。畦灌的单宽流量为4.6-5.2 L·m-1·s-1。【结果】两年度微喷补灌处理在小麦拔节期和开花期的补灌水量分别为21.3-96.0 mm和29.0-38.5 mm,灌水分布均匀系数达87.9%-97.0%,不低于传统畦灌处理,而全生育期总灌水量比传统畦灌处理减少33.2-70.8 mm,节水21.0%-54.2%。微喷补灌处理开花后旗叶水势、SOD和CAT活性、丙二醛含量、旗叶最大光化学效率、实际光化学效率,及群体光合速率和籽粒灌浆速率、籽粒产量均与全生育期灌2水的传统畦灌处理无显著差异,但水分利用效率提高2.1-2.9 kg·hm-2·mm-1,达21.6-23.2 kg·hm-2·mm-1。【结论】小麦拔节期和开花期微喷补灌可以根据灌水前的降水量和土壤含水量状况及时调节补灌水量,并实施精确、均匀灌溉,适量供给小麦高产生理需水,挖掘出小麦节水的更大潜力。  相似文献   

14.
小麦旗叶衰老期间光合作用与叶肉细胞超微结构变化   总被引:7,自引:0,他引:7  
小麦开花后衰老期间旗叶光合作用速率变化分缓慢下降和快速下降两个阶段。光合作用缓降期间(开花至花后25d)叶片可溶性蛋白质含量先平稳变化(开花至花后10d),之后持续降低;叶片叶绿素含量由缓慢升高(开花至花后8d)转为缓慢下降;叶肉细胞结构保持完整。光合作用速降期间(开花26d以后)旗叶光合作用速率、可溶性蛋白质含量和叶绿素含量快速平行下降,叶绿体嗜锇颗粒数量和体积均增加,基粒片层和基质片层肿胀并分成囊泡,叶绿体被膜破裂,基质散逸于细胞内。  相似文献   

15.
 在砂培条件下,研究了不同水平氮锌配施对白三叶生长、叶片叶绿素含量和叶绿体超微结构的影响。结果表明,在缺锌条件下,随供氮水平增加,植株干物重、叶片叶绿素含量显著下降,氮锌配施表现为拮抗效应。在足量供锌条件下,中量供氮,植株干物重、叶片叶绿素含量高于低量供氮,氮锌配施表现为协同效应;与低水平供氮相比,当高水平供氮时,白三叶各组分干物重、叶片叶绿素含量显著下降, 氮锌配施表现为拮抗效应。白三叶叶片超显微结构表明,低锌条件下,随供氮水平增加,叶绿体结构变差,基粒及基粒片层、基质片层数量下降甚至解体,光合能力显著下降。足量供锌时,以中量供氮叶绿体基粒及基粒片层、基质片层数量最多,内部结构有序性最高,光合能力最强。叶绿体超显微结构变化与白三叶干物重、叶绿素含量变化趋势相一致。  相似文献   

16.
氮锌复合作用对白三叶叶片叶绿体超微结构的影响   总被引:1,自引:0,他引:1  
在砂培条件下,研究了不同水平氮锌配施对白三叶生长、叶片叶绿素含量和叶绿体超微结构的影响。结果表明,在缺锌条件下,随供氮水平增加,植株干物重、叶片叶绿素含量显著下降,氮锌配施表现为拮抗效应。在足量供锌条件下,中量供氮,植株干物重、叶片叶绿素含量高于低量供氮,氮锌配施表现为协同效应;与低水平供氮相比,当高水平供氮时,白三叶各组分干物重、叶片叶绿素含量显著下降,氮锌配施表现为拮抗效应。白三叶叶片超显微结构表明,低锌条件下,随供氮水平增加,叶绿体结构变差,基粒及基粒片层、基质片层数量下降甚至解体,光合能力显著下降。足量供锌时,以中量供氮叶绿体基粒及基粒片层、基质片层数量最多,内部结构有序性最高,光合能力最强。叶绿体超显微结构变化与白三叶干物重、叶绿素含量变化趋势相一致。  相似文献   

17.
为研究冬小麦品种更替过程中旗叶结构与光合作用的关系,以60a来广泛种植的10个冬小麦品种为材料,对株高,收获指数,旗叶的厚度、面积、叶肉细胞形态、叶绿体数目、光合速率、叶绿素含量等进行观察和测定比较。结果显示,随着品种更替,从BM1到LX998株高降低了37.25%,旗叶厚度、面积和收获指数均呈上升趋势;4环叶肉细胞面积由2 546.12μm2减小到2 285.92μm2,6环以上叶肉细胞的比例逐渐增大。灌浆期4环叶肉细胞中叶绿体个数增加了48.68%,叶绿素含量逐渐增大,光合速率高值持续期延长。上述结果说明,旗叶结构在小麦品种更替过程中有明显改变,可为小麦品种改良提供微观结构方面的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号