首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
对豫南18 a生杉木林生态系统的生物量、碳贮量及其空间分布特征进行了研究.采用分层切割法和相对生长方程计算乔木层生物量和林下植被生物量,C,N元素分析仪测定碳含量.结果表明,18 a杉木林生态系统的总生物量平均为139.5 t·hm-2.其中乔木层生物量占91.1%;杉木林生态系统总碳库为135.14 t·hm-2,其中植被总碳贮量为69.84 t·hm-2,土壤有机碳库为65.30 t·hm-2.乔木层碳库占生态系统碳库的47.03%, 灌木层占1.97%,草本层占0.36%,现存凋落物层占2.32%,矿质土壤层碳库占生态系统碳库的48.32%.  相似文献   

2.
杉木二代林生态系统碳素积累的动态特征   总被引:1,自引:1,他引:0  
对杉木二代林碳贮量和碳素年净固定量的动态特征进行了研究.结果表明,8、11和14年生杉木二代林生态系统碳贮量分别为136.24、147.59和161.83 t·hm-2,其分布序列为土壤层(0~60 cm)>植被层>凋落物层.随着林分林龄的增加,乔木层碳积累量明显增加,由8年生的17.09 t·hm-2增加到14年生的37.29 t·hm-2,分别占生态系统碳贮量的12.54%和23.04%.碳贮量在林木各器官中的分配,基本上与各自生物量成正比,其中树干碳贮量占乔木层碳贮量的46.05%以上,并随林木生长而明显增加.3种杉木林林地土壤层(0~60 cm)碳贮量分别为117.60、119.26和122.06 t·hm-2,占生态系统总碳贮量的75.42%以上,其中表层土壤(0~20 cm)分别占土壤总碳贮量的56.45%、54.29%和57.37%.3种林分的年净生产力分别为5.49、6.18和7.62 t·hm-2·a-1,碳素年净固定量分别为2.62、3.04和3.74 t·hm-2·a-1.  相似文献   

3.
采用样方收获法,利用实测数据,研究了湖南桃江血水草的生物量、碳含量、碳贮量及其分配特征。结果表明,血水草生物量为1744.70 kg/hm2,其中以地下根系生物量最高,为1278.63 kg/hm2,占血水草生物量的73.9%,且地下根系部分生物量与地上叶、茎部分生物量比值为2.74。血水草各器官平均碳含量为450.54 g/kg,从高到低排序为叶>茎>根。土壤层有机碳含量为6.63-38.50 g/kg,各层次碳含量分布不均,表层(0-15cm)土壤碳含量较高,并随土壤深度的增加而逐渐下降。生态系统碳贮量为101.19 t/hm2,碳库的分布格局为土壤层>植被层>枯落物层。植被层的碳贮量为0.79 t/hm2,占整个生态系统总碳贮量的0.78%;在植被层中,地下根系碳贮量为0.57 t/hm2,占植被层总碳贮量的72.2%,是植被层的主要碳库。枯落物层碳贮量较少,为0.22 t/hm2,仅占整个生态系统的0.22%,它是维系植物体地上碳库与土壤碳库形成循环的主要通道。血水草生态系统中的碳贮量绝大部分集中在土壤中,土壤层碳贮量可观,为100.18 t/hm2,占系统总碳贮量的99.0%,是血水草生态系统中的主要碳库。研究结果,可为深入研究亚热带地区草本植物的生态功能提供参考。  相似文献   

4.
江西大岗山毛竹林碳贮量及其分配特征   总被引:4,自引:0,他引:4  
采用收获法研究了江西大岗山毛竹林生态系统的碳贮量及其分布特征。结果表明:毛竹各器官碳密度波动在0.463 0~0.491 7 g/g,其大小顺序为竹枝竹秆蔸根竹蔸竹叶。随着毛竹年龄的增长,碳密度无明显的变化规律。在毛竹林植被层中,碳密度依次为:竹枝竹秆竹鞭蔸根鞭根竹蔸竹叶林下植被枯落物。毛竹林生态系统土壤层碳密度以0~20 cm层最高,且各层次之间碳密度差异极显著。毛竹林生态系统碳贮量为243.22 t/hm2,其中土壤层碳贮量占84.03%,植被层占15.97%。毛竹林生态系统年固碳量为12.15 t/(hm2·a)。其中植被层年固碳量为11.36 t/(hm2·a),土壤层年固碳量为0.79 t/(hm2·a)。   相似文献   

5.
林分密度对水曲柳人工林碳储量的影响   总被引:3,自引:2,他引:1  
为了解林分密度对水曲柳人工林碳储量的影响规律,在黑龙江省帽儿山地区,选择不同造林密度(2 200、2 500、4 400、10 000株/hm2)的13年生水曲柳人工林,采用样地调查的方法在每种密度处理各设置3块样地,进行了林分碳储量与乔木层年净固碳量的测定。结果表明:水曲柳林分密度增加,其乔木层、凋落物层、土壤层以及生态系统碳储量均随之增大,而林下植被层碳储量随林分密度的增加而减小。其中不同密度林分的乔木层、林下植被层、土壤层以及生态系统碳储量差异均显著(P<0.05),而凋落物层在各密度之间差异不显著(P>0.05)。4种密度水曲柳林分碳储量的空间分配均表现为:土壤层>乔木层>凋落物层>林下植被层,土壤层和乔木层碳储量分别占生态系统总碳储量的79.6%~82.4%和14.1%~17.0%,是人工林碳库的主要组成部分。此外,水曲柳人工林乔木层的年净固碳量随林分密度的增加而增大,造林密度为2 200株/hm2林分的年净固碳量明显低于其他密度林分(P<0.05)。上述结果说明提高造林密度对增加幼龄林分碳储量具有显著作用。   相似文献   

6.
3种相思人工林生态系统碳贮量及分配   总被引:4,自引:1,他引:3  
在平和天马国有林场相思引种优选区选取3种相思人工林,进行生态系统各组分含碳率、碳贮量和分配特征的比较。结果表明,3种相思人工林乔木层各器官的含碳率介于45%-50%之间,卷荚相思林和黑木相思林乔木层各器官碳贮量表现为干>根>皮>枝>叶,马占相思林为干>根>皮>叶>枝。卷荚相思林、黑木相思林和马占相思林下植被层平均含碳率分别为42.29%、42.78%和41.26%,明显低于相应的乔木层。卷荚相思林、黑木相思林和马占相思林生态系统碳贮量分别为110.06、124.46和88.86 t.hm-2,其中矿质土壤层贡献最大,依次占68.20%、77.11%和74.69%;乔木层碳贮量次之,依次占29.04%、21.26%和22.14%;而林下植被层碳贮量的贡献最小,分别仅占0.70%、0.33%和1.34%。  相似文献   

7.
基于样地调查与室内分析,运用清查平均生物量法和林木相对生长模型,研究了山西太岳山林区两种森林碳储量及碳密度空间分布特征。结果表明:研究区森林生态系统植被层含碳率变化范围为4.24~6.07 g· kg-1,土壤层含碳率变化范围为5.31~50.00 g· kg-1;两种植被类型平均森林碳储量:油松林为263.03 mg· hm-2,辽东栎林为292.31 mg· hm-2,辽东栎林约为油松林的1.12倍;在空间尺度上土壤层碳储量(173.35 mg· hm-2)>乔木层(92.70 mg· hm-2)>枯落物层(6.50 mg· hm-2)>灌草层(5.23 mg· hm-2),其中土壤层碳储量约占森林生态系统碳储量的62.4%;植被层各分层碳储量大小差异显著,土壤层碳储量随着土壤深度的增加而递减。  相似文献   

8.
马尾松林生态系统碳贮量研究   总被引:3,自引:0,他引:3  
对湖南省不同年龄阶段的马尾松林生态系统的碳贮量进行了研究。结果表明:马尾松幼龄林、中龄林和成熟林生态系统总碳贮量分别是120.47、161.18t.hm-2和187.29t.hm-2,乔木层占总碳贮量的比重分别是16.23%、34.09%和38.81%,且表现为乔木层幼林碳贮量增长迅速,中龄林以后长势降低,从乔木层各部分器官碳贮量的分配来说,枝条、树干和根随林龄的增加而增加,而树皮和树叶则相反。土壤层占总碳贮量的比重分别是81.18%、62.93%和59.06%,可见,土壤层是马尾松林生态系统碳贮量的主体,含碳量随着土壤厚度的增加而减少,且主要集中在土壤的表层,其中0~40cm的碳贮量贡献最大。林下灌木层、草本层和凋落物层碳贮量的积累与林龄的变化并不一致。中龄林灌木层、草本层和凋落物层的碳贮量最大,成熟林次之,幼龄林最小。  相似文献   

9.
福建省土壤有机碳密度和储量的估算   总被引:15,自引:0,他引:15  
根据福建省第2次土壤普查的基本数据对福建省土壤有机碳储量和密度进行估算,结果表明福建省土壤有机碳总储量为1 575 661×106 t,平均有机碳密度为145 23 t·hm-2,高于全国平均水平.红壤、黄壤和水稻土作为福建省面积分布最广的土壤类型,其有机碳储量占福建省土壤有机碳总储量的93 81%;其有机碳密度分别为146 107 t·hm-2、257 675 t·hm-2和111 633 t·hm-2,均高于全国平均水平.  相似文献   

10.
采用Komiyama红树林异速生长模型,对海南清澜港杯萼海桑生态系统的植被生物量、碳密度及其空间分布特征进行研究。结果表明:杯萼海桑植被层总生物量为(177.89±14.36)t·hm-2,碳密度为(80.35±6.92)t·hm-2,其中,乔木层生物量为(176.52±14.23)t·hm-2,碳密度为(79.69±6.86)t·hm-2,占林分植被层总碳密度的99.2%。杯萼海桑生态系统总有机碳库密度为(536.91±54.99)t·hm-2,其中0~105 cm土壤碳密度为(456.56±48.07)t·hm-2,占总碳贮量的85.0%,植被有机碳密度占总碳贮量的14.85%,林下植被层和现存凋落物层仅占0.15%。  相似文献   

11.
对武安市农田生态系统碳吸收量和排放量进行估算,并对其主要影响因素进行分析,以寻求减少农田生态系统碳排放的有效途径,进而促进农业的可持续发展。结果表明,武安市农田生态系统碳排放量整体呈相对稳定状态,其中化肥生产使用是主要的碳排放源;农田生态系统碳吸收量总体呈先降低后升高趋势,年际间波动明显,主要原因是农业投入的变化与种植结构的调整。相关性分析表明,碳吸收量与农作物产量、主要农作物类型、有效灌溉面积、农业机械的使用均存在正相关关系;碳排放量与化肥的生产使用、农业机械使用、有效灌溉面积以及农作物播种面积均呈正相关关系。基于以上分析,提出了调整农作物种植结构,改善化肥条件,调整耕作模式和灌溉制度以及秸秆等废弃物处置方式的建议,以达到促进温室气体减排和低碳农业发展的目的。  相似文献   

12.
【目的】研究不同土剖面的有机碳和无机碳贮量以及不同组分有机碳在0~200cm土层的分布特征。【方法】以陕西杨凌土为对象,采集了8个土剖面(0~200cm土层)样品,测定了土壤有机碳、无机碳含量以及活性有机碳和难降解有机碳的含量。【结果】①0~200cm土层土壤总碳贮量为266.20~631.59t/hm2,其中有机碳贮量为120.63~177.35t/hm2,无机碳贮量为131.64~504.71t/hm2,分别占土壤剖面总碳贮量的20.1%~50.8%和49.2%~79.9%。②有机碳多集中于0~100cm剖面,其平均贮量均占有机碳贮量的60%以上;无机碳多集中于100~200cm土层,其平均贮量占无机碳贮量的64%。③活性有机碳含量在0~20cm土层最高,随着土层深度的增加而减少。④HCl水解和HF处理后残留有机碳均是以土壤剖面的表层最高,随着土层深度的增加而明显减少,其占有机碳的比例也因土层深度的不同差异明显,但随着土层深度的增加总体上呈减少趋势。【结论】土0~200cm土层无机碳贮量是有机碳贮量的2倍,其中0~100cm土层中有机碳所占比例相对较高,而100~200cm土层碳主要以无机碳形态存在。  相似文献   

13.
基于莫尔道嘎林区森林资源清查资料,依据不同森林类型生物量与蓄积量之间的线性关系,对莫尔道嘎林区不同时段、不同森林类型的森林碳储量进行了推算,并分析其动态变化特征。结果表明:莫尔道嘎林区森林活立木(地上和地下)总碳储量由2008年的18456147 t增加到了2012年的20202875 t,累计增加碳1746728 t,增长率为9.46%。从树种的角度分析,全区总碳储量中落叶松和白桦所占比重最大;从龄组角度看,中龄林和成熟林占总碳储量比重最高。同时,不同森林类型碳密度不同,其中,樟子松林碳密度最大,蒙古栎林碳密度最小;不同龄组的碳密度随着林龄的增加逐渐增大。不同森林类别之间(重点公益林、一般公益林和商品林)森林碳密度也不同,重点公益林碳密度明显高于一般公益林和商品林。  相似文献   

14.
贝类养殖作为碳汇渔业存在一定疑义,为了更好地解释贝类的碳汇功能并明确其碳源,应用稳定碳同位素技术对3种养殖贝类的碳源进行了分析。研究结果表明:3种养殖贝类的贝壳δ13C值介于-6.9‰~-6.3‰,软体组织δ13C值介于-23.2‰~-21.9‰,贝壳与软体组织δ13C的富集程度表现出负相关关系。3种养殖贝类的贝壳主要碳源为海水中的溶解无机碳(DIC),其次为溶解有机碳(DOC),两者合计贡献率在86%以上。3种贝类软体组织的主要碳源为悬浮物,其次为沉积物,两者合计贡献率在94%以上。贝壳与软体组织在碳源选择上具有极显著的差异性(P0.01)。沉积物即泥沙不是贝壳碳的主要来源,转化成贝壳的碳绝大多数来自于海水的DIC,这使得海水中的DIC浓度下降,从而促进大气中CO2向水体转移,起到了间接固碳的作用,因此贝类养殖具有明显的渔业碳汇功能。  相似文献   

15.
北京市农田生态系统碳足迹及碳生态效率的年际变化研究   总被引:2,自引:2,他引:0  
近年来,由于北京城市功能的疏解以及郊区城市化进程的加快,使北京市农田生态系统受到了较大的冲击。本文以北京农田生态系统作为研究对象,对2004—2012年农田生态系统的碳汇、碳源、碳足迹以及碳生态效率的年际变化进行了研究,以明确其在北京城市发展中的功能与地位,为北京市健康持续发展及产业布局提供理论依据。结果表明:北京农田生态系统碳汇总体呈增加趋势,年递增幅度为2.8%,年平均碳蓄积量为105.82 万t,决定其碳汇功能的主要因素是粮食作物中玉米与小麦的经济产量及种植面积。北京农田生态系统的年均碳排放量为27.6 万t,基本呈现逐年降低的趋势,年均递减1.3%,决定碳排放量的主要因素为农业化学品中氮素化肥的施用量。北京市农田生态系统年均碳足迹为5.71 hm22,呈逐年降低的趋势,年递减率为5.5%,处于碳生态盈余状态,但是由于近年北京市耕地面积的减少,碳生态盈余量呈下降趋势;北京农田生态系统的碳生态效率较高,年均为3.854 kg C·kg-1 CE,农业生产处于较高的持续状态。  相似文献   

16.
城市森林及其管理相关政策作为减少CO2排放的有效策略得到了较为广泛的关注。采用材积源生物量方程与净初级生产力方法来定量分析了广州市城市森林碳储量和碳固定量,根据化石能源使用量及其碳排放因子核算了广州城市能源碳排放,最后评估了城市森林碳抵消效果。结果显示广州市城市森林碳储量为654.42×104t,平均碳密度为28.81 t/hm2,而森林碳固定量为658732 t/a,平均固碳率为2.90 t·hm-2·a-1。2005-2010年广州市年均能源碳排放则达到2907.41×104t。广州城市森林碳储量约为城市年均能源碳排放的22.51%,其通过碳固定年均能够抵消年均碳排放的2.27%,不过从城市森林综合效益来看其仍是城市低碳发展重要举措之一。分析了林型组成和林龄结构对于广州森林碳储量和碳固定量的影响,并从森林管理角度为城市森林碳汇提升提出建议。这些结果和讨论有助于评估城市森林碳汇在抵消碳排放中所起的效果。  相似文献   

17.
根据研究区昆明市海口林场资源的相关资料,利用不同森林类型生物量与蓄积量之间的回归方程,对研究区8种主要乔木林及其不同林龄结构的生物量和碳储量进行了推算,并分析了天然林与人工林的碳储量和碳密度。结果表明,研究区8种主要乔木林的总碳储量为80 142.30 t,针叶林碳储量占总碳储量的57.94%;碳储量最大的乔木林为华山松林,其碳储量占总碳储量的30.73%;8种主要乔木林不同龄级碳储量由高到低分别为中龄林>近熟林>幼龄林>成熟林;同一龄级、不同类型乔木林的碳汇能力表现各异;研究区人工林的碳储量比天然林小,且人工林和天然林的碳密度低于我国的平均水平。  相似文献   

18.
以桂林丫吉村岩溶实验场为例, 分析了表层带岩溶系统中碳库组成, 测定了各碳库的碳稳定性同位素丰度, 表明土壤碳是系统中最大的碳库, 生物的 C O2 吸收同化与土壤有机质分解导致的土壤 C O2 释放是系统中主导的碳流通过程, 系统活动态碳组分主要由土壤碳贡献, 从而揭示了土壤碳对表层岩溶作用的动力机制。  相似文献   

19.
玉米秸秆添加量对黄土高原旱作农田土壤固碳特征的影响   总被引:1,自引:0,他引:1  
【目的】探明不同玉米秸秆添加量对农田土壤固碳特征的影响.【方法】在甘肃省定西市李家堡镇进行玉米田间定位试验,设0(无秸秆还田,CK)、40g/kg(低量秸秆,T3)、60g/kg(中量秸秆,T2)、80g/kg(高量秸秆,T1)4个玉米秸秆还田处理.采用尼龙网袋法对540d观测期内的土壤总有机碳(SOC)、活性有机碳(ROC)、微生物量碳(MBC)动态变化特征进行分析.【结果】从整体来看,不同秸秆添加水平下SOC含量呈连续降低趋势;ROC含量于90d达到峰值后逐渐降低;MBC含量于180d达到峰值后逐渐降低.较之CK处理,T1、T2、T3水平均可提升土壤碳素含量,且随秸秆添加量的增加而增加.T2水平下土壤碳库活度指数最大,为1.25,该水平下秸秆残留率最小.【结论】秸秆还田处理土壤碳库管理指数(CPMI)随秸秆施入量的增加而增加.因此,在0~80g/kg玉米秸秆添加范围内,60g/kg水平更有利于土壤碳素的固持及土壤质量的改善.  相似文献   

20.
广东省农田生态系统碳足迹时空差异分析   总被引:1,自引:0,他引:1  
以广东省为例,通过1992要2011 年化肥、农药、农膜使用量、灌溉面积、农业机械总动力、农作物产量等 统计数据,估算了区域农田生态系统碳吸收、碳排放及碳足迹的时空特征。结果表明院近20 年来,广东省农作物碳吸 收总量总体处于下降趋势,从1992 年的4 017.02 万t 减少到2011 年的2 925.42 万t,减幅达到27.17%,年均递减 1.66%。而碳排放基本上呈现逐渐增加的趋势,排放总量从1992 年的224.05 万t 增加到2011 年的261.69 万t,增幅 为16.80%。广东省农田生态系统碳足迹呈现波动增加的趋势,2011 年比1992 年增长了89.76%,年平均增长率为 3.43%,碳足迹占同期生产性土地面积比例逐渐增大,2011 年达到8.95%。广东省农田生态系统表现为碳生态盈余, 且生态盈余占同期生产性土地面积比例逐步减小。各地区之间的碳足迹区域差异也较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号