首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
玉米穗位高的主基因+多基因的遗传模型分析   总被引:2,自引:0,他引:2  
为了探索玉米穗位高的遗传规律,以玉米杂交组合PH4CV×昌7-2(组合I)和PH6WC×7873(组合Ⅱ)的六世代(P1,P2,F1,B1,B2,F2)为材料,在春播和夏播环境下,研究了玉米穗位高的主基因+多基因的遗传规律。结果表明:春播条件下,组合Ⅰ的穗位高符合E-3模型,组合Ⅱ符合E-1模型;夏播环境下,组合I的穗位高符合D-3模型,组合Ⅱ符合C-0模型。结论:春播环境下,组合Ⅰ和组合Ⅱ的穗位高均以主基因遗传为主,可以采用单交重组或简单回交转育方法进行改良;夏播环境下,组合Ⅰ和组合Ⅱ的穗位高均表现为多基因遗传,可以采用聚合回交或轮回选择方法来累积增效基因,提高选择效率。  相似文献   

2.
玉米穗三叶叶面积主基因+多基因遗传模型分析   总被引:2,自引:1,他引:1  
以玉米组合PH6WC/7873的六世代P1、P2、F1、B1、B2、F2为材料,在春播和夏播条件下,研究了玉米穗三叶叶面积的主基因+多基因遗传规律,旨在为玉米株型、高光效育种提供理论基础。结果表明,春播和夏播环境下,穗三叶叶面积均检测到主基因,穗三叶叶面积在春播环境下符合D-2模型,夏播环境下符合E-1模型。春播环境下,穗三叶叶面积的多基因遗传率在B1、B2、F2世代分别为87.22%、83.64%、49.38%,以多基因遗传为主。夏播环境下,穗三叶叶面积在F2世代存在较大的主基因遗传率(75.82%),以主基因遗传为主。由此可见,叶面积在夏播和春播环境下,受主基因和多基因的控制表现并不一致,因此要注意在不同的环境下,选择不同的方法对叶面积进行改良。  相似文献   

3.
玉米叶夹角、叶向值主基因+多基因遗传模型分析   总被引:6,自引:0,他引:6  
为探讨玉米叶夹角、叶向值的遗传规律,以7873/PH6WC的六世代P1、P2、F1、B1、B2、F2为材料,在春播和夏播环境下,田间分穗上、穗下调查叶夹角和叶向值,对其主基因+多基因遗传模型进行分析。结果表明,在春播和夏播环境下,穗上叶夹角和穗上叶向值最适模型均为E-1模型,存在2对主基因。穗下叶向值在春播和夏播环境中都符合D-2模型,存在1对主基因。穗下叶夹角在春播环境中符合D-2模型,但在夏播环境中没有检测到主基因,属于多基因遗传模型(即C-0模型)。夏播环境中,穗上叶夹角、叶向值、穗下叶夹角均检测到较高的主基因贡献率。夏播环境中,穗上叶夹角F2世代的主基因遗传率为85.60%,穗上叶向值主基因遗传率在B2和F2世代分别为88.92%、88.69%,穗下叶向值在B2世代的主基因遗传率为82.43%。但春播环境中,只有穗上叶向值在F2世代有较高的主基因遗传率(90.27%)。玉米叶夹角和叶向值存在较大的主基因遗传率,可以采用单交重组或简单回交转育的方法进行遗传改良。  相似文献   

4.
为了对玉米穗上叶间距进行遗传改良,以玉米PH6WC与7873杂交组合的6个世代P1、P2、F1、B1、B2、F2为材料,在春播和夏播条件下,研究了玉米穗上叶间距的主基因+多基因遗传规律。在春播条件下,玉米穗上叶间距的最适模型为E-0模型,检测到2对主基因,以多基因遗传为主。在夏播条件下,玉米穗上叶间距的最适模型为E-1模型,检测到2对主基因,以多基因遗传为主。因此,可以采用轮回选择和聚合回交的方法积累微效基因,对玉米穗上叶间距进行遗传改良。  相似文献   

5.
利用植物数量性状主基因+多基因混合遗传模型,以玉米杂交组合济533/PH6 WC (组合Ⅰ)、济533/H5818(组合Ⅱ)和2394/ PH6WC (组合Ⅲ)的6个世代(P1、P2、F1、B1、B2、F2)为材料,研究了玉米穗轴粗的遗传规律。结果表明,组合Ⅰ的穗轴粗符合E-5模型,由2对完全显性主基因+加性-显性多基因控制遗传,受主基因和多基因共同影响;组合Ⅱ符合A-4模型,即1对负向完全显性主基因模型,在B1世代的选择效率最高;组合Ⅲ符合D-4模型,受1对负向完全显性主基因+加性-显性多基因控制,在B2世代没有检测到多基因的存在。组合Ⅰ玉米穗轴粗3个分离世代的主基因遗传率分别为6.0%、42.5%、75.0%,多基因遗传率分别为71.4%、37.5%、5.0%。组合Ⅱ玉米穗轴粗3个分离世代的主基因遗传率分别为63.0%、54.6%、54.2%。组合Ⅲ的玉米穗轴粗3个分离世代的主基因遗传率分别为7.0%、40.5%、17.8%,多基因遗传率分别为47.5%、0、50.4%。  相似文献   

6.
玉米穗长和穗粗的主基因-多基因混合遗传模型分析   总被引:1,自引:0,他引:1  
以PH6WC/7873(组合Ⅰ)和MX002/MS001(组合Ⅱ)的6个世代P1、P2、F1、B1、B2、F2为材料,利用植物数量性状主基因+多基因混合遗传模型,研究玉米穗长和穗粗的主基因+多基因遗传规律.结果表明,两个组合穗长的遗传都符合加性-显性-上位性多基因遗传模型.组合Ⅰ的穗粗符合加性-显性-上位性多基因遗传模型,组合Ⅱ的穗粗符合1对加性主基因+加性-显性多基因遗传模型.组合Ⅰ穗长的多基因3个分离世代的多基因遗传率分别为47.5%、51.1%和61.9%.组合Ⅱ穗长的多基因3个分离世代的多基因遗传率分别为64%、66%和56%.组合Ⅰ穗粗3个分离世代的多基因遗传率分别为57%、63%和67%.组合Ⅱ穗粗3个分离世代的主基因遗传率分别为2.5%、2.1%和47.4%,多基因遗传率分别为39.9%、45.1%和8.0%.  相似文献   

7.
玉米行粒数主基因+多基因混合遗传模型分析   总被引:2,自引:0,他引:2  
为了对玉米行粒数进行遗传改良,以PH6WC/7873(组合Ⅰ)和MX002/MS001(组合Ⅱ)的6个世代(P1、P2、F1、B1、B2、F2)为材料,利用植物数量性状主基因+多基因混合遗传模型,研究了玉米行粒数的主基因+多基因遗传规律。结果表明,组合Ⅰ的行粒数符合加性-显性-上位性多基因遗传模型(C-0模型)。组合Ⅱ的行粒数符合2对加性主基因+加性-显性多基因遗传模型(E-3模型)。组合Ⅰ3个分离世代的行粒数多基因遗传率分别为75.13%、74.51%、82.59%。组合Ⅱ3个分离世代的行粒数多基因遗传率分别为73.50%、73.20%、72.40%;主基因遗传率分别为6.40%、8.90%、9.10%。以多基因遗传为主,应采用轮回选择和聚合回交的方法积累微效基因,对玉米行粒数进行遗传改良。  相似文献   

8.
玉米籽粒淀粉含量主基因+多基因混合遗传模型分析   总被引:1,自引:0,他引:1  
以3个玉米组合济533/PH6WC(组合Ⅰ)、济533/H5818(组合Ⅱ)、2394/PH6WC(组合Ⅲ)的P1、P2、F1、F2、B1、B26世代群体为材料,利用植物数量性状主基因+多基因混合遗传模型,对玉米淀粉含量进行6世代联合遗传分析。结果表明,组合Ⅰ和组合Ⅲ淀粉含量均为E-1模型(2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型),2个组合均表现为以主基因遗传为主,均在F2代主基因+多基因遗传率较高;组合Ⅱ淀粉含量为D-2模型(1对加性主基因+加性-显性多基因模型),在B1世代没有检测到多基因,B2和F2代以多基因遗传为主,在F2代主基因+多基因遗传率较高。  相似文献   

9.
甘蓝型油菜含油量的主基因+多基因遗传分析   总被引:4,自引:2,他引:2  
应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,研究了甘蓝型油菜1064-3×H105(组合Ⅰ)和1064-4×H134(组合 Ⅱ)的P1、P2、F1、B1、B2和F2 6个世代含油量的遗传.含油量次数分布显示2个组合的B1、B2和F2群体均呈连续分布且显示多峰,呈明显的主基因+多基因遗传的特征.遗传分析结果表明:2个组合的最佳遗传模型均为D-2模型,即一对加性主基因+加-显性多基因混合模型.2个组合中,广义遗传率为47.87%~65.13%,平均为53.70%;而环境变异占表型变异的34.87%~52.13%,平均为46.30%,可见油菜含油量性状受基因型和环境双重影响.2个组合中,多基因遗传率为15.22%~60.41%,平均为45.32%;而主基因遗传率为2.26%~33.10%,平均为8.38%,表明含油量的遗传体系中,微效多基因的遗传贡献占主要部分,高含油量育种应在高世代进行选择.  相似文献   

10.
陈凤真 《安徽农业科学》2011,39(5):2620-2622
[目的]为西葫芦果形指数育种提供依据。[方法]选用蔓生和矮生的西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1,F1,P2,B1,B2和F26个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对6个世代群体果形指数进行多世代联合分析。[结果]2个组合的西葫芦果形指数遗传均为1对加性主基因+加性-显性多基因(D-2)遗传模型,以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小。[结论]西葫芦果形指数育种宜早代选择。  相似文献   

11.
[目的]为西葫芦果长育种提供依据。[方法]选用蔓生和矮生的西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1、P2、B1、B2和F26个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对该6个世代群体果长进行多世代联合分析。[结果]2个组合的西葫芦的果长遗传为1对加性主基因+加性-显性多基因(D-2)遗传模型,组合1以加性效应为主,而组合2以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小。[结论]西葫芦果长育种宜早代选择。  相似文献   

12.
[目的]为西葫芦果长育种提供依据。[方法]选用蔓生和矮生的西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1、P2、B1、B2和F2 6个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对该6个世代群体果长进行多世代联合分析。[结果]2个组合的西葫芦的果长遗传为1对加性主基因+加性-显性多基因(D-2)遗传模型,组合1以加性效应为主,而组合2以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小。[结论]西葫芦果长育种宜早代选择。  相似文献   

13.
[目的]为西葫芦果径育种提供依据。[方法]选用西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1,P2,BC1,BC2和F26个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对6个世代群体果径进行了多世代联合分析。[结果]2个组合的西葫芦的果径性状遗传为加性-显性-上位性2对主基因(B-1)遗传模型;2个组合F2的主基因遗传率较高,环境影响相对较小。[结论]西葫芦果径育种宜早代选择。  相似文献   

14.
周天华 《安徽农业科学》2011,39(25):15213-15214,15217
[目的]分析西葫芦果肉厚遗传特性,指导西葫芦果肉厚育种实践。[方法]通过西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建6个世代群体,应用植物数量性状主基因-多基因混合遗传分析方法,分析不同组合西葫芦果肉厚的遗传表现。[结果]2个组合的西葫芦的果肉厚性状遗传为一对加性主基因+加性-显性多基因(D-2)遗传模型;2个组合以多基因的显性效应为主;F2的基因遗传率较低,环境影响较高。[结论]西葫芦果肉厚育种宜采用个体选择法,可在晚世代选择。  相似文献   

15.
张洪权 《农学学报》2015,5(10):27-32
为了全面了解黑龙江省早熟玉米自交系间遗传关系,并合理准确地划分杂种优势群和构建杂种优势模式。通过采用黑龙江省5 个主要早熟玉米优良自交系按双列杂交设计,研究配合力的结果表明:5 个自交系以及配制的组合在7 个农艺性状上都存在极显著差异。杂交组合遗传参数分析:在超亲优势率上,以合344 为母本的杂交组合的穗粗性状的超亲优势率均为正值,表现出较强的杂种优势,在中亲优势率上,以合344 为母本的组合的优势率为正值,通过分析表明合344 同其他类群自交系之间均表现出较高配合力。其中合344×扎461 与合344×南5 组合的单株产量的中亲优势率均超过10%,增产效果明显。黑龙江早熟玉米杂种优势模式,Lancaster类群×塘四平头类群杂优模式:Lancaster类群×Reid类群杂优模式,Lancaster类群×外杂选类群杂优模式。其结果对黑龙江省早熟玉米有效利用提供理论依据和实践。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号