首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
植物WRKY转录因子及其生物学功能研究进展   总被引:2,自引:0,他引:2  
WRKY转录因子是一个大的植物转录因子家族。该转录因子家族最显著的特征是家族各成员至少包含一个WRKY结构域,该结构域的N-端有一个高度保守的WRKYGQK基序,C-端为一个锌指类似结构域(zinc-finger-like motif),一般组成为C-X_(4-5)-C-X_(22-23)-H-X-H。WRKY转录因子通过WRKY结构域与下游目标基因启动子区的W-box进行特异性结合从而调控目标基因的表达。研究表明,WRKY蛋白除了广泛参与植物种子萌发与休眠、叶片衰老、代谢、激素信号转导外,还参与生物和非生物胁迫等生理生化反应过程的调控等新功能。综述了国内外有关WRKY转录因子的研究进展,讨论了其在植物生长发育以及应对生物和非生物胁迫过程中发挥的调控功能,以期为全面研究WRKY转录因子家族的结构和功能提供新的观点。  相似文献   

2.
植物经常面临大量的逆境胁迫,这些逆境胁迫会对植物造成一些不利影响。为了应对这些胁迫,植物通过一个严格调控的网络机制来迅速作出响应。WRKY家族是一类广泛参与响应胁迫的转录因子家族,作为激活因子或者抑制因子来参与转录组的重新编程。综述了逆境胁迫中WRKY基因在植物抗性机制中扮演的"角色"及其发挥的作用。  相似文献   

3.
转录因子在植物的生长发育及其对外界环境的反应中起着重要的调控作用。典型的转录因子含有DNA结合域,转录调控域,寡聚化位点和核定位信号,转录因子通过这些结构域与相应的顺式元件相互作用调控基因的表达。WRKY转录因子是植物中特有的N-端含有WRKYGQK高度保守氨基酸序列的一种转录调控因子,它能够与(T)(T)TGAC(C/T)序列(W-box)发生特异性结合,从而调节启动子中含W-box元件的调节基因和/或功能基因的表达,参与植物的各种生理生化反应。文章主要论述近年来植物WRKY转录因子的相关研究进展。  相似文献   

4.
WRKY转录因子是近20多年来发现的植物特有的最大的转录因子家族之一。WRKY的名称来源于基因中最显著的氨基酸序列特征WRKY结构域。WRKY结构域是一个高度保守的区域,由60个氨基酸组成,在其N端有1个保守的七肽段WRKYGQK,然后是1个分子式为C2H2或C2HC的锌指基序。目的基因中保守的WRKY结构域同源结合位点称为W box(C/TTGACT/C),几乎所有WRKY转录因子都优先结合该位点。越来越多的研究证实,WRKY转录因子在植物生长发育过程中扮演着重要角色。本文简要介绍了WRKY转录因子家族的分子结构特征及分类,并综述了番茄WRKY转录因子在响应生物与非生物逆境胁迫、调控生长发育、激素信号转导等方面的生物学功能,以期为进一步研究番茄WRKY基因家族的调控机制提供理论基础与研究思路。  相似文献   

5.
综述了WRKY转录因子的发现、结构特点、表达特点以及WRKY转录因子在各种植物防卫反应中的调控作用,指出WRKY转录因子是一类参与多种胁迫反应的诱导型转录因子,其N-端具有WRKYGQK高度保守的氨基酸序列,能够与基因启动子中的(T)(T)TGAC(C/T)序列(W盒)发生特异性结合,从而调节基因的表达,参与植物的各种生长和发育过程。  相似文献   

6.
WRKY 转录因子是植物中特有的一类反式作用因子。WRKY 基因家族成员众多,是植物中最大的转录因子家族之一。目前,已在多种园艺植物中对该家族进行了全基因组鉴定。大量研究表明,WRKY 转录因子参与了植物中多种生物学过程,如营养剥夺、胚胎发生、种子发育、毛状体发育、叶片衰老及其他发育和激素调节的过程,是许多调控信号网络的重要组成部分。WRKY 转录因子还可参与植物适应各种逆境的转录调控,已被证明其在生物应激反应中发挥重要作用并参与植物的防御机制,其在植物防御病菌、病毒和虫害调控过程中的重要作用正被逐步揭示。此外,WRKY 转录因子在植物响应环境中非生物胁迫方面的作用也被不断解析,其可参与调控植物对干旱、温度、盐及渗透的响应,并在此过程中发挥正向或负向调节作用。本文基于近年来的相关研究成果,重点综述了 WRKY 转录因子在园艺植物生长发育、胁迫响应和代谢合成方面所发挥的作用和调控机理,进一步明确园艺植物 WRKY 转录因子的重要生物学功能,阐明 WRKY 转录因子介导的转录调控网络,为园艺植物优良性状相关的遗传资源挖掘和分子育种提供理论支撑。  相似文献   

7.
植物WRKY转录因子的分子生物学功能   总被引:1,自引:0,他引:1  
WRKY转录因子是近年来在植物中发现的N端含有WRKYGQK高度保守氨基酸序列的转录因子,主要包括三个大类。WRKY通过调节启动子中含W-box元件的调节基因或功能基因的表达,参与了植物的各种防卫反应以及植物的衰老,并调节植物的生长发育。论述了植物WRKY转录因子的分子生物学功能。  相似文献   

8.
WRKY在植物次生代谢物合成中的作用及研究进展   总被引:1,自引:0,他引:1  
WRKY蛋白是被广泛研究的一类DNA特异结合转录因子,其通过结合植物次生代谢生物合成途径关键酶基因的启动子元件来调节代谢过程.次生代谢物种类繁多,结构多样,在植物中广泛存在,在自然界中起重要作用,具有较高的应用价值.综述了WRKY转录因子的起源、进化、结构,及其对萜类、黄酮类、生物碱等次生代谢物生物合成的调控,为植物次生代谢物的进一步开发利用提供参考,同时也为植物次生代谢途径的研究提供依据.  相似文献   

9.
逆境条件通常影响植物生长发育,间接或直接导致作物减产甚至植物死亡。HD-ZIP转录因子则参与植物对不利环境条件的响应。Homeodomain-Leucine Zipper(HD-ZIP)转录因子是植物中特有的一类转录因子,属于同源异形盒(homeobox, HB)蛋白家族,由高度保守的同源异形结构域(Homeodomain)和亮氨酸拉链结构域(ZIP)紧密连接而成。通过LZ结构域介导的蛋白二聚体的形成使HD结构域与靶DNA结合,调控靶基因的表达。HD-ZIP转录因子不仅对植物生长发育发挥重要调控作用,并且对逆境抵抗中起关键作用。本文基于近年来HD-ZIP转录因子的最新研究成果,着重归纳HD-ZIP四个亚家族(Ⅰ-Ⅳ)对不同病菌和非生物胁迫例如干旱、高盐、极端温度、弱光、机械损伤、重金属胁迫做出的响应机制,以期揭示HD-ZIP转录因子如何通过整合激素和环境信号来改良植物生长特性的内在分子机制,从而为提升植物抗逆性奠定基础。  相似文献   

10.
[目的]WRKY转录因子是植物特有的一类转录因子,广泛参与植物的生长发育、生物及非生物胁迫响应。克隆和鉴定不结球白菜共同响应ABA和低温的WRKY基因,对研究不结球白菜抗逆分子机制和改良其抗逆性具有重要意义。[方法]采用电子克隆的方法在NCBI数据库中进行不结球白菜WRKY18基因全长拼接,然后在不结球白菜‘苏州青’中,克隆到1个与低温及ABA响应相关的WRKY基因,通过生物信息学手段和实时定量RT-PCR(qRT-PCR)技术分析了该基因的序列结构特征及其在低温和ABA处理下的表达变化。[结果]该基因全长为1080bp,含有978bp的开放阅读框,编码326个氨基酸,与油菜及拟南芥的WRKY18直系同源,氨基酸序列相似性分别为87%和73%,命名为BcWRKY18。序列分析表明,该编码蛋白为核蛋白,不含跨膜区,无信号钛,具有WRKYGQK基序(motif)约60个氨基酸残基的WRKY保守结构域,为WRKY转录因子家族成员。系统聚类分析指出了BcWRKY18蛋白的保守性及其在开花植物中的进化关系;序列结构和同源建模分析指出了BcWRKY18蛋白的保守结构域、蛋白质的二级及三级结构分布模型;qRT-PCR检测了BcWRKY18基因在ABA和低温胁迫下的表达,表明低温和ABA都能诱导BcWRKY18基因表达,其表达模式都存在相似的过程,且BcWRKY18基因对ABA的响应比对低温的响应更快、更明显。[结论]从不结球白菜中克隆获得1个新的WRKY类转录因子基因BcWRKY18,基因表达分析发现BcWRKY18可能存在对ABA和低温的共响应及自身反馈调控。  相似文献   

11.
WRKY蛋白在植物胁迫响应和应答过程中发挥着重要作用。秋茄生长环境恶劣,生存压力使其进化出极强的胁迫响应能力,对各种胁迫的响应是决定秋茄逆境生存的重要因素。目前,关于秋茄WRKY基因家族的研究报道较少。对秋茄WRKY基因家族进行全面的研究,共鉴定出71个KcWRKY基因。结构域分析和进化分析结果表明,KcWRKY基因高度保守且分为3组。保守基序分析结果表明,同组的KcWRKY基因基序分布一致而组间差异显著,说明同组的KcWRKY基因可能具有相似的功能。染色体定位和复制关系表明,71个KcWRKY基因不均匀分布在秋茄基因组18条染色体上,存在4对串联重复基因和大量片段复制基因,这些基因可能在秋茄胁迫响应进化历程中发挥了重要作用。根据KcWRKY基因在不同器官的表达模式推测KcWRKY71参与调节编码线粒体和叶绿体蛋白的胁迫响应,KcWRKY66参与秋茄叶和果衰老的调节。本研究揭示了秋茄WRKY转录因子的基本结构与性质,研究结果能为后续深入研究秋茄WRKY转录因子的功能奠定基础。  相似文献   

12.
WRKY蛋白是一类植物所特有的转录因子超家族,每个成员都含有一个高度保守WRKY结构域,能够与(T)(T)TGAC(C/T)序列(W盒)发生特异结合,参与多种与植物胁迫应答、生长发育、物质代谢等有关的重要生理过程。  相似文献   

13.
转录因子在调节植物生长发育以及植物对外界环境胁迫的响应方面起着重要作用。DREB转录因子含有一个保守的AP2/EREBP结构域,参与外界环境胁迫的应答响应,通过结合DRE(Dehydration responsive element)顺式作用元件,调控下游胁迫相关基因的转录表达,改良植物的抗性。就DREB转录因子的结构特点、表达调控以及提高转基因植株胁迫耐受性的最新研究成果进行了评述。  相似文献   

14.
WRKY转录因子作为参与生物或非生物胁迫应答的重要基因家族,在植物逆境胁迫的响应过程中起着重要作用。花花柴作为沙漠植物,具有极强的广谱抗逆性,发掘并应用花花柴的抗逆基因资源对研究植物逆境生物学及抗逆性分子育种具有重要意义。本研究通过对沙漠植物花花柴的转录组学分析,筛选出与高温胁迫相关的15个差异表达的WRKY基因。并将这15个基因与拟南芥、水稻的WRKY基因构建系统发育树,通过对同亚族同源性较高的基因功能及其顺式作用元件的功能预测,推测花花柴WRKY基因可能参与了极端温度、干旱、高盐、病原菌等逆境胁迫响应,并对与高温胁迫响应相关的2个花花柴WRKY基因进行表达模式分析。该结果将为荒漠植物及其基因资源的发掘利用提供一定的参考价值。  相似文献   

15.
WRKY基因是植物特有的转录因子基因,能够调控植物的生长发育和胁迫响应。为了鉴定蚕豆WRKY基因家族成员,揭示其进化关系并挖掘与盐胁迫相关的候选WRKY基因,本研究在完成蚕豆全长转录组测序(9个样品)和二代转录组测序(27个样品)的基础上,利用生物信息学方法对WRKY转录因子基因进行鉴定与分析,并通过拟南芥同源基因比对挖掘盐胁迫相关的候选VfWRKY基因。结果表明,蚕豆全长转录组测序共获得53.84 Gb数据量,通过比对和校正最终获得58 885条转录本序列信息;基于蚕豆全长转录组共鉴定出113个WRKY家族成员,氨基酸数目为153~737 aa,等电点为4.84~9.87,113个WRKY家族蛋白质全部定位于细胞核中;根据拟南芥WRKY家族系统发育特征,VfWRKY基因家族可分为3组,分别为group 1(38个VfWRKY)、group 2(61个VfWRKY)、group 3(14个VfWRKY);Motif 1和Motif 3是VfWRKY基因家族的特征基序,并对应WRKY保守结构域,在进化过程中较为保守;VfWRKY基因家族主要富集在植物MAPK信号通路、植物与病原菌相互作用...  相似文献   

16.
[目的]干旱是影响作物生长发育及产量的重要因素。植物WRKY转录因子超家族在植物的生长发育、响应逆境胁迫过程中发挥着重要作用。因此,克隆分析玉米WRKY转录因子的序列特征和功能,为研究玉米耐逆分子育种提供重要抗逆基因资源。[方法]本研究以玉米自交系B73为材料提取玉米总RNA反转录cDNA,克隆、分离获得ZmWRKY41基因编码区全长序列。DNAMAN比对发现,ZmWRKY41蛋白具有保守结构域WRKYGQK和锌指结构域(zinc-finger motif)C2HC,属于第三类WRKY转录因子家族。利用生物信息学方法研究该基因蛋白质理化性质,并对其进行结构分析预测。利用PlantCARE在线工具预测、鉴定ZmWRKY41基因启动子区是否含有响应非生物胁迫的顺式作用元件。将ZmWRKY41基因编码区全长序列构建pGBKT7诱饵载体上,与GAL4DNA结合域融合,转化酵母菌株AH109验证ZmWRKY41转录因子转录激活活性。[结果]玉米ZmWRKY41基因编码区全长774bp,含有长度分别为221bp、126bp、427bp 3个外显子,共编码257个氨基酸序列。蛋白质高级结构预测发现,ZmWRKY41蛋白包含2个α-螺旋结构和5个β-折叠结构,不含跨膜结构和信号肽。ZmWRKY41基因启动子元件预测发现,该启动子中含有干旱胁迫(CGGTCA)、热胁迫(AAAAAATTTC)、低温胁迫(CCGAAA)等非生物逆境胁迫响应相关的顺式作用元件。酵母转录激活验证实验显示,将含有pGBKT7-ZmWRKY41融合表达载体转化酵母AH109菌株,能在单缺、三缺培养基正常生长且能使α-半乳糖苷酶底物分解显蓝色,表明ZmWRKY41基因具有转录激活活性。[结论]玉米ZmWRKY41基因是WRKY转录因子基因家族成员之一,在酵母体内具有转录激活活性,可能参与响应非生物逆境胁迫,为进一步研究该转录因子调控非生物逆境胁迫奠定基础。  相似文献   

17.
甘薯SPF1转录因子的生物信息学分析   总被引:1,自引:0,他引:1  
WRKY蛋白是一类植物特有的转录因子超家族,SPF1是第一个从植物(高系14)中克隆的WRKY家族基因。借助生物信息学手段,对甘薯SPF1蛋白组成、结构和功能进行分析预测。结果表明,SPF1编码蛋白含有丰富的丝氨酸位点,并含有2个WRKY保守结构域,分别带有CX_4CX_(22)HXH和CX_4CX_(23)HXH锌指结构,分别形成4个和5个β-折叠片。SPF1和甘薯祖先种Ipomoea trifida WRKY结构域均具有非常保守的WRKYG(Q/K)K氨基酸序列,并且C端WRKY结构域的保守性比N端WRKY结构域的低。系统进化树分析结果显示,蛋白N端和C端的WRKY结构域分属2个不同的分支。蛋白结构预测结果显示,SPF1 WRKY结构区(204~445 aa)处于蛋白三维结构的内侧,形成非亲水性靶标DNA结合区。SPF1作为转录因子,在调控细胞核基因表达的同时,其蛋白N端序列具有叶绿体定位功能。推测SPF1可能参与细胞核和叶绿体的基因表达调控。  相似文献   

18.
WRKY类转录因子基因是一类植物所特有的基因,可能参与植物的发育、衰老和抗病等过程.本研究对一新克隆的受病原菌诱导的水稻WRKY(IosWRKY)基因进行了初步的功能分析.构建了IosWRKY基因的原核表达载体,并在大肠杆菌中得到了有效的表达.体外分析结果表明IosWRKY融合蛋白能与顺式元件W盒(核心序列TGAC)特异结合.说明克隆的IosWRKY基因具有作为转录因子基因的最基本的特征.  相似文献   

19.
植物转录因子NAP(NAC-Like,Activated by AP3/PI)是近年来发现的一类与调控植物生长发育、控制叶片衰老以及响应外界环境胁迫等功能有关的转录因子,是NAC(NAM、ATAF1/2和CUC2)家族中的一个重要成员,也是一类植物特有的转录因子。转录因子NAP在结构上具有NAC家族的保守结构,即在N端具有保守的NAC区以及在C末端具有相对多样性的TAR区,但也有不同于其它NAC亚家族的一些特点,如其TAR区也有一定的保守性等;同时,NAP亚家族的基因表达产物主要集中在细胞核中,表明转录因子NAP是一个核蛋白;再者转录因子NAP的基因主要包括3个外显子和2个内含子。自从第一个转录因子NAP于1998年由Robert等在拟南芥中对控制花发育的AP3/PI的靶基因进行研究时发现以来,目前已在水稻、小麦、大豆、棉花、竹子、葡萄、番红花等植物中相继发现,表明NAP是存在于植物界中的一个特有的转录因子。转录因子NAP具有多种生物学功能,广泛参与植物种子、根、花等的生长发育,对植物生长发育过程起着重要的调节作用;与此同时,转录因子NAP也在叶片凋亡过程中起着举足轻重的作用,对叶片在衰老过程中涉及到的大分子物质的降解以及营养物质的再分配等过程起着重要的调控作用;而且,转录因子NAP对包括干旱、盐渍、冷害等外界环境胁迫有一定的响应,是一类参与调控植物体内各种生理反应的关键因子;同时,转录因子NAP也与植物尤其是农作物的品质有密切的关系,这也为农作物育种提供了一种新的思路和方法。最新研究表明,NAP主要受脱落酸和乙烯调控,已发现一个定位在高尔基体的PP2C家族中的成员SAG113为转录因子NAP的一个直接的靶基因,而且发现SAG113在控制气孔运动方面尤其是在衰老叶片中可能是ABA调控中的一个负调控元件,通过酵母杂交试验以及电泳迁移率变动分析技术得出转录因子NAP受到ABA的调控并直接与其靶基因SAG113启动子区域的一个特定的区域进行专一性的结合,即在衰老叶片中转录因子NAP通过ABA-NAP-SAG113 PP2C调节链提高其靶基因SAG113的表达,以及通过促进气孔开放从而导致水分丧失和通过足够的氧气进入到组织中使得乙烯释放进而使呼吸作用加快等加速叶片衰老的信号这一调控机制。文章主要对NAP转录因子的结构特点、生物学功能以及调控机制等方面在植物中的研究现况进行较为详细的阐述,以期为后续研究提供一定的参考。  相似文献   

20.
转录因子是杨树干旱胁迫应答分子调控网络中的重要组成部分之一,通过特异性结合干旱响应相关基因启动子区的顺式作用元件,调控下游靶基因的转录表达,从而参与杨树干旱胁迫响应过程。杨树WRKY、NAC、bZIP、MYB和AP2/ERF是干旱胁迫响应分子机制研究中最主要的五大转录因子家族,每个家族拥有超过80个成员。本文简要介绍了杨树干旱胁迫转录组学研究进展,系统总结和概括了杨树这五类转录因子的结构特征与亚家族分类、调控下游靶基因表达的方式及其在参与调控干旱信号转导网络中的作用等方面的研究进展,并对存在的问题与未来研究进行展望,旨在深入了解杨树耐旱分子机理,为培育抗旱型杨树新品种提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号