首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
为探究大银鱼Protosalanx hyalocranius不同地理种群的遗传变异情况,采用PCR产物纯化测序方法,测定了太湖、洪泽湖两个种群共96尾大银鱼线粒体细胞色素C氧化酶Ⅰ亚基(cytochrome oxidaseⅠ,COⅠ)基因的部分序列。结果表明:在638 bp序列中共检测到6个变异位点,占核苷酸总数的0.94%;A、G、T、C平均含量依次为26.2%、34.0%、21.3%和18.5%,A+T含量(47.5%)低于G+C含量(52.5%);共发现7种单倍型,其中hap1、hap5和hap7为共享单倍型,hap6为洪泽湖种群特有,hap2、hap3和hap4为太湖种群特有,在7种单倍型中,hap1为明显的优势单倍体型,共54个个体(占总个体数的56.25%);平均单倍型多样性(Hd)和核苷酸多样性(Pi)分别为0.642和0.001 48,遗传多样性较低;AMOVA分析显示,种群内遗传变异为79.82%,种群间变异为20.18%,两种群间遗传分化系数(Fst)为0.201 79,表明两种群间遗传分化程度较高。本研究结果可为合理开发和利用大银鱼野生资源提供参考。  相似文献   

2.
安徽长江水系黄鳝的群体遗传结构分析   总被引:1,自引:0,他引:1  
为研究安徽长江水系黄鳝(Monopterus albus)的遗传多样性和群体遗传结构,测定了其6个地理群体(当涂、无为、繁昌、贵池、怀宁和望江)共178尾个体的线粒体DNA控制区部分序列.对其长度为556~558 bp的控制区同源序列进行分析,共检测到变异位点41个(变异率7.35%),单倍型56种.平均单倍型多样性和核苷酸多样性分别为0.694~0.954、0.00237~0.01382.群体分化指数(Fst)和基因流(Nm)分别为0.01974~0.87529、0.07124~24.82928,分子变异分析(AMOVA)中,群体间遗传变异占61.72%,表明黄鳝群体间具有明显的遗传分化.基于单倍型或群体间遗传距离的分子系统进化树均显示,6个地理群体分为两支:当涂与繁昌群体聚为一支,其余4群体聚为另一支.  相似文献   

3.
黄尾鲴(Xenocypris davidi)是浙江省自然水域增殖放流的主要鱼类,为了解人工繁育对黄尾鲴遗传多样性的影响,利用线粒体DNA细胞色素b基因(Cyt b)对4个养殖群体的遗传多样性进行研究,旨在为黄尾鲴增殖放流策略制定和实施提供基础数据。结果显示,在编码Cyt b的1 140 bp序列中,检测到157个变异位点,界定了21种单倍型,其中长兴、双浦、八里店和醴陵群体的单倍型数目分别为10个、11个、7个和2个,单倍型多样性介于0.226~0.794,核苷酸多样性介于0.006 14~0.023 86。除醴陵群体遗传多样性较低外,其余3个养殖群体的遗传多样性具有高单倍型数和高核苷酸多样性的特点。4个黄尾鲴养殖群体间的遗传距离为0.018 74~0.092 74,遗传分化指数为0.808 63(P<0.01),其中长兴和八里店群体的分化程度较低,双浦和醴陵群体的分化程度较高,且遗传变异主要发生在群体间。本研究结果可从分子水平为黄尾鲴的资源保护和人工增殖放流提供参考依据。  相似文献   

4.
【目的】黄尾鲴(Xenocypris davidi)是以腐殖质、有机碎屑为饵料,兼食浮游生物和底栖动物的的淡水经济鱼类,是浙江省自然水域鱼类增殖放流的主要品种之一。了解人工繁育对黄尾鲴遗传多样性的影响,可为自然水域黄尾鲴的增殖放流策略设计和实施提供参考。【方法】对浙江长兴、八里店、双浦和湖南醴陵 4个黄尾鲴养殖群体的线粒体 DNA(mtDNA)D-loop 序列进行 PCR 扩增和测序,通过序列分析研究 4 个群体的遗传多样性。【结果】黄尾鲴线粒体 D-loop 序列长度为 1 038~1 093 bp,碱基 A+T 含量(65.3%)显著高于 C+G含量(34.7%),平均转换 / 颠换比值(TS/TV)为 4.6。在 128 条黄尾鲴的 D-loop 序列中共检测到 101 个变异位点,包括 97 个简约信息位点;界定了 19 种单倍型,其中长兴、双浦、八里店和醴陵群体的单倍型数目分别为5、12、4 和 2;单倍型多样性(h)介于 0.226~0.915 之间,核苷酸多样性(π)介于 0.00640~0.01433 之间。4 个黄尾鲴养殖群体的遗传多样性具有一定差异,不同养殖群体间遗传距离为 0.03782 ~ 0.88756,遗传分化系数为0.78903(P<0.01),群体内变异占整个遗传变异的 21.10%,其中长兴群体和八里店群体的遗传分化系数最低,双浦和醴陵群体的遗传分化系数最高,遗传变异主要发生在群体间。【结论】4 个黄尾鲴养殖群体的遗传多样性具有一定差异。黄尾鲴遗传变异和种群结构的信息可为其遗传多样性变化的研究提供参考,有助于黄尾鲴的资源保护。  相似文献   

5.
安徽淮河水系黄鳝群体遗传多样性及其遗传结构   总被引:1,自引:1,他引:1  
利用线粒体Cyt b基因全序列(1138 bp)对安徽淮河水系黄鳝6个地理群体(阜南Fn、颍上Ys、平圩Pw、怀远Hy、凤阳Fy、明光Mg)165个样品进行遗传多样性和遗传结构分析。共检测到变异位点74个、单倍型25个,平均A+T含量(54.8%)显著大于G+C(45.2%)含量。平均单倍型多样性和平均核苷酸多样性分别为0.787、0.01882。各群体的遗传分化指数FST为0.01933~0.81352、基因流Nm为0.11461~26.36650,分子方差分析(AMOVA)显示44.1%的变异来自群体间,表明淮河水系黄鳝地理群体间存在较高程度的遗传分化。单倍型系统进化树和进化网络图揭示安徽淮河黄鳝6个群体的个体组成2个遗传差异明显的谱系。错配分布和中性检验结果表明安徽淮河黄鳝群体历史上较为稳定,无明显群体扩张。  相似文献   

6.
红螯螯虾原产于澳大利亚,是一种具有优良养殖前景的淡水虾类。基于线粒体COⅠ基因序列,对中国5个养殖群体的遗传多样性和结构进行评估,旨在为红螯螯虾的科学引种、良种选育和种质资源保护提供基础数据。结果显示,红螯螯虾线粒体COⅠ区全序列长1 534 bp,包含24个变异位点,占分析位点的1.6%,变异位点中含有22个简约信息位点,平均转换与颠换的比值为6.14,序列中(A+T)的含量(58.7%)明显高于(G+C)的含量(41.3%),在143个个体中定义了35种单倍型,来自浙江、海南和台湾的养殖群体具有较多的共享单倍型(COⅠ-01、COⅠ-02和COⅠ-03),这3种单倍型同时也是优势单倍型。来自江苏的养殖群体的单倍型多样性最低(0.739),来自安徽的养殖群体的单倍型多样性最高(0.881)。全部样本的单倍型多样性指数为0.896,核苷酸多样性指数为0.004 65。5个养殖群体间的遗传距离为0.002 63~0.006 81,其中,来自浙江与海南的养殖群体的遗传距离最近,来自海南与安徽的养殖群体的遗传距离最远。5个养殖群体间的遗传分化系数为0.342 1(P<0.01),说明5个养殖群体间存在一定程度的遗传分化。综上,5个红螯螯虾养殖群体的遗传多样性存在差异,群体间存在着一定的基因交流。研究结果可为红螯鳌虾种质资源的合理开发利用提供分子生物学依据。  相似文献   

7.
测定了长江支流贵定与干流合江和宜都3个群体57尾中华倒刺鲃细胞色素b基因5'端971 bp序列以分析其遗传多样性和种群结构.结果发现21个变异位点和13个简约信息位点,检测到14种单倍型,平均单倍型多样性(Hd)和核苷酸多样性(Pi)分别为0.7820和0.0025,表现出较低的遗传多样性.合江群体核苷酸多样性最高(0.0036),宜都其次,贵定最低.在NJ系统树上没有出现明显的谱系结构和地理聚群,AMOVA分析显示遗传变异主要集中在群体内的个体间(61.16%).宜都和合江群体间的Fst和Nm值分别为0.0974和4.6329,但贵定群体与合江和宜都群体间的Fst值分别为0.4549、0.4875,Nm值分别为0.5991、0.5256,表明长江干流2个地理群体间遗传分化程度低,可视为一个大的随机交配群体;而支流群体没有遗传变异,且与长江干流群体间出现高度分化,可能是由贵定特殊地理条件使基因交流受阻所致.中性检测表明,宜都群体在约为7.6万~3.0万年前的更新世晚期发生过种群的快速扩张.  相似文献   

8.
基于线粒体DNA ( mtDNA)控制区部分序列对采集自太平洋、大西洋、印度洋的5个大青鲨Prion-ace glauca群体165尾成鱼样本进行遗传多样性与遗传结构分析。结果表明:165尾大青鲨的mtDNA控制区片段长为694 bp,共得到110个变异位点,定义了145个单倍型,碱基组成中A为33.46%, T为36.40%, C为18.61%, G为11.53%, G+C含量为30.14%;单倍型多样性指数( Hd )在各个采样点都较高,平均值为0.9973±0.0014,核苷酸多样性指数(π)为0.01510±0.00091,这表明大青鲨群体的遗传多样性水平很高,遗传资源丰富;分子方差分析表明,99.28%的遗传变异出现在种群内,0.72%的遗传变异来自于种群间;采用邻接法构建的系统发育树表明,5个群体间未形成显著的遗传结构,群体间的高基因交流值( Nm )和低遗传分化指数( Fst )揭示了三大洋的大青鲨群体间基因交流频繁,不存在显著的遗传分化。  相似文献   

9.
为探明香螺Neptunea cumingii遗传多样性水平及其种质资源背景,采用分子生物学技术对中国黄、渤海海域6个不同地理群体香螺COXⅠ和CYTB基因的遗传多样性进行比较分析.结果表明:COXⅠ基因序列长度为1536 bp,多态性位点141个,共定义COXⅠ单倍型11个,大连市大连湾群体(DL)的单倍型COXⅠ-10变异位点数最多(115个),群体内遗传多样性分析显示,大连湾群体的平均核苷酸差异数(K)和遗传多样性指数(Pi)最高,分别为31.133和0.02121,群体间比较结果显示,烟台市八角港群体(YT)与蓬莱市长岛群体(PL)间的K值最低(2.094),大连湾群体与大连市旅顺盐场群体(LS)间的K值最高(24.971);CYTB基因序列全长为1140 bp,多态性位点34个,共定义单倍型14种,群体内遗传多样性分析显示,大连市獐子岛群体(ZZ)和大连市旅顺盐场群体的K和Pi值最高,分别为13.444和0.01236,群体间比较结果显示,烟台市八角港群体与蓬莱市长岛群体间K值最低(1.395),大连湾群体与旅顺盐场群体间的K值最高(11.497);聚类分析结果显示,6个不同群体香螺的线粒体COXⅠ和CYTB基因有显著性差异,分子方差分析(AMOVA)显示,群体内变异远大于群体间差异.研究表明,不同海域香螺未出现明显的群体间差异,且群体内变异远大于群体间差异,不同海域间香螺未达到亚种分化.  相似文献   

10.
为促进口虾蛄Oratosquilla oratoria资源的可持续利用及遗传多样性保护,采用线粒体DNA细胞色素b(Cytb)基因序列分析方法,对口虾蛄黄海群体(连云港群体LYG)、东海群体(南韭山群体NJS、南麂岛群体NJD、福州群体FZ)和南海群体(珠江口群体ZJK)进行了遗传变异分析,进而确立了其种群遗传结构。结果表明:所有群体总的单倍型多样性指数与核苷酸多样性指数分别为0.976±0.010、0.039 25±0.019 13,其中福州群体的单倍型多样性指数最高(0.987±0.035),南麂岛群体最低(0.931±0.046),珠江口群体的核苷酸多样性指数最高(0.064 84±0.033 02),连云港群体最低(0.003 59±0.002 17);分子方差分析结果显示,遗传变异主要来自组群间,且遗传分化极显著(变异系数为73.88%,P0.01),连云港群体、东海群体及珠江口群体内遗传分化均不显著(P0.05);两两群体间的遗传分化系数(F_(st))分析表明,连云港群体、珠江口群体与其他地理群体间遗传分化均显著(P0.05);单倍型邻接系统树和最小跨度树均显示,存在明显的系统发育谱系结构,即谱系A、B、C存在于口虾蛄群体中,3个谱系单倍型类群间也存在显著的遗传分化(F_(st)=0.695~0.842,P0.01);中性检验和核苷酸不配对分析结果显示,谱系C群体大约在11.0万年前经历扩张事件。研究表明,口虾蛄的种群遗传结构模式可能与其栖息地海洋环境条件及自身的生活史特征相关,系统发育地理格局模式可能与更新世冰期—间冰期气候变化有关,建议在渔业管理上将口虾蛄黄渤海群体、东海群体、南海群体看作3个独立的管理单元。  相似文献   

11.
[目的]比较紫贻贝野生群体与养殖群体线粒体COⅠ基因的遗传多样性,为其种质资源筛选提供理论依据。[方法]采集山东省乳山市野生紫贻贝(Mytilus edulis Linnaeus)和养殖紫贻贝各12个样本;通过设计特异性引物,采用PCR技术对24个个体的mtDNA COⅠ序列进行了扩增,测序得到的序列总碱基数为706 bp;采用MEGA(Version 4.0)和DnaSP(Version 4.0)软件对序列进行了分析。[结果]24条序列中T、C、A和G碱基平均含量分别为34.6%、16.7%、25.9%和22.8%,其中A+T的含量(60.5%)显著高于G+C含量(39.5%),表现了明显的碱基偏倚。24个个体表现为18种单倍型,包括568个多态位点,单倍型间平均遗传距离为0.683,单倍型多态性(h)为0.953,核苷酸多态性(π)值为0.317 69。[结论]紫贻贝的遗传多样性水平较高,且乳山养殖群体和野生群体无遗传分化。  相似文献   

12.
通过线粒体D-loop控制区全序列分析澜沧江上游表村(BC)、叶枝(YZ)、里底(LD)以及乌弄龙(WNL)等4个群体,共计77尾短尾高原鳅的遗传多样性,为澜沧江上游短尾高原鳅的遗传多样性现状与种质资源保护提供相关实验数据。结果表明:在921 bp的D-loop控制区序列中,共发现变异位点22个,其中,单一变异位点8个,简约变异位点14个,定义单倍型21个;澜沧江上游短尾高原鳅群体单倍型多样性指数(Hd)为0.837~0.942,核酸多样性指数(π)为0.005 16~0.005 72;里底群体单倍型多样性最高,表村群体最低,且各群体呈现出"高Hd低π"遗传多样性模式。分子方差分析(AMOVA)结果表明:短尾高原鳅遗传差异主要来自于群体内部(97.91%),2.09%遗传变异来自于群体之间;各群体之间不存在遗传分化(Fst=-0.021 3,P=0.805);表村和里底群体间遗传距离最远(0.005 67),叶枝和乌弄龙群体遗传距离最近(0.005 11);核酸中性检测结果均不显著(Tajima’s D=0.624,P=0.737;Fu’s Fs=-0.669,P=0.377),核酸错配未呈"泊松"单峰分布均表明澜沧江上游短尾高原鳅近期未经历过种群扩张事件。澜沧江上游短尾高原鳅遗传多样性较为丰富,群体间遗传分化程度较低。  相似文献   

13.
利用PCR技术扩增山东境内的3个克氏原鳌虾地理群体(济南小清河、东平湖和微山湖)COⅠ基因片段,得到长度约为874bp的片段,分析比较了3群体87尾克氏原螯虾COⅠ基因序列的变异和遗传结构。结果显示,87条序列共检测到8个变异位点,存在6种单倍型。单倍型多样性(H)为0.174,核苷酸多样性(Pi)为0.0036,单倍型多样性(H)以东平湖群体最高(0.243),微山湖群体其次(0.204),小清河群体最低(0.000);3群体的核苷酸多样性(H)均较低(0.001)。分子变异等级分析(AMOVA)表明,3群体间总的遗传分化指数(Fst)为0.023 85(P0.05),群体间的遗传变异仅占总遗传变异的2.38%,而97.62%的遗传变异源于群体内,群体间遗传分化指数与遗传距离均较低。表明山东克氏原鳌虾野生群体的遗传多样性较低,具有较低的遗传分化水平。  相似文献   

14.
【目的】揭示河西走廊苹果蠹蛾不同地理种群间的联系,分析地理种群间的序列变异、遗传多样性和遗传分化。【方法】采用PCR和基因测序技术,扩增并分析了河西走廊8个地理种群132个苹果蠹蛾个体的线粒体细胞色素氧化酶Ⅰ亚基(COI)基因片段,应用DnaSP 5.10计算单倍型多样性指数(Hd)、核甘酸多样性指数(Pi)和Tajima’s D值,采用ZT软件包进行Mantel检验,分析种群间遗传距离与地理距离的相关性,利用软件Arlequin 3.11计算成对种群间的固定系数(Fst)。【结果】在获得的132条序列中共发现了8个变异位点和5个单倍型,其中3个单倍型为种群共享单倍型。总体单倍型多样性指数为0.578,种群内单倍型多样性为0.000~0.700。各种群的Tajima’s D值中性检验符合中性突变,说明河西走廊苹果蠹蛾在历史上没有出现群体扩张,群体大小稳定。Fst值表明,河西走廊苹果蠹蛾种群间具有一定程度的遗传分化,而各地理种群的遗传距离与地理距离无显著的相关性。【结论】河西走廊苹果蠹蛾遗传多样性较低,且地理种群间有一定程度的遗传分化。  相似文献   

15.
为研究野生与养殖小黄鱼群体的遗传多样性,基于mtDNA Cytb基因和D-loop控制区对舟山嵊泗海域(SS)和象山三门口海域(SMK)2个小黄鱼野生群体和1个养殖群体(YZ)的遗传结构与遗传分化等进行比较分析。序列分析结果显示,Cytb基因序列为841 bp,其A+T含量(50.2%)与C+G含量(49.8%)相似;D-loop区序列为629~635 bp,A+T含量(58.9%)远高于C+G含量(41.1%)。SS、SMK和YZ群体Cytb基因的单倍型数分别为26、27和12,SS和SMK群体共享2个单倍型(Hap1和Hap13),SMK和YZ群体共享1个单倍型(Hap41);SS、SMK和YZ群体D-loop区的单倍型数分别为27、30和10,SS和SMK群体共享1个单倍型(Hap4)。多样性分析结果显示,3个群体均属于高单倍型多样性(Hd>0.5),其中,SS和SMK群体单倍型多样性和核苷酸多样性高于YZ群体,表明野生群体多样性略高于养殖群体。遗传分化指数显示,2个小黄鱼野生群体间的分化程度极小,而养殖群体与野生群体间存在中度分化。遗传分化指数和AMOVA分析结果表明,群体内个体的变异是遗传变异的主要来源。Cytb基因和D-loop区序列中性检验结果中SS和SMK群体的Tajima’s D值和Fu and Li's值均为负数,且Cytb基因的Tajima’s D值和Fu and Li's值显著(P<0.05)偏离中性,表明2个野生群体有可能经历过群体扩张。单倍型系统发育树显示,SS、SMK和YZ群体均未表现出明显的地理聚集,群体间互有交叉,表明3个群体间的分化尚不明显。  相似文献   

16.
长薄鳅(Leptobotia elongata)线粒体DNA控制区遗传多样性研究   总被引:5,自引:0,他引:5  
对采自泸州(长江干流)、南溪(长江干流)、柏溪(金沙江段)、攀枝花(雅砻江段)、重庆(嘉陵江段)4个流域的45尾长薄鳅(Leptobotia elongata)的线粒体DNA控制区部分序列(798 bp)进行了扩增,共检测出19个单倍型,未发现群体间有共享的单倍型,5群体单倍型多样性在0.833~1.000之间,显示不同流域的长薄鳅群体单倍型类型较为丰富.分析了D-Loop的碱基组成、变异情况和核苷酸序列差异,计算了核苷酸多样性(π)、单倍型多样性(h)、FST值和基因流数值(Nm),构建了长薄鳅不同单倍型分子系统树和中间网络图.5个群体内各序列核苷酸多样性指数 (π) 在0.276 %~0.905 %之间;群体间遗传距离范围为0.0028~0.0092,结果显示长薄鳅自然群体存在较丰富的线粒体控制区序列多态性(h=0.916,π=0.00450),Tajima's D统计(–2.09890)和Fu's Fs统计(–7.56940)分析都显示各种群之间差异显著(P<0.05),但FST值(FST<0.05)的分析结果显示重庆、柏溪、南溪、攀枝花和泸洲种群间没有明显的遗传分化,暗示了柏溪和攀枝花种群历史上,可能发生过群体扩张和种群瓶颈,而泸州、南溪和重庆种群一直是平衡种群.Nm值计算结果显示各地理种群间无明显基因交流,暗示了长薄鳅虽然在各条不同的河流里洄游产卵,但并未因此而产生独立分化的群体.所有群体中,泸洲和攀枝花种群的遗传多样性比重庆、柏溪和南溪种群丰富.进行长薄鳅人工繁殖时,可以将遗传多样性较丰富地区的个体补充到人工繁殖中来,以提高长薄鳅的遗传素质,为人工增殖放流提供遗传多样性更丰富的个体.  相似文献   

17.
红螯螯虾原产于澳大利亚,是一种具有优良养殖前景的淡水虾类。基于线粒体COⅠ基因序列,对中国5个养殖群体的遗传多样性和结构进行评估,旨在为红螯螯虾的科学引种、良种选育和种质资源保护提供基础数据。结果显示,红螯螯虾线粒体COⅠ区全序列长1 534 bp,包含24个变异位点,占分析位点的1.6%,变异位点中含有22个简约信息位点,平均转换与颠换的比值为6.14,序列中(A+T)的含量(58.7%)明显高于(G+C)的含量(41.3%),在143个个体中定义了35种单倍型,来自浙江、海南和台湾的养殖群体具有较多的共享单倍型(COⅠ-01、COⅠ-02和COⅠ-03),这3种单倍型同时也是优势单倍型。来自江苏的养殖群体的单倍型多样性最低(0.739),来自安徽的养殖群体的单倍型多样性最高(0.881)。全部样本的单倍型多样性指数为0.896,核苷酸多样性指数为0.004 65。5个养殖群体间的遗传距离为0.002 63~0.006 81,其中,来自浙江与海南的养殖群体的遗传距离最近,来自海南与安徽的养殖群体的遗传距离最远。5个养殖群体间的遗传分化系数为0.342 1(P0.01),说明5个养殖群体间存在一定程度的遗传分化。综上,5个红螯螯虾养殖群体的遗传多样性存在差异,群体间存在着一定的基因交流。研究结果可为红螯鳌虾种质资源的合理开发利用提供分子生物学依据。  相似文献   

18.
采用DNA条形码技术,对采自广东清远、惠州、韶关、广州与广西河池、南宁、崇左的7个掌肢新米虾(Neocaridinapalmata)野生群体的97个样本的线粒体COⅠ基因片段进行PCR扩增和测序分析,研究掌肢新米虾自然群体的遗传多样性及遗传结构。结果表明:掌肢新米虾在624 bp的COⅠ基因序列中A、T、C、G碱基的平均含量分别为26.98%、33.17%、20.99%、18.85%,AT含量(60.15%)高于CG含量(39.84%),表现出较强的AT偏倚性;基于COⅠ基因序列的总群体中共检测到4个核苷酸变异位点,定义了5种单倍型,平均核苷酸差异数(K)、单倍型多样性指数(Hd)以及核苷酸多样性指数(Pi)分别为0.611、(0.557±0.025)、(0.00098±0.00007),呈现出高单倍型多样性和低核苷酸多样性;7个自然群体的群体内遗传距离为0.000~0.001,群体间的遗传距离为0.000~0.002;分子方差分析(AMOVA)和遗传分化系数(F_(st))结果揭示,掌肢新米虾的遗传变异主要来自于群体间;中性检验和核苷酸错配分布表明,掌肢新米虾7个自然群体遵循群体扩张模式,发生了历史扩张事件;系统发育分析显示,广东4群体与广西3群体形成姐妹支,表明不同地理区域具有一定的种群特征,可作为单独的管理单位进行保护,Hap1与Hap4分别是广东4群体与广西3群体和惠州群体的共享单倍型,其余单倍型为各群体所独享。  相似文献   

19.
为从遗传多样性的角度来了解团头鲂3个选育群体的选育潜力,以团头鲂浦江1号选育奠基群体(F_0)为对照组,采用线粒体DNA控制区标记评估团头鲂3个选育群体的遗传多样性,分析它们的选育潜力。结果显示,在3个选育群体的72条序列中共确定40种单倍型,群体间存在5种共享单倍型,3个选育群体线粒体DNA控制区序列的单倍型多样性(H)范围为0.670~0.978,核苷酸多样性(π)范围为0.004 16~0.006 23,平均核苷酸差异数(K)范围为3.935~5.960,群体内核苷酸序列间平均遗传距离范围为0.003 561~0.004 538,3个选育群体的遗传多样性水平(H、π、K)略高于F_0群体。3个选育群体间Kimura双参数遗传距离和遗传分化指数(F_(ST))范围分别为0.004 039~0.004 700和0.046 4~0.138 6。3个选育群体间成对F_(ST)值差异均显著(P0.05),3个选育群体与F_0群体间成对F_(ST)值差异均极显著(P0.01)。说明3个选育群体的遗传多样性较高,选育潜力较大;同时,选育群体间均存在显著的遗传分化,可见不同方向上的累代人工选育已在一定程度上改变了选育群体的遗传结构。  相似文献   

20.
长白松自然群体同功酶遗传多样性的研究   总被引:9,自引:1,他引:9  
本文以酶水平,研究了两个自然群体的遗传多样性。采用聚丙烯酰胺凝胶电泳技术,检测了长白松雌配子体的谷氨酸草酰乙酸转氨酶(GDT),苹果酸脱氢酶(MDT),酸性磷酸酶(ACP),谷氨酸脱氢酶(GDH)和葡萄糖脱氢酶(GLUDH)的同功酶型。根据多态基因位点标准,笔者发现检测基因位点的63%是多态的。8个基因位点所有样品的杂合性的平均值是0.3157。每个基因位点的平均等位基因数是2.19。两个自然群体间的同功酶多样性分化,对8个基因位点的基因多样性测量表明,群体间基因多样性的分化明显效果是9%,总的基因多样性的91%在群体内。两个群体间的遗传距离是0.0619。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号