首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 296 毫秒
1.
玉米叶夹角、叶向值主基因+多基因遗传模型分析   总被引:6,自引:0,他引:6  
为探讨玉米叶夹角、叶向值的遗传规律,以7873/PH6WC的六世代P1、P2、F1、B1、B2、F2为材料,在春播和夏播环境下,田间分穗上、穗下调查叶夹角和叶向值,对其主基因+多基因遗传模型进行分析。结果表明,在春播和夏播环境下,穗上叶夹角和穗上叶向值最适模型均为E-1模型,存在2对主基因。穗下叶向值在春播和夏播环境中都符合D-2模型,存在1对主基因。穗下叶夹角在春播环境中符合D-2模型,但在夏播环境中没有检测到主基因,属于多基因遗传模型(即C-0模型)。夏播环境中,穗上叶夹角、叶向值、穗下叶夹角均检测到较高的主基因贡献率。夏播环境中,穗上叶夹角F2世代的主基因遗传率为85.60%,穗上叶向值主基因遗传率在B2和F2世代分别为88.92%、88.69%,穗下叶向值在B2世代的主基因遗传率为82.43%。但春播环境中,只有穗上叶向值在F2世代有较高的主基因遗传率(90.27%)。玉米叶夹角和叶向值存在较大的主基因遗传率,可以采用单交重组或简单回交转育的方法进行遗传改良。  相似文献   

2.
为了对玉米穗上叶间距进行遗传改良,以玉米PH6WC与7873杂交组合的6个世代P1、P2、F1、B1、B2、F2为材料,在春播和夏播条件下,研究了玉米穗上叶间距的主基因+多基因遗传规律。在春播条件下,玉米穗上叶间距的最适模型为E-0模型,检测到2对主基因,以多基因遗传为主。在夏播条件下,玉米穗上叶间距的最适模型为E-1模型,检测到2对主基因,以多基因遗传为主。因此,可以采用轮回选择和聚合回交的方法积累微效基因,对玉米穗上叶间距进行遗传改良。  相似文献   

3.
玉米穗位高的主基因+多基因的遗传模型分析   总被引:2,自引:0,他引:2  
为了探索玉米穗位高的遗传规律,以玉米杂交组合PH4CV×昌7-2(组合I)和PH6WC×7873(组合Ⅱ)的六世代(P1,P2,F1,B1,B2,F2)为材料,在春播和夏播环境下,研究了玉米穗位高的主基因+多基因的遗传规律。结果表明:春播条件下,组合Ⅰ的穗位高符合E-3模型,组合Ⅱ符合E-1模型;夏播环境下,组合I的穗位高符合D-3模型,组合Ⅱ符合C-0模型。结论:春播环境下,组合Ⅰ和组合Ⅱ的穗位高均以主基因遗传为主,可以采用单交重组或简单回交转育方法进行改良;夏播环境下,组合Ⅰ和组合Ⅱ的穗位高均表现为多基因遗传,可以采用聚合回交或轮回选择方法来累积增效基因,提高选择效率。  相似文献   

4.
以玉米杂交组合PH4CV×昌7-2(组合I)和PH6WC×7873(组合Ⅱ)的6个群体P1、P2、F1、B1、B2、F2为材料,研究了春播和夏播条件下玉米茎粗的主基因+多基因遗传规律。结果显示,组合Ⅰ的茎粗在2种环境下均受D-2模型控制。组合Ⅱ的茎粗在春播环境下符合E-1模型,在夏播环境下符合D-2模型。在春播环境下,组合Ⅰ和组合Ⅱ的茎粗均以主基因遗传为主,可以采用单交重组或简单回交转育的方法来提高育种的效率。在夏播环境下,组合Ⅰ和组合Ⅱ的茎粗均表现为多基因遗传,可以采用聚合回交或轮回选择来累积微效基因,从而提高育种效率。  相似文献   

5.
赵刚  吴子恺  王兵伟 《安徽农业科学》2007,35(17):5096-5098,5134
以2个微胚乳超高油玉米组合的P1、F1、P2、B1、B2和F2 6个世代为材料,采用数量性状的主基因+多基因混合遗传模型多世代联合分析法,研究了株高和穗位高的遗传。对2个不同组合的研究结果表明:组合I株高的遗传符合加性-显性-上位性多基因遗传模型;穗位高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为27.27%、37.36%和58.59%。组合II株高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为18.41%、1.03%和12.61%;穗位高的遗传符合加性-显性-上位性多基因遗传模型。  相似文献   

6.
应用植物数量性状主基因+多基因混合遗传模型,以爆裂玉米杂交组合吉爆902的P1、F1、P2、B1:2、B2:2和F2:3,6个家系世代群体为材料,对雄穗性状进行多世代联合分析。结果表明:爆裂玉米雄穗长度由1对完全显性主基因+加性.显性多基因控制遗传;雄穗分枝数由多基因控制遗传。B1:2、B2:2、F2:3三个家系世代雄穗长度主基因遗传率分别为54.01%、58.88%、58.62%,雄穗分枝数多基因遗传率分别为86.82%、85.28%、84.82%。  相似文献   

7.
利用植物数量性状主基因+多基因混合遗传模型,以玉米杂交组合济533/PH6 WC (组合Ⅰ)、济533/H5818(组合Ⅱ)和2394/ PH6WC (组合Ⅲ)的6个世代(P1、P2、F1、B1、B2、F2)为材料,研究了玉米穗轴粗的遗传规律。结果表明,组合Ⅰ的穗轴粗符合E-5模型,由2对完全显性主基因+加性-显性多基因控制遗传,受主基因和多基因共同影响;组合Ⅱ符合A-4模型,即1对负向完全显性主基因模型,在B1世代的选择效率最高;组合Ⅲ符合D-4模型,受1对负向完全显性主基因+加性-显性多基因控制,在B2世代没有检测到多基因的存在。组合Ⅰ玉米穗轴粗3个分离世代的主基因遗传率分别为6.0%、42.5%、75.0%,多基因遗传率分别为71.4%、37.5%、5.0%。组合Ⅱ玉米穗轴粗3个分离世代的主基因遗传率分别为63.0%、54.6%、54.2%。组合Ⅲ的玉米穗轴粗3个分离世代的主基因遗传率分别为7.0%、40.5%、17.8%,多基因遗传率分别为47.5%、0、50.4%。  相似文献   

8.
玉米穗长和穗粗的主基因-多基因混合遗传模型分析   总被引:1,自引:0,他引:1  
以PH6WC/7873(组合Ⅰ)和MX002/MS001(组合Ⅱ)的6个世代P1、P2、F1、B1、B2、F2为材料,利用植物数量性状主基因+多基因混合遗传模型,研究玉米穗长和穗粗的主基因+多基因遗传规律.结果表明,两个组合穗长的遗传都符合加性-显性-上位性多基因遗传模型.组合Ⅰ的穗粗符合加性-显性-上位性多基因遗传模型,组合Ⅱ的穗粗符合1对加性主基因+加性-显性多基因遗传模型.组合Ⅰ穗长的多基因3个分离世代的多基因遗传率分别为47.5%、51.1%和61.9%.组合Ⅱ穗长的多基因3个分离世代的多基因遗传率分别为64%、66%和56%.组合Ⅰ穗粗3个分离世代的多基因遗传率分别为57%、63%和67%.组合Ⅱ穗粗3个分离世代的主基因遗传率分别为2.5%、2.1%和47.4%,多基因遗传率分别为39.9%、45.1%和8.0%.  相似文献   

9.
航空诱变糯玉米突变体株高穗位高遗传模型   总被引:1,自引:0,他引:1  
以糯玉米组合M578×S147的P1,P2,F1,B1,B2,F2六世代为材料, 采用主基因+多基因遗传模型分析方法, 研究糯玉米的株高、穗位高的遗传, 结果表明: 株高符合两对加性-显性-上位性主基因+加性-显性多基因遗传模型. 在B1,B2,F2世代, 株高的主基因遗传率分别为12.7%,39.9%,48.4%, 多基因遗传率分别为50.1%,0%,15.3%;穗位高的遗传符合加性-显性-上位性多基因遗传模型, 在B1,B2,F2世代, 穗位高的多基因遗传率分别为32.4%,34.7%,19.8%.  相似文献   

10.
樱桃番茄果长性状的主基因-多基因混合遗传分析   总被引:2,自引:0,他引:2  
以樱桃番茄(Lycopersicon esculentum var.cerasiforme Alef)圆形白交系W403(P1)和梨形自交系W403(P2)为亲本,构建P1、F1(P1×P2)、P2、B1(F1×P2)、B2(F1×P2)和F2共6个家系世代群体,应用植物数量性状主基因+多基因混合遗传模型和经典遗传学方法对该6个家系世代群体果长进行多世代联合分析,结果表明:W403果长受一对隐性等位主基因控制,W403×W405遗传符合1对主基因+多基因遗传模型.B1、B2和F2群体主基因遗传率分别为70.20%、54.73%和48.78%,多基因遗传率分别为0,19.94%和26.67%,说明F2世代果长表现出较高的主基因遗传率,并受环境影响.对W403×W405组合果长性状的改良要以主基因为主,同时注意环境的影响.  相似文献   

11.
选用水稻直立穗型品种辽粳5号和弯曲穗型品种丰锦配制辽粳5号/丰锦组合,通过对P1、P2、F1、F2、B1和B2的颈穗弯曲度和穗角的调查,利用主基因+多基因混合遗传模型联合分离分析了粳稻穗直立性的遗传规律.结果表明.直立穗型性状的遗传无论是从颈穗弯曲度评价,还是利用穗角评价都符合两对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模式.且两对主基因间都存在互作.从F2估计,颈穗弯曲度在辽粳5号/丰锦组合的主基因遗传率为88.41%,穗角在该组合的主基因遗传率为89.04%.  相似文献   

12.
利用主基因+多基因混合遗传模型多世代联合分析方法,对万寿菊W217×W203组合的P1、P2、F1、B1、B2和F2共6个世代的叶黄素含量进行遗传分析。结果表明,色素万寿菊叶黄素含量性状最优遗传模型为两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因遗传效应为主,多基因效应为辅。主基因加性效应、显性效应和上位性效应作用很大,在B1群体中主基因遗传率为78.47%,B2群体中主基因遗传率为86.86%、多基因遗传率11.77%,F2群体中主基因遗传率为60.82%、多基因遗传率38.42%。可见,色素万寿菊叶黄素含量性状遗传变异中主基因作用大于多基因作用。  相似文献   

13.
[目的]研究 AL 型雄性不育育性恢复基因的遗传模型.[方法]通过 AL 型小麦不育系(♀)与恢复系(♂)杂交,获得杂交后代分离群体,采用植物数量性状主基因+多基因混合遗传模型分离分析法对亲本 P1 和 P2 以及杂种后代 Fl 和 F2 群体 4 个世代的育性进行分析.[结果]AL 型育性恢复基因的最适遗传模型为 E-1,育性恢复基因由两对加性-显性-上位性主基因和加性-显性多基因共同控制,主基因遗传率为 85.92;.[结论]小麦 AL 型雄性不育育性恢复基因由两对主效基因和多对微效基因控制,主效基因遗传力较高,在小麦育种中有较高的利用价值.  相似文献   

14.
烤烟耐烤性的遗传效应   总被引:2,自引:1,他引:1  
【目的】变褐时间是衡量烟叶耐烤性的一个重要指标,对其分析并阐明烤烟耐烤性遗传效应。【方法】通过在暗箱试验中统计烟叶变褐比例,算出变褐指数(BI=∑B/n)作为耐烤性量化标准,并应用主基因+多基因混合遗传模型的6世代联合分析方法,对2个杂交组合(云烟85×大白筋599和中烟100×翠碧1号)的6个世代群体(P1、P2、F1、B1、B2和F2)中部叶烤烟耐烤性状进行遗传分析。【结果】供试组合的烤烟品种耐烤性的遗传符合E-0模型,即由2对加性-显性-上位性主基因+加性-显性-上位性多基因混合控制。主基因都以负向加性效应为主,主基因遗传率都较高,其中F2群体最高;多基因遗传率都较低。【结论】基于烤烟品种耐烤性的遗传效应,重视亲本材料和高世代对耐烤性的选择是十分必要的。  相似文献   

15.
[目的]对不同种植季节下水稻株高进行遗传分析。[方法]选择株高差异大的3个亲本CB1、CB4和CB7,配制CB1×CB4和CB7×CB4组合,建立相应的P1、F1、P2、B1、B2、F2群体,将其分为中、晚2个生产季节种植,考察了株高性状。利用主基因+多基因混合遗传模型理论的Akaike信息准则(AIC)在B1、B2、F2代中鉴定影响数量性状的主基因存在与否,主基因存在时通过分离分析估计主基因和微效基因的遗传效应及所占总变异的分量。[结果]株高在所有2个季别B1、B2、F2中均符合1对加性主基因+加-显性多基因遗传模式,主基因遗传率为38.63%~78.53%,多基因遗传率为1.72%~36.04%,总基因型遗传率为45.52%~92.93%;2个遗传群体2季别下株高主基因加性效应值d分别为-4.56、-9.16、-7.19和-9.38,表明主基因加性效应会降低株高性状的表达。[结论]水稻茎粗性状的遗传率受种植季别及所配组合的影响明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号