首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
黄瓜把长主基因+多基因混合遗传分析   总被引:2,自引:0,他引:2  
马娟  司龙亭  田友 《西北农业学报》2010,19(10):161-165
以2个性状稳定的华北型黄瓜自交系为亲本,建立了6个世代联合群体(P1、P2、F1、B1、B2、F2),采用植物数量性状主基因+多基因混合遗传模型对群体的把长进行多世代联合分析。结果表明,把长遗传受2对加性-显性-上位性主基因+加性-显性多基因(E-1模型)控制,2对主基因的加性效应和显性效应均为负向效应,且存在一定的互作效应。在分离世代中,主基因的遗传率均比多基因的遗传率高,环境方差对表型方差的影响占有一定比重,即环境对把长的遗传影响较大,对于这个性状适于高代选择。  相似文献   

2.
甘蓝型油菜白花性状的主基因+多基因遗传分析   总被引:3,自引:1,他引:2  
 【目的】对甘蓝型油菜白花性状进行量化观察,研究其数量遗传特性,为育种利用提供理论依据。【方法】利用扫描仪和颜色提取软件对油菜新鲜花瓣进行处理,获得花瓣颜色特征值(CIE RGB值),选择能反映花瓣颜色差异的B值,应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对甘蓝型油菜杂交组合(HW243×HZ21-1和HW243×中油821)的P1、P2、F1、B1、B2和F2世代群体进行分析。【结果】甘蓝型油菜白花性状表现为一数量性状,其遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因作用为主,多基因的作用相对较小。两对主基因的加性、显性和上位性效应均具有较大的作用。在F2群体中主基因的遗传率为96.94%和95.83%,多基因遗传率为3.93%和2.47%;在B1群体中主基因的遗传率为54.58%和49.57%,多基因遗传率分别为35.64%和46.9%;在B2群体中主基因的遗传率为98.14%和97.67%,多基因遗传率分别为0.98%和2.06%。【结论】甘蓝型油菜白花性状具有数量性状的遗传特性,其遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因效应为主,多基因效应相对较小。主基因的遗传力较高,受环境影响较小。  相似文献   

3.
为了揭示小麦籽粒多酚氧化酶活性的遗传特点,应用植物数量性状主基因+多基因混合遗传模型对杂交组合IDO580×宁麦13号、鄂恩1号×IDO580的两套P1、F1、P2、B1、B2和F2的6个世代群体的籽粒多酚氧化酶活性进行了多世代联合分析。结果表明:两组合籽粒多酚氧化酶活性均受2对加性-显性-上位性主基因+加性-显性-上位性多基因(E-0)混合遗传的控制;在两对主基因的一阶遗传参数中,加性效应大于显性效应,但以上位性效应所占比例为最大;在二阶遗传参数中,主基因遗传率远大于多基因遗传率,以主基因遗传为主。在B1、B2和F2的3个分离世代中,以F2世代的主基因遗传率为最高,其在这两个组合中的主基因遗传率分别为80.49%和82.24%。  相似文献   

4.
【目的】明确爆裂玉米膨爆性状的遗传方式,为爆裂玉米育种和分子标记辅助选择(MAS)提供理论依据。【方法】以爆裂玉米杂交组合吉爆902(吉812×吉704)的P1、F1、P2、B1∶2、B2∶2和F2∶36个家系世代群体为材料,应用植物数量性状主基因+多基因混合遗传模型,对其膨爆性状进行多世代联合分析。【结果】爆裂玉米吉812×吉704组合的爆花率受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制遗传,该杂交组合的B1∶2、B2∶2和F2∶3群体爆花率的主基因遗传率分别为74.988 2%,78.345 1%和62.332 9%,多基因遗传率分别为3.118 9%,3.515 8%和6.115 6%。2对主基因中,加性效应为负值,显性效应为正值。第1对主基因的加性效应绝对值和显性效应值略大于或大于第2对主基因的相应效应值,2对主基因显性效应互作显著高于加性效应互作;第1对主基因加性×第2对主基因显性的互作效应值小于第2对主基因加性×第1对主基因显性的互作效应值。膨化倍数受1对加性主基因+加性-显性多基因控制,主基因遗传率较低,主基因加性效应d=-0.286 8。膨化体积受多基因控制,B1∶2、B2∶2和F2∶3家系世代多基因遗传率分别为10.49%,65.52%和28.99%,同时受环境影响较大。【结论】爆花率性状主基因遗传率较高,宜在早代对爆花率性状进行选择;膨化倍数性状主基因的遗传率较低,育种时应注重多基因的积累;膨化体积性状B2∶2家系世代多基因遗传率较高,同时受环境影响也较大,在育种时可以采用轮回选择及早代选择来提高育种效果。  相似文献   

5.
甘蓝型油菜油酸含量的主基因+多基因遗传分析   总被引:2,自引:0,他引:2  
应用植物数量性状主基因 多基因的多世代联合分析方法,对甘蓝型油菜杂交组合8087 × 8108的P1、P2、F1、B1、B2和F2 等6个世代种子油酸含量进行分析,结果表明:(1)该组合油酸含量受2对加性-显性-上位性主基因 加性-显性-上位性多基因控制遗传;(2)该杂交组合的B1、B2和F2群体油酸含量主基因遗传力为43.83 %~94.71%,多基因遗传力为0.65 %~30.85 %,表明该组合油酸含量是由两对主基因 多基因共同控制的,并以主基因遗传为主;(3)油酸含量以加性效应和上位性效应为主,显性效应比较小.  相似文献   

6.
选用吉林农业大学特用玉米研究室育成的糯玉米自交系JN1和JN8组配的P1、P2、F1、B1、B2和F2共6个世代群体为材料,运用主基因+多基因遗传模型和6个世代联合分析方法,对糯玉米支链淀粉含量进行联合分析。结果表明:糯玉米支链淀粉含量性状由2对加性-显性-上位性+加性-显性多基因混合遗传模型控制,主基因遗传率在B1、B2和F2分别为85.35%、53.06%和62.30%,微效多基因遗传率分别为0,0,13.77%,3个世代的主基因遗传率均大于多基因遗传率,糯玉米的支链淀粉含量性状主要受主效基因控制。  相似文献   

7.
为探讨黄瓜瓜长的遗传机制,以2个性状稳定的华北型黄瓜自交系(Ma1×Mj-5)为亲本,构建6个世代(P1、P2、F1、B1、B2、F2)联合群体材料,采用植物数量性状主基因+多基因混合遗传模型对群体的瓜条长度进行多世代联合分析。结果表明,黄瓜瓜条长度遗传受1对加性-显性主基因+加性-显性-上位性多基因控制,在B1、B2和F2群体中主基因遗传率分别为52.28%、18.04%、67.20%,多基因遗传率分别为9.90%、35.93%和0;环境方差占表型方差的比例分别为37.82%、46.03%、32.80%。环境因素对黄瓜瓜条长度的影响较大,该性状适宜高代选择。  相似文献   

8.
普通丝瓜果实性状的遗传分析   总被引:8,自引:1,他引:7  
应用植物数量性状主基因+多基因混合遗传模型对普通丝瓜品种50-5(黑籽短圆筒)×20-4(桂林水瓜)杂交组合6个世代群体的5个果实性状(果柄长、果长、果径、果形指数和单果质量)进行了联合分析,结果表明:50-5 ×20-4组合果柄长的遗传符合2对加性-显性-上位性主基因+加性-显性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.49%、70.53%和82.07%,环境方差占总表型方差的比例分别是31.50%、29.47%和17.92%;果长遗传符合2对加性+显性+上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.85%、84.55%和81.68%,环境方差占总表型方差的比例分别是31.15%、15.44%和18.32%;果径遗传符合2对加性-显性-上位陛主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,73.06%和73.82%.环境方差占总表型方差的比例分别是34.62%、26.94%和26.13%;果形指数遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,62.80%和78.89%,环境方差占总表型方筹的比例分别足34.76%,37.19%和21.11%;单果质量遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基凶遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为70.71%、85.35%和89.64%,环境方差占与总表型方差的比例分别是29.29%、14.64%和10.36%.果柄长性状的主基因遗传率较小,宜采用个体选择法(基因型选择法),宜在分离晚世代进行选择;果长、果径、果形指数和单果质量性状的主基因遗传率较大,宜采取混合选择法(表型选择法),可在分离早世代进行选择;且宜对5个果实性状进行综合选择.5个果实性状的环境方差占总表型方差的比例均较高,故在育种过程中要尽量采取措施以减少环境影响.  相似文献   

9.
爆裂玉米蛋白质含量的主基因+多基因遗传效应分析   总被引:1,自引:0,他引:1  
应用植物数量性状主基因+多基因混合遗传模型,以爆裂玉米杂交组合吉爆902(吉812×吉704)的P1、F1、P2、B1:2、B2∶2和F2:3 6个家系世代群体为材料,对爆裂玉米蛋白质含量进行多世代联合分析,结果表明,爆裂玉米蛋白质含量受1对完全显性主基因+加性-显性多基因控制遗传.主基因存在显性效应,显性效应为负值(...  相似文献   

10.
赵刚  吴子恺  王兵伟 《安徽农业科学》2007,35(17):5096-5098,5134
以2个微胚乳超高油玉米组合的P1、F1、P2、B1、B2和F2 6个世代为材料,采用数量性状的主基因+多基因混合遗传模型多世代联合分析法,研究了株高和穗位高的遗传。对2个不同组合的研究结果表明:组合I株高的遗传符合加性-显性-上位性多基因遗传模型;穗位高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为27.27%、37.36%和58.59%。组合II株高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为18.41%、1.03%和12.61%;穗位高的遗传符合加性-显性-上位性多基因遗传模型。  相似文献   

11.
[目的]对不同种植季节下水稻株高进行遗传分析。[方法]选择株高差异大的3个亲本CB1、CB4和CB7,配制CB1×CB4和CB7×CB4组合,建立相应的P1、F1、P2、B1、B2、F2群体,将其分为中、晚2个生产季节种植,考察了株高性状。利用主基因+多基因混合遗传模型理论的Akaike信息准则(AIC)在B1、B2、F2代中鉴定影响数量性状的主基因存在与否,主基因存在时通过分离分析估计主基因和微效基因的遗传效应及所占总变异的分量。[结果]株高在所有2个季别B1、B2、F2中均符合1对加性主基因+加-显性多基因遗传模式,主基因遗传率为38.63%~78.53%,多基因遗传率为1.72%~36.04%,总基因型遗传率为45.52%~92.93%;2个遗传群体2季别下株高主基因加性效应值d分别为-4.56、-9.16、-7.19和-9.38,表明主基因加性效应会降低株高性状的表达。[结论]水稻茎粗性状的遗传率受种植季别及所配组合的影响明显。  相似文献   

12.
[目的]对不同种植季节下水稻株高进行遗传分析。[方法]选择株高差异大的3个亲本CB1、CB4和CB7,配制CB1×CB4和CB7×CB4组合,建立相应的P1、F1、P2、B1、B2、F2群体,将其分为中、晚2个生产季节种植,考察其株高性状。利用主基因+多基因混合遗传模型理论的Akaike信息准则(AIC)在B1、B2、F2代中鉴定影响数量性状的主基因存在与否,主基因存在时通过分离分析估计主基因和微效基因的遗传效应及所占总变异的分量。[结果]株高在所有2个季别B1、B2、F2中均符合1对加性主基因+加-显性多基因遗传模式,主基因遗传率为38.63%~78.53%,多基因遗传率为1.72%~36.04%,总基因型遗传率为45.52%~92.93%;2个遗传群体2个季别下株高主基因加性效应值d分别为-4.56、-9.16、-7.19和-9.38,表明主基因加性效应会降低株高性状的表达。[结论]水稻茎粗性状的遗传率受种植季别及所配组合的影响明显。  相似文献   

13.
选择单穗质量和千粒质量较小的亲本CB1和CB7与较大的亲本CB4配制CB1×CB4和CB7×CB4组合,建立了相应的P1、F1、P2、B1、B2、F2群体,将其分为中、晚2个生产季节种植,考察了穗质量与粒质量性状.利用主基因+多基因混合遗传模型理论的Akaike信息准则(AIC)在B1、B2、F2代中鉴定影响数量性状的主基因存在与否,主基因存在时通过分离分析估计主基因和微效基因的遗传效应及所占总变异的分量.结果表明:单穗质量在所有B1、B2、F2中均符合1对主基因+多基因模型模式;主基因遗传率为58.06%~75.60%,多基因遗传率为5.03%~25.46%,总基因型遗传率为68.07%~96.68%;同一遗传群体不同种植季节下主基因遗传率无明显差异,但同一季节下CB7/CB4组合群体主基因遗传率均比CB1/CB4组合群体大,表明单穗质量遗传分析时应考虑到构建遗传群体的亲本选择问题;千粒质量在所有B1、B2、F2中均符合1对加性主基因+加-显性多基因模型模式,其中CB1/CB4组合群体中季主基因遗传率最高,为60.06%~69.38%;CB1/CB4组合群体中季多基因遗传率最小,为10.73%~23.21%;CB1/CB4组合群体中季总基因遗传率为71.48%~83.55%;CB1/CB4组合群体中季一阶参数d值最小,说明粒质量遗传研究时需要考虑构建遗传群体的亲本及种植季节的选择问题.  相似文献   

14.
利用半矮生水稻品种沈稻4号(P_1)和中高秆晶系沈农637(P_2)及其杂交后代F_1、F_2群体,运用主基因+多基因混合遗传模型对株高的遗传进行了联合分离分析.结果表明:株高性状受两对加性-显性-上位性主基因和加性-显性-上位性多基因共同控制.两对主基因的加性效应近似相等,分别为-4.742和-4.741,主基因遗传力为47.13%,多基因遗传力为41.33%.  相似文献   

15.
亚麻酸是胡麻脂肪酸组成的主要成分,也是胡麻品质改良的主要目标。为深入研究胡麻亚麻酸含量的遗传规律,基于6个世代遗传群体(P_1、F_1、P_2、B_(1:2)、B_(2:2)、F_(2:3)),采用数量性状主基因+多基因混合遗传模型分析胡麻亚麻酸含量的遗传模式。结果表明,胡麻亚麻酸含量符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因的加性效应在亚麻酸含量的遗传控制中具有重要贡献;B_(1:2)、B_(2:2)和F_(2:3)世代主基因遗传率分别为33.59%、46.95%和53.92%,多基因遗传率分别为25.60%、19.35%和14.43%;通过群体品质分析,筛选出高亚麻酸材料15份,高含油量材料7份,这些优异材料为胡麻品质育种奠定了良好的基础。  相似文献   

16.
烤烟耐烤性的遗传效应   总被引:2,自引:1,他引:1  
【目的】变褐时间是衡量烟叶耐烤性的一个重要指标,对其分析并阐明烤烟耐烤性遗传效应。【方法】通过在暗箱试验中统计烟叶变褐比例,算出变褐指数(BI=∑B/n)作为耐烤性量化标准,并应用主基因+多基因混合遗传模型的6世代联合分析方法,对2个杂交组合(云烟85×大白筋599和中烟100×翠碧1号)的6个世代群体(P1、P2、F1、B1、B2和F2)中部叶烤烟耐烤性状进行遗传分析。【结果】供试组合的烤烟品种耐烤性的遗传符合E-0模型,即由2对加性-显性-上位性主基因+加性-显性-上位性多基因混合控制。主基因都以负向加性效应为主,主基因遗传率都较高,其中F2群体最高;多基因遗传率都较低。【结论】基于烤烟品种耐烤性的遗传效应,重视亲本材料和高世代对耐烤性的选择是十分必要的。  相似文献   

17.
甜高粱茎秆含糖量相关性状的遗传分析   总被引:2,自引:0,他引:2  
为探讨甜高粱茎秆含糖量相关数量性状的遗传基础,以粒用高粱品系LR625(P1)和甜高粱品系Rio(P2)为亲本杂交构建的一组包含4个世代的遗传群体(P1、P2、F1、F2:3),采用数量性状主基因+多基因混合遗传模型,对茎秆含糖量(混合锤度)、出汁率和茎秆鲜重性状进行了遗传分析。结果表明:茎秆含糖量符合E-1模型,性状是由两对主基因+多基因遗传模型控制的,主基因作用方式包括加性、显性和上位性3种效应。其中多基因效应高于主基因效应,遗传率分别为48.89%和39.52%。环境效应较小,占总表型方差的11.59%;出汁率性状符合B-5模型,即性状表现受2对主基因遗传控制,基因作用方式为完全显性作用。遗传力决定了出汁率表型变异的75.3%,环境因素影响24.7%,该性状的表现受遗传因素和环境因素共同影响;茎秆鲜重符合E-2模型即两对加性-显性主基因+加性-显性多基因遗传模型,无上位性效应,性状的主基因效应大于多基因效应,主基因遗传率为58.85%,多基因遗传率为17.63%,环境因素影响占23.52%。  相似文献   

18.
高产陆地棉百棉1号产量性状的主基因+多基因遗传分析   总被引:2,自引:0,他引:2  
利用高产陆地棉百棉1号为核心亲本分别构建了2个组合的P1、P2、F1、B1、B2和F2群体,应用主基因+多基因遗传模型,研究了陆地棉产量性状的遗传规律。结果表明,2个组合除籽棉产量的最适模型均为D-4(1对负向完全显性主基因+加性-显性多基因模型)外,其他性状最适模型不同,衣分和单株铃数的主基因数目2个组合相同。各产量性状在2个组合中的主基因+多基因遗传方式不尽一致,其中,皮棉产量以主基因遗传为主或以主基因、多基因遗传并重;籽棉产量和籽指以多基因遗传为主或以主基因、多基因遗传并重;衣分、单株铃数、铃重和衣指均以多基因遗传为主;单株生殖量均以主基因遗传为主。2个组合主基因遗传率均为皮棉产量最高,籽棉产量次之,其他性状大小顺序变化差异不大;各产量性状的多基因遗传率在2个组合中的大小顺序变化差异较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号