首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
张海元  刘娟 《长江大学学报》2007,4(4):325-327,336
目的:检测在8种骨肉瘤细胞系中Runx3基因启动子区域甲基化状态和Runx2基因及Runx3基因的表达情况,探讨Runx2基因和Runx3基因对骨肉瘤形成的影响。方法:采用甲基化特异PCR(MSP)对8种骨肉瘤细胞系中Runx3基因启动子区域甲基化状态进行分析,采用逆转录-多聚合酶链反应(RT-PCR)检测Runx3及Runx2基因的表达情况。结果:MSP结果显示,Runx3基因启动子区域无明显过甲基化状态发生,RT-PCR结果表明,大多数骨肉瘤细胞系中Runx2基因和Runx3基因均有不同程度表达。结论:在骨肉瘤细胞系中无明显的Runx3基因特异性表达异常,Runx3基因启动子区域未见CpG岛发生广泛甲基化等表观遗传学异常改变,提示Runx3基因与骨肉瘤的发生发展无必要联系。Runx2基因虽然在成骨细胞分化、软骨细胞成熟及骨基质蛋白产生中发挥重要作用,但在骨肉瘤细胞系中均有不同程度的表达。  相似文献   

2.
为探讨核受体辅激活蛋白2(NCOA2)基因启动子区甲基化水平与其在肾周脂肪组织及皮下脂肪组织中差异表达的相关性,采用实时荧光定量PCR(qRT-PCR)方法检测NCOA2基因在肾周脂肪组织和皮下脂肪组织中的表达水平;通过构建系列NCOA2基因5'侧翼区缺失表达载体,并采用双荧光素酶报告系统鉴定NCOA2基因核心启动子区;在分析核心启动子区CpG岛的基础上,采用亚硫酸氢盐测序(BSP)法测定NCOA2基因核心启动子区CpG岛甲基化水平。结果表明:肾周脂肪组织中NCOA2基因的mRNA表达水平显著低于皮下脂肪组织;NCOA2基因核心启动子区位于-483~-179 bp;预测发现该区域存在1个CpG岛,BSP法表明该区域内的25个CpG位点在皮下和肾周脂肪组织均为非甲基化状态,无明显组织差异性。结论:肾周脂肪组织和皮下脂肪组织中NCOA2基因表达存在显著差异,而核心启动子区甲基化状态没有参与差异调控。  相似文献   

3.
本研究旨在通过克隆鸭慢速骨骼肌型肌钙蛋白I 1(Slow skeletal muscle troponin I 1,TNNI1)基因5'侧翼区序列,检测鸭骨骼肌组织TNNI1基因的mRNA表达水平和启动子CpG岛区甲基化状态,初步探索TNNI1基因转录调控机制。采用染色体步移方法克隆测序获得鸭TNNI1基因5'侧翼区序列,进行生物信息学分析,采用荧光定量PCR(Real-time quantitative PCR,RT-PCR)检测鸭胸肌和腿肌TNNI1基因mRNA表达水平,采用亚硫酸氢盐测序法(Bisulfite sequencing PCR,BSP)检测核心启动子区CpG岛在鸭肌肉组织中的甲基化水平。结果表明,克隆获得鸭TNNI1基因5'侧翼区序列2 078 bp,预测存在2个CpG岛,其中CpG岛(-2 032~-1 833 bp)位于预测的核心启动子区内,并存在多个真核生物结构元件和转录因子结合位点;甲基化检测发现,其总体甲基化水平在胸肌和腿肌组织中分别为52. 66%、57. 04%,差异不显著(P0. 05);荧光定量检测结果表明,鸭胸肌和腿肌TNNI1基因表达量差异显著(P0. 05);相关性分析结果表明,CpG4位点甲基化程度与胸肌TNNI1基因表达量呈极显著负相关(P0. 01)。鸭胸肌和腿肌TNNI1基因的mRNA表达量存在显著差异,其总体甲基化水平无显著差异。在胸肌中,启动子区CpG4位点可能通过甲基化修饰影响TNNI1基因的转录调控。  相似文献   

4.
以梅山猪-大白猪正反交为模型,以65日龄和100日龄的胚胎心脏组织为研究材料,对MKRN3基因启动子区CpG岛进行预测,根据预测的CpG岛设计引物,采用重亚硫酸盐测序法(BSP法),分析MKRN3基因启动子区CpG岛在胚胎心脏组织的甲基化程度。结果显示:对于65日龄胚胎,猪MKRN3基因启动子区CpG岛在大白×梅山和梅山×大白杂交后代的胚胎心脏组织中均表现高度甲基化(75.6%、76.4%);对于100日龄的胚胎,大白×梅山杂交后代的胚胎心脏组织表现高度甲基化(80%),而梅山×大白杂交后代的胚胎心脏组织呈现低甲基化(35.6%)。由此可见,猪MKRN3基因启动子区CpG岛的甲基化模式随着正反交、胚胎发育时期不同而呈现出一定变化,即在胚胎发育65日龄时,正反交子代均具有高度甲基化;而在胚胎发育至100日龄,正交子代呈现高度甲基化,反交子代呈现低甲基化,说明在胚胎发育晚期父本或母本等位基因可能会发生明显的去甲基化。  相似文献   

5.
本研究分析奶牛健康乳腺组织和金黄色葡萄球菌感染的乳房炎乳腺组织中胶原蛋白Ⅰ型α2链基因(COL1A2)启动子区CpG岛甲基化与COL1A2基因表达的调控关系,为奶牛乳房炎的抗性育种及预防提供理论依据。利用生物信息学,分析COL1A2基因启动子区CpG岛分布及其转录因子结合位点;运用亚硫酸氢盐测序PCR(BSP)和RT-PCR法,分析健康乳腺组织和患乳房炎乳腺组织中,COL1A2基因启动子区的CpG岛甲基化程度与COL1A2基因表达及乳房炎的相关性。结果表明健康乳腺组织和患乳房炎乳腺组织中CpG岛甲基化差异不显著(P0.05),均呈低甲基化状态(50%),但位于转录因子SP1结合区域内的第4和第5 CpG位点,健康组甲基化程度(30%和60%)显著高于患乳房炎组(0和10%);健康组基因表达水平显著低于患乳房炎组(P0.05)。说明,COL1A2基因在不同乳腺组织中的差异表达可能与其启动子区CpG岛转录因子SP1结合区域内的第4和第5CpG位点甲基化程度差异相关。  相似文献   

6.
目的:探讨SOCS-1基因在胃癌和癌旁组织中的表达及其启动子甲基化状态与胃癌发生、发展和转移等的关系。方法:采集45例胃癌病人的肿瘤标本、18例癌旁胃粘膜组织以及10例正常胃粘膜组织,运用甲基化特异性PCR反应研究胃癌组织中SOCS-1基因CpG岛甲基化状态,同时运用实时定量PCR分析SOCS-1基因的表达。结果:45例胃癌标本中有21例(46.7%)SOCS-1基因呈CpG岛甲基化,癌旁组织中为2例(11.1%),而10例正常胃粘膜组织中则未发现SOCS-1基因CpG岛甲基化;SOCS-1基因CpG岛甲基化组的SOCS-1基因表达量与无SOCS-1基因CpG岛甲基化组相比,其基因相对表达量明显减少(P〈0.05),表明SOCS-1基因CpG岛甲基化可抑制SOCS-1基因表达。与病人临床病理特征相结合比较,发现SOCS-1基因CpG岛甲基化与年龄、性别无关,与肿瘤分化程度及TNM分期等因素有关。结论:在胃癌中存在SOCS-1基因CpG岛甲基化,且由于CpG岛甲基化而促使基因表达抑制。SOCS-1基因CpG岛甲基化在胃癌的发生、发展中可能具有一定的意义。  相似文献   

7.
【目的】研究猪肌肉组织中猪载脂蛋白E(Apolipoprotein E,ApoE)基因5′调控区的DNA甲基化状况。【方法】以180日龄长白母猪为试验动物,采集其肌肉组织,提取其DNA,经亚硫酸氢盐修饰后用作PCR反应模板;通过生物信息学预测猪ApoE5′调控区潜在的CpG岛,根据预测结果选用甲基化特异性引物对CpG岛进行PCR扩增,对回收、纯化的PCR产物进行克隆和测序,并与GenBank中的ApoE5′调控区序列进行比对,分析CpG岛的甲基化水平。【结果】生物信息学预测发现,猪ApoE基因5′调控区有2个CpG岛,第1个CpG岛有10个CpG位点,第2个CpG岛有12个CpG位点;PCR扩增获得长度分别为233bp的CpG岛1和288bp的CpG岛2序列,这2个CpG岛均存在着9个甲基化CpG位点。【结论】猪ApoE基因5′调控区是CpG位点的富集区域,2个CpG岛存在不同程度的甲基化。  相似文献   

8.
【目的】了解牦牛和犏牛睾丸组织中DDX4基因mRNA表达水平和启动子区甲基化状态。【方法】采用real-time PCR技术检测牦牛和犏牛睾丸组织DDX4基因mRNA表达水平,采用克隆测序技术获得牦牛和犏牛DDX4基因启动子区序列,采用亚硫酸氢钠测序法检测牦牛和犏牛睾丸组织中DDX4基因启动子区甲基化状态。【结果】牦牛睾丸组织中DDX4基因mRNA表达水平极显著高于犏牛(P<0.01);牦牛和犏牛DDX4基因启动子区1 370 bp,含有核心启动子区(251 bp)和CpG岛(918 bp)。犏牛睾丸组织中DDX4基因启动子区甲基化水平(86.5%)极显著高于牦牛(67.0%)(P<0.01)。【结论】牦牛睾丸组织DDX4基因表达水平极显著高于犏牛,获得了牦牛和犏牛DDX4基因启动子区序列,且犏牛睾丸组织中DDX4基因启动子区甲基化水平极显著高于牦牛(P<0.01)。  相似文献   

9.
胃肠道恶性肿瘤中Runx3基因甲基化研究   总被引:2,自引:2,他引:0  
目的:通过检测胃肠道恶性肿瘤细胞系中Runx3基因启动子区域甲基化状态及Runx3基因表达情况,探讨Runx3基因启动子区域甲基化及表达在胃肠道恶性肿瘤中发生和发展过程中的意义。方法:采用DNA甲基化特异性PCR(MSP)技术分别对9种胃癌细胞系和11种结直肠癌细胞系中Runx3基因启动子区域甲基化进行检测,同时采用逆转录一聚合酶链反应(RT—PCR)检测Runx3mRNA的表达情况。结果:在7种胃癌细胞系和6种结直肠癌细胞系中,Runx3基因启动子区域过度甲基化;RT—PCR结果显示,在20种胃肠道恶性肿瘤细胞系中有15种细胞系Runx3基因未表达。结论:Runx3基因启动子区域甲基化是导致Runx3基因失活的主要原因之一,与胃肠道恶性肿瘤的发生发展密切相关,可作为胃肠道恶性肿瘤早期诊断的分子标记物及分子治疗的靶点。  相似文献   

10.
为了探讨NLRC5启动子的潜在调控机制,将NLRC5基因启动子系列缺失片段插入到pGL3-basic载体,构建重组质粒,并转染DF1细胞系。通过双荧光素酶实验寻找核心调控区,然后用目标捕获测序检测27个鸡品种的NLRC5核心启动子区的SNPs,并利用TRANSFAC,JASPAR和Meth Primer预测该区域的转录因子结合位点和CpG岛。结果显示,NLRC5启动子有2个核心区域,分别是1—617和1448—2108。第一个核心区域内存在3个SNPs,其中SNP1影响转录因子Hic1的结合序列,但SNPs对CpG岛不产生影响,表明NLRC5基因的启动子区的调控可能受不同因素的影响,但SNPs并不在甲基化的水平上影响启动子的活性。  相似文献   

11.
肝癌细胞系中Runx3基因表达及启动子区异常甲基化分析   总被引:1,自引:0,他引:1  
目的:通过检测6种肝癌细胞中Runx3基因异常甲基化状态及表达情况,探讨药物5-aza-2'-deoxycytidine(decitabine)激活Runx3基因重新表达的能力及对肝癌细胞生长的影响。方法:采用DNA甲基化特异性PCR(MSP)技术分别对6种肝细胞癌细胞系Runx3基因启动子区域甲基化状态进行检测,同时采用逆转录一聚合酶链反应(RT—PCR)检测5种肝癌细胞中Runx3的表达情况及药物5-aza-2'-deoxycytidine处理其中3种肝癌细胞前后Runx3表达变化。结果:6种肝癌细胞系中,有3种细胞Runx3基因启动子区域存在甲基化异常,药物5-aza-2'-deoxycytidine处理3种肝癌细胞后,Runx3基因明显表达或表达活性增强。结论:启动子区异常甲基化是导致Runx3基因失活的主要原因之一,与肝细胞癌发生早期密切相关,可作为肝细胞癌早期诊断的分子标记物及分子治疗的靶点。  相似文献   

12.
采用RT–PCR技术扩增和克隆鸭Myo G基因启动子,并对其启动子序列进行生物信息学分析,采用Sequenom Mass Array技术检测Cp G岛在鸭肌肉组织中的甲基化水平,用q RT–PCR检测Myo G基因的表达量。结果表明,扩增得到鸭Myo G基因启动子序列2 730 bp,对启动子序列预测后,发现存在2个Cp G岛,其中Cp G岛(–2 536~–1 997 bp)存在5个转录因子结合位点和多个真核生物结构元件。甲基化检测结果表明:在鸭的个体和组织水平上,启动子甲基化率均未聚类在一起;Cp G位点甲基化频率存在个体差异,22%Cp G位点的甲基化频率与Myo G的m RNA表达量呈负相关(P0.05),78%Cp G位点的甲基化频率呈正相关(P0.05),其中,腿肌甲基化位点Cp G_1、Cp G_26.27.28.29的甲基化频率与Myo G基因表达水平均呈显著相关(P0.05)。Myo G基因在鸭与在哺乳动物中的转录调控机制存在差异。试验中发现多个影响鸭Myo G基因转录的潜在甲基化位点,其中Cp G_1与Cp G_26.27.28.29能通过DNA甲基化修饰影响Myo G基因在鸭腿肌中的转录。本研究结果可为鸭Myo G基因转录调控提供参考依据。  相似文献   

13.
目的:研究肝细胞癌组织及手术前后外周血浆中Runx3基因启动子区异常甲基化状态,探讨其在肝癌早期诊断及疗效评估中的价值;方法:采用DNA甲基化特异性PCR(MSP)技术分别对肝癌患者肿瘤组织及相应血浆进行Runx3异常甲基化检测。结果:在81例肝癌组织中,Runx3异常甲基化率为43.2%(35/81),相应血浆中Runx3甲基化检出率为39.5%(32/81),血浆中Runx3基因甲基化改变与肿瘤组织甲基化状况显著相关(P<0.05);其中15例手术治疗患者手术前组织及血浆中Runx3甲基化检出率均为40%(6/15),术后只有1例患者血浆中Runx3基因异常甲基化。结论:血浆Runx3基因异常甲基化检测在肝细胞癌早期诊断及疗效评估方面有一定应用价值。  相似文献   

14.
15.
【目的】筛选SOCS5基因启动子区多态位点(SNP),并研究其对启动子功能元件的影响。【方法】选择贵州地方优良品种务川黑牛和中国荷斯坦奶牛两种生长性能差异明显的品种构建DNA池。直接测序后用DNASTAR软件进行序列拼接和校正,BLAST分析SOCS5基因多态性,然后用生物信息学软件预测序列核心启动子区和CpG岛,分析SNP位点对转录因子结合位点影响。【结果】牛SOC5基因5′调控区和第1外显子区存在3个SNP位点,分别为:C-577T、T-43C和C+61T,其中C+61T与SNP数据库中的rs110977810信息相符,C-577T和T-43C为新发现SNP位点。生物信息学软件预测得到SOCS5基因核心启动子区和CpG岛,SNP位点导致附近大量转录因子结合位点消失和新位点产生;SNP位点对转录因子结合位点有显著影响,但对核心启动子范围和起始位点无明显影响,不在甲基化水平上影响SOCS基因表达水平。【结论】牛SOCS5基因5′调控区存在3个对启动子功能元件有较大影响的SNP位点。  相似文献   

16.
非小细胞肺癌与p16基因CpG岛异常甲基化的关系   总被引:1,自引:0,他引:1  
目的 :探讨非小细胞肺癌中抑癌基因 p1 6的失活机制 ;方法 :采用甲基化特异性 PCR( MSP)法检测 30例非小细胞肺癌肿瘤组织、30例癌旁组织及 3例正常肺组织中 p1 6基因外显子 1的 Cp G岛异常甲基化情况。结果 :非小细胞肺癌中有 1 2例 ( 4 0 % )肿瘤组织检测到 p1 6基因 5’端 Cp G岛异常甲基化 ,而癌旁组织及正常肺组织均未检测到 p1 6基因的异常甲基化 ,两者之间差异有显著性 ( P<0 .0 0 1 )。结论 :p1 6基因 5’端 Cp G岛异常甲基化与非小细胞肺癌的发生发展有关 ,可能是该基因在非小细胞肺癌中的主要失活机制。  相似文献   

17.
【目的】分析LEF1基因在红棕色与青灰色巴什拜羊皮肤组织中DNA甲基化与mRNA的表达水平。【方法】运用BSP(亚硫酸盐修饰后测序PCR)与RT-RCR(实时荧光定量PCR),检测不同毛色巴什拜羊皮肤组织LEF1基因启动子区的甲基化水平与mRNA表达量。【结果】在红棕色巴什拜羊皮肤组织中的LEF1基因启动子区的甲基化水平高于青灰色的甲基化水平,且二者甲基化CpG位点不同,二者呈显著的负相关(P< 0.05)。【结论】DNA甲基化水平对红棕色与青灰色巴什拜羊的毛色形成具有调节作用,可作为一个候选的巴什拜羊毛色遗传标记。  相似文献   

18.
 【目的】研究b-Boule基因5′调控序列的序列特征,以及牦牛、黄牛与犏牛睾丸组织b-Boule基因DMR甲基化状态的差异,为揭示b-Boule基因的表达调控和犏牛雄性不育的表观遗传机制提供依据。【方法】采用PCR扩增和克隆测序技术获得牦牛b-Boule基因5′调控序列,利用生物信息学方法分析b-Boule基因5′调控序列的序列特征,采用亚硫酸氢钠测序法检测牦牛、黄牛与犏牛睾丸组织中b-Boule基因DMR的甲基化状态。【结果】b-Boule基因5′调控序列长度为1 352 bp,核心启动子区含有SP1等甲基化敏感位点,5′端存在一个CpG岛。犏牛b-Boule基因DMR的甲基化水平(17.78%)高于牦牛(7.50%)和黄牛(6.94%)(P<0.01),特别是CpG位点33—35的甲基化水平差异更明显。【结论】犏牛b-Boule基因DMR的甲基化水平高于牦牛和黄牛,结合前期mRNA表达水平和组织学观察结果,认为DMR甲基化在b-Boule基因的表达调控中发挥关键作用,犏牛b-Boule基因可能是通过DMR区的高甲基化抑制其mRNA表达来阻滞精子发生减数分裂过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号