首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
高效液相色谱法检测福美双在蔬菜及土壤中的残留   总被引:2,自引:1,他引:1  
利用衍生化原理,建立了用来测定黄瓜、番茄及土壤中福美双的高效液相色谱残留检测方法。结果表明,在黄瓜、番茄和土壤中福美双的添加浓度在0.05~2.0mg·kg-1范围内,平均回收率分别为74.3%~93.9%、85.7%~102.0%和83.5%~101.8%,变异系数分别为0.7%~6.3%、1.8%~4.5%和1.6%~5.3%,均在农药残留测定所允许的范围内。该方法的最低检出限(LOD)为0.02mg·kg-1,最低检测浓度(LOQ)为0.05mg·kg-1。  相似文献   

2.
啶酰菌胺在黄瓜和土壤中残留分析方法研究   总被引:2,自引:0,他引:2  
建立了啶酰菌胺(boscalid)在黄瓜和土壤中残留的分析方法.样品以乙腈提取,弗罗里硅土柱层析净化,气相色谱(ECD)测定.啶酰菌胺的最小检测量为8×10-11 g,最低检测浓度为0.04 mg·kg-1.黄瓜中啶酰菌胺的添加(浓度0.05~5.0 mg·kg-1)回收率为92.16%~98.32%,变异系数分别为4.59%~8.31%;土壤中啶酰菌胺的添加(浓度为0.05~5.0 mg·kg-1)回收率为89.46%~99.23%,变异系数分别为3.48%~6.15%.该方法的准确性和灵敏度均符合农药残留分析要求.  相似文献   

3.
恶唑菌酮在苹果和土壤中的残留分析方法   总被引:4,自引:1,他引:4  
研究并建立了恶唑菌酮(famoxadone)在苹果和土壤中的残留分析方法.样品以甲醇提取,固相萃取(SPE)净化,高效液相色谱(HPLC)测定.恶唑菌酮的最小检测量为4.0×10-9 g,苹果中的最低检出浓度为0.008 mg·kg-1,土壤为0.02 mg·kg-1.在0.05~5.0 mg·kg-1的添加浓度下,土壤中恶唑菌酮的平均添加回收率为81.45%~91.61%,变异系数为2.93%~6.52%;苹果中的平均添加回收率为84.06%~97.93%,变异系数为4.61%~6.67%.该方法的准确性、精确性以及灵敏度均达到农药残留分析的要求.  相似文献   

4.
氟虫腈在番茄和土壤中残留分析方法的研究   总被引:15,自引:0,他引:15  
建立氟虫腈(fipronil)在番茄和土壤中的残留分析方法.样品以乙腈提取,中性氧化铝(含活性炭)柱层析净化,气相色谱测定.氟虫腈的最小检测量为2×10-14g,最低检测浓度为2.5 ng·kg-1.番茄中氟虫腈的添加回收率(0.005~0.5 mg·kg-1)为82.36%~90.38%,变异系数分别为5.76%~9.62%;土壤中的添加回收率(0.005~0.5mg·kg-1)为80.20%~86.20%,变异系数分别为4.15%~8.15%.该方法的准确性、灵敏度均达到农药残留分析的要求.  相似文献   

5.
在不同时期对杨梅果实中代森锰锌残留量进行检测,结果表明:在最低检出浓度0.05mg/kg、回收率86%的试验条件下,于杨梅果实生长期喷施80%代森锰锌可湿性粉剂800倍液1次,施药后5d、12d、19d、26d、33d杨梅果实中的代森锰锌最终残留量均未检出,表明杨梅果实中的代森锰锌最终残留量均〈0.05mg/kg,符合《食品中农药最大残留限量》GB2763-2005规定的小粒水果类代森锰锌最大残留限量≤5mg/kg和《农药最大残留限量》NY1500.56.8-2009中规定杨梅的代森锰锌最大残留限量≤1mg/kg的要求。因此,生产上推荐于杨梅果实采收前10d停止施药是安全的。  相似文献   

6.
采用气相色谱测定代森锰锌和代谢物乙撑硫脲,最小检出量分别是1.125×10-10g和6.82×10-10g;最小检出浓度0.003 mg·kg-1和0.014mg·kg-1;回收率90.6%~97.8%和89.2%~98.2%.结果表明,香蕉和土壤中的残留量与施药剂量、次数呈正相关,与等收期呈负相关,本试验条件下,最高剂量150倍,最多施4次,等收期7 d,在香蕉皮中的最终残留量为0.641~0.670 mg·kg-1,代森锰锌在蕉肉中和乙撑硫脲在香蕉、土壤中残留量均未检出.在香蕉中的残留量低于FAO/WHO规定的CS2=1 mg·kg-1、ETU=0.1 mg·kg-1.据此,推荐生产上用42%代森锰锌SC,300~400倍,喷施2~4次,每次间隔7~10d,最后1次距收期7~14d,是安全的.  相似文献   

7.
易保在苹果和土壤中的残留动态研究   总被引:2,自引:0,他引:2  
在北京市海淀区进行了易保68.75%水分散粒剂在苹果上的残留动态和最终残留试验,用HPLC测定了其有效成分恶唑菌酮的残留量。恶唑菌酮的最低检出量为2.0×10-10g,在苹果中的最低检出浓度为0.004 mg.kg-1,在土壤中的最低检出浓度为0.002 mg.kg-1。在苹果中的平均回收率为91.5%~92.3%,变异系数为0.13%~3.18%,在土壤中的平均回收率为89.7%~100.6%,变异系数为2.10%~10.10%,符合农药残留分析的要求。结果表明,恶唑菌酮在苹果上的半衰期为11.6 d,在土壤中的半衰期为6.8 d。按推荐剂量和推荐剂量的两倍施用的情况下,恶唑菌酮在苹果中的残留量为0.048~0.406 mg.kg-1,土壤中的残留量为0.057~0.539 mg.kg-1,均低于最大残留限量。  相似文献   

8.
香蕉中戊唑醇残留分析方法的比较研究   总被引:4,自引:0,他引:4  
确立香蕉中戊唑醇残留检测方法,用丙酮∶水(60∶5,V∶V)为萃取溶剂,液液分配后浓缩至近干,定容后用气相色谱(GC-NPD)测定。戊唑醇的最小检出量为1×10-11g,最低检测浓度为0.01 mg.kg-1。香蕉中添加浓度为0.025、0.05、0.5 mg.kg-1,其回收率分别为98.12%~109.23%、70.37%~99.57%和78.13%~94.53%,变异系数分别为5.55%、17.93%和9.58%。该方法的准确度和灵敏度满足农药残留分析的要求。  相似文献   

9.
为检测水稻中稻瘟酰胺残留及评价其在水稻上使用的安全性,建立了稻瘟酰胺在水稻植株、土壤和田水中的残留分析方法。样品采用乙酸乙酯提取,Florisil小柱净化,气相色谱—电子捕获检测器(GC-ECD)测定。稻瘟酰胺在水稻植株、土壤和田水中的添加浓度为0.05~5.00 mg.kg-1时,平均回收率为74.98%~102.96%,相对标准偏差(RSD)为0.68%~8.07%。稻瘟酰胺在水稻植株、土壤和田水中的最低检测浓度(LOQ)均为0.05 mg.kg-1。田间试验结果表明,稻瘟酰胺在稻田样品中的消解动态符合一级动力学方程,其在水稻植株、土壤和田水的半衰期分别为3.62~5.51 d,3.60~24.32 d,2.29~26.66 d。稻瘟酰胺在水稻植株、土壤和田水中均属易降解农药。  相似文献   

10.
在北京市海淀区进行了易保68.75%水分散粒剂在苹果上的残留动态和最终残留试验,用HPLC测定了其有效成分恶唑菌酮的残留量。恶唑菌酮的最低检出量为2.0×10-10g,在苹果中的最低检出浓度为0.004 mg.kg-1,在土壤中的最低检出浓度为0.002 mg.kg-1。在苹果中的平均回收率为91.5%~92.3%,变异系数为0.13%~3.18%,在土壤中的平均回收率为89.7%~100.6%,变异系数为2.10%~10.10%,符合农药残留分析的要求。结果表明,恶唑菌酮在苹果上的半衰期为11.6 d,在土壤中的半衰期为6.8 d。按推荐剂量和推荐剂量的两倍施用的情况下,恶唑菌酮在苹果中的残留量为0.048~0.406 mg.kg-1,土壤中的残留量为0.057~0.539 mg.kg-1,均低于最大残留限量。  相似文献   

11.
介绍了稻田土壤中抑食肼的乙腈提取,氧化铝层析柱净化,液相色谱测定的残留分析方法.该方法在稻田土壤中最低检出浓度为0.02 mg.kg-1,回收率均在84%~104%之间,变异系数均在4.5%~13.3%之间.满足农药残留分析的要求.  相似文献   

12.
建立了同时测定丁草胺和异噁草酮棉花及土壤中的残留的高效液相色谱分析方法。样品经乙腈提取,中性氧化铝柱净化,紫外检测器检测。丁草胺和异噁草酮的最小检出量分别为5.0×10-10和1.0×10-9 g,样品的最低检出浓度均为005 mg·kg-1。棉叶、棉籽和土壤中添加浓度为0.05~1.0 mg·kg-1 时,丁草胺的平均回收率为88.78%~99.52%,相对标准偏差(RSD)为0.49%~2.09%;异噁草酮的平均回收率为85.57%~101.82%,相对标准偏差(RSD)为0.97%~2.44%。该方法的准确度、精密度及灵敏度均达到农药残留分析的要求。将该方法应用于丁草胺和异噁草酮在棉花及土壤中的残留试验中,测得丁草胺在棉叶和土壤中的残留消解半衰期分别为2.14和2.53 d, 异噁草酮在棉叶和土壤中的残留消解半衰期分别为2.80和2.82 d,收获时土壤和棉籽中丁草胺和异噁草酮的最终残留量均小于0.05 mg·kg-1。  相似文献   

13.
采用硫化钠和甲醇的混合溶液碱解,乙酸乙酯萃取,建立烟草中噻菌铜残留的反相高效液相色谱(HPLC-PDA)测定方法。结果表明,噻菌铜在烟草中的最低检出浓度为0.1 mg.kg-1。当添加浓度为0.1~5.0mg.kg-1时,回收率为80%~101%,相对标准偏差为1.3%~5.8%。  相似文献   

14.
建立了吡蚜酮(pymetrozine)在大米和苹果中的残留分析方法.大米样品以乙腈 氨水(10:1,v:v)提取,苹果样品用乙腈提取,提取液经固相萃取小柱净化,高效液相色谱(VWD)测定.吡蚜酮的最小检测量为6.0×10-10g.最低检测浓度为0.02mg/kg.大米中吡蚜酮的添加(浓度0.05-1.0mg/kg)回收率为75.99%~96.03%.变异系数分别为1.64%~4.74%;苹果中吡蚜酮的添加(浓度为0.05~1.Omg/kg)回收率为74.84%~86.28%.变异系数分别为1.67%~6.43%.该方法的准确性和灵敏度均符合农药残留分析要求.  相似文献   

15.
扑海因悬浮剂在番茄和土壤中的残留动态研究   总被引:4,自引:0,他引:4  
为评价扑海因悬浮剂在番茄上使用后的残留动态及环境安全性,在北京和杭州市郊区对其在番茄上的残留进行了动态和最终残留进行了试验,用带ECD检测器的气相色谱测定了其有效成分异菌脲的残留量。异菌脲的最低检出量为1.8×10-11g;在番茄中的最低检出浓度为0.007 mg.kg-1,在土壤中的最低检出浓度为0.018 mg.kg-1。在番茄和土壤中的平均回收率为94.1%~99.4%,变异系数为0.9%~5.5%,符合农药残留分析的要求。研究结果表明:异菌脲在番茄和土壤中的降解均较快,在番茄上的半衰期为3.2~4.2 d,在土壤中的半衰期为5.4~6.6 d;在推荐剂量和1.5倍推荐剂量下,异菌脲在番茄中的最终残留量都低于最大残留限量,保证了番茄食用的安全性。  相似文献   

16.
克露是霜脲氰和代森锰锌组成的多元混合制剂。试样经粉碎溶剂浸泡提取,混合柱净化,霜脲氰和代谢物乙撑硫脲用液相色谱定量,代森锰锌气相色谱定量。在广西和广东采用田间试验方法进行了克露在荔枝果(皮)中的消解动态试验。结果表明,3d消解率分别为83.53%和82.96%,21d消解率均>97.00%。半衰期(T.2)分别为24h和19.2h;土壤中的消解速率与果(皮)相仿,半衰期两地分别为20h和18h。代森锰锌在荔枝果(皮)和土壤中均能产生代谢物乙撑硫脲,其产生量,荔枝果(皮)约为母体的4.68%~5.78%,土壤约为母体的8.26%~9.17%,最终残留检测,残留量与施药次数呈正相关,与距收期呈负相关。在果肉中均未检出有残留,即使采用最高浓度250倍,最多5次,最短距收期3d,在果(皮)和土壤中的残留也仅分别0.3657~0.3735mg·kg-1和0.4219~0.4831mg·kg-1,参照欧共体规定代森锰锌MRL值0.5mg·kg-1,分析结果均在允许值范围内。据此,说明用72%克露在荔枝挂果期用250~500倍,施药4~5次,距收期3~21d是安全的。  相似文献   

17.
为评价扑海因悬浮剂在番茄上使用后的残留动态及环境安全性,在北京和杭州市郊区对其在番茄上的残留进行了动态和最终残留进行了试验,用带ECD检测器的气相色谱测定了其有效成分异菌脲的残留量。异菌脲的最低检出量为1.8×10-11g;在番茄中的最低检出浓度为0.007 mg.kg-1,在土壤中的最低检出浓度为0.018 mg.kg-1。在番茄和土壤中的平均回收率为94.1%~99.4%,变异系数为0.9%~5.5%,符合农药残留分析的要求。研究结果表明:异菌脲在番茄和土壤中的降解均较快,在番茄上的半衰期为3.2~4.2 d,在土壤中的半衰期为5.4~6.6 d;在推荐剂量和1.5倍推荐剂量下,异菌脲在番茄中的最终残留量都低于最大残留限量,保证了番茄食用的安全性。  相似文献   

18.
为研究复配试剂噁唑菌酮和代森锰锌可分散粒剂在番茄和土壤中施用后的食品安全性和环境归宿行为,将杀菌剂施用于番茄植株农药残留消解动态试验小区(15 m~2)和土壤动态试验小区(20 m~2),结合HPLC和GC检测技术,通过添加回收建立噁唑菌酮、代森锰锌在番茄和土壤基质中的残留检测方法。结果表明:噁唑菌酮在番茄和土壤中的最小检出量分别为1×10~(-9) g和8×10~(-9) g,最低检出浓度均为0.05 mg/kg,代森锰锌的最小检出量为3.5×10~(-11)g,最低检出浓度为0.035 mg/kg,平均回收率(n=5)为78.01%~106.03%,相对标准偏差平均值均小于5.22%。该方法重复性好,准确度高,试验结果表明番茄中噁唑菌酮、代森锰锌的半衰期为1.61~14.43 d,土壤中其半衰期为2.64~22.35 d,其消解规律遵循一级化学反应动力学方程:C_t=C_0e~(-kt)。  相似文献   

19.
多菌灵在水稻及土壤中的消解动态和残留规律研究   总被引:1,自引:0,他引:1  
采用田间试验方法,研究了多菌灵在稻田水、土壤和稻秆中的消解动态,测定了多菌灵在水稻和土壤中的最终残留量.样品采用甲醇和稀盐酸的混合溶液提取,经液-液分配净化,HPLC紫外分析测定.结果表明,田水、土壤、稻秆、谷壳、糙米中多菌灵添加浓度为0.05~ 1.0 mg·kg-1时,平均回收率为83.16%~95.44%,变异系数在1.23%~5.32%之间,方法的最低检测浓度为:田水0.005mg·L-1,土壤0.005 mg· kg-1,稻秆0.050 mg·kg1-,谷壳0.050 mg·kg-1,糙米0.025 mg·kg-1.多菌灵在田水、土壤和稻秆中的消解动态均符合一级动力学方程,半衰期分别为2.53~3.41 d、6.20~7.27 d、3.27~3.91 d,原始沉积量与施药量、施药次数密切相关.以231 g·hm-2和346.5 g·hm-2间隔7d施用多菌灵2次和3次,末次施药21d后多菌灵的最高残留量为:土壤未检出(≤0.005 mg·kg-1),稻秆0.524 mg·kg-1,谷壳0.528 mg· kg-1,糙米未检出(≤0.025 mg·kg-1).多菌灵在稻秆和谷壳中的残留量相对较高,以该稻秆和谷壳作为饲料有一定的风险;多菌灵在糙米中的残留量低于我国和食品法典委员会(CAC)及日本的最大残留限量(MRL)标准.  相似文献   

20.
多菌灵在草莓与土壤中的残留动态研究   总被引:2,自引:0,他引:2  
采用高效液相色谱(HPLC)分析方法,研究了多菌灵在草莓与土壤中的消解动态和最终残留.分析结果表明,多菌灵最低检出浓度为0.05mg·kg-2,添加浓度在0.05~2.0mg·kg-2范围内,回收率为81.6%~102.6%,变异系数为1.44%~5.35%.田间试验结果表明,多菌灵推荐浓度和加倍浓度在草莓中的消解动态方程分别为C=3.212e-0.1354t、C=8.8103e-0.1379t,土壤中的消解动态方程分别为C=2.941 1e-0.1011t、C=6.1733e-0114 4t.多菌灵消解较快,草莓中的消解半衰期为4.2~6.7d,土壤中的消解半衰期为5.4~7.3d.加倍浓度和推荐浓度各施药2次,30d后残留量均降至0.1mg·kg-1以下,低于多菌灵在果蔬中最大允许残留量(MRL)0.5mg·kg-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号