首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Identification of primary trisomics and other aneuploids in foxtail millet   总被引:1,自引:0,他引:1  
R. Wang    J. Gao  G. H. Liang 《Plant Breeding》1999,118(1):59-62
A complete set of nine primary trisomics (2n+ 1) for cv.‘Yugu No. 1’of foxtail millet, Setaria italica (L.) Beauv. (2n= 2x= 18), was identified cytologically from progenies derived from crosses between autotriploids(2n= 2x= 27) and their diploid counterparts. Five autotriploid plants were identified from 2100 seedlings derived from 4x-2x crosses; the reciprocal crosses (2x-4x) failed to produce autotriploids. Autotriploids grew vigorously and were morphologically very similar to diploids. Theprimary trisomics (2n= 2x= 19) constituted ?32.5% of the total progeny from the 3x-2x crosses, whereas 59.8% of the descendants were aneuploids with chromosome numbers ranging from 20 (double trisomics and tetrasomics) to 37 (2n= 4x+ 1; or autotetraploid with one additional chromosome). The nine primary trisomics identified were self-fertile; seven had characteristic morphology, whereas trisomics VIII and IX resembled the disomics. The seed set for trisomic V was the lowest (20%), and trisomic VIII the highest (74%). Other aneuploids with 20 or more somatic chromosomes were either self-sterile or partially fertile with various, but low, levels of seed set. Each of the primary trisomics showed its unique transmission rate when self-pollinated; trisomic IX had the highest (45.8%), whereas trisomic V had the lowest (19.6%) transmission rate.  相似文献   

2.
甘蓝型油菜三体、双三体和双四体的形态和细胞学特征   总被引:3,自引:0,他引:3  
从甘蓝型油菜品种“Oro”×诸葛菜杂交后的一个混倍体杂种(2n=19~37)的小孢子再生植株中鉴定出一株2n=42的植株,此混倍体不含有诸葛菜染色体,故2n=42植株的细胞内没有诸葛菜染色体。用其花粉授予“Oro”后获得2n=39、40的植株。2n=39、40、42植株PMCs内染色体的主要配对方式分别为19Ⅱ+1Ⅰ、19Ⅱ+2Ⅰ和19Ⅱ+2Ⅱ,后期Ⅰ的分离方式分别为20∶19、21∶19和21∶21。故2n=39、40、42为甘蓝型油菜的三体、双三体、双四体。最后讨论了这些种内非整倍体材料在油菜遗传研究中的意义。  相似文献   

3.
M. Wagenvoort  W. Lange 《Euphytica》1980,29(2):281-293
Summary Initial single and double trisomics of S. tuberosum Group Tuberosum cv. Gineke were successfully crossed with and backcrossed to clones obtained through inbreeding of self-compatible dihaploids of the same variety. Some trisomics showed reduced flowering or flower abnormalities and contributed therefore only to a small extent. Berry-set and seed-set varied considerably. There was no relation between these phenomena, nor was there any relation between either berry-or seed-set and the identity of the extra chromosome in the female parent. Seed-set seemed to be influenced by the male parent. When a more inbred male parent was used in the crosses with trisomics this often resulted in less seed per cross. There was no clear relation between seed-set and stainability of the pollen grains, but both the strong selection for good pollen and the high level of self-compatibility, have apparently contributed to the success of the crosses. The double trisomic plants yielded less seed than most single trisomics. Only three of the single trisomics produced stainable pollen and two of them yielded progeny when used as male parent in crosses or selfings.In the progenies several of the trisomic types could be distinguished on the basis of plant morphology in the young seedling stage. For ten different trisomics the morphotype is being described. The average rate of female transmission of the extra chromosome was about twenty per cent, but there was a wide variation, both between and within the various trisomic types. The results indicated that for chromosomes 3 and 8 the rate of transmission was higher than the average value. In one out of two trisomic types male transmission of the extra chromosome occurred, with a rate of 4.7%. The possible causes for the observed differences in female transmission of the extra chromosome are being discussed.  相似文献   

4.
B. S. Ahloowalia 《Euphytica》1982,31(1):103-111
Summary Aneuploid plants of perennial ryegrass (Lolium perenne L.) with 2n=15 to 30 chromosomes were obtained by crossing a near-triploid (2n=3x+1=22) with a diploid or on open-pollination with diploids and tetraploids. Aneuploids occurred with a frequency of 83% in near triploid × diploid progeny and 92% on open-pollination with diploid and tetraploid plants. Aneuploid plants with 15 to 18 chromosomes resembled diploids in morphology and those with 19 to 30 chromosomes were akin to tetraploids. Meiotic studies suggested that most aneuploid plants resulted from transmission of aneuploid egg cells (n=8 to 23). Aneuploid plants with 2n=27 to 30 chromosomes in the progeny of 22×14 cross originated from unreduced egg cells. Plants with 19 to 21 chromosomes were recovered only by immature seed culture. Aneuploid plants with 26 to 30 chromosomes and triploids (2n=21) had higher pollen fertility and bigger seeds than plants with 15 to 22 chromosomes.  相似文献   

5.
Summary A tetraploid annual male sterile form of Beta vulgaris L. (2n=4x=36) was crossed with the wild beet species Beta intermedia Bunge (2n=36). The resulting F1-plants were male sterile annuals being two or three times back-crossed to diploid and tetraploid sugar and fodder beets in the next years. Apart from tetraploid material (36 chromosomes) hexaploid (54 chromosomes) and a number of aneuploid plants developed.The results obtained justify the conclusion that, at a tetraploid level the material mostly propagates apomictically after the F1 generation. The presence of penta-, hexa-, septa-and even octaploid plants might be explained by assuming that no meiosis has taken place in the crossing partners. Triploid plants are sometimes found in the progeny of hexaploid material and may presumably be considered haploids. Moreover some pentaploid plants were found in the progeny of the open pollinated F1 which after two generations of bagging are still pentaploids although they produce no pollen. This is another clear indication of apomictic reproduction.The tetraploid generation from the cross between the hexaploid material and diploid sugar beets probably contains the best prospects for breeding.  相似文献   

6.
J. Sybenga 《Euphytica》1995,83(1):53-61
Summary Cytological tester sets include series of aneuploids (nullisomics, monosomics, trisomics of different types, tetrasomics), series of rearranged chromosomes (translocations, inversions, duplications, deficiencies) and series of chromosomes recognizable by specific microscopically visible markers (C-or other banding, molecular markers). In rye, only a few (mainly tertiary and telocentric) monosomics and no viable nullisomics have been found. Several sets of primary trisomics and some telocentric sets, usually not fully complete, have been developed, but few are still available for gene localization. A few tertiary trisomics have been derived from translocation heterozygotes. Extensively used are different sets of additions of rye chromosomes to wheat. A relatively widely distributed set of marked chromosomes is the Wageningen translocation tester set, complemented with translocations from different other institutions. A disadvantage of rye translocations is insufficient heterozygote semisterility. Series of otherwise rearranged chromosomes have not been reported. Sets of lines with chromosomes conspicuously differing from the standard C-banding pattern have been obtained. Molecular markers are available for most rye chromosome, but lack of heterozygosity, necessary for classification afterin situ hybridization is a restriction for use as cytological testers. In the cases of most translocations, C-banding andin situ molecular markers, each separate plant in a segregating population must be screened cytologically, whereas with aneuploid markers or with translocations having sufficient heterozygote semisterility, analyzing segregations is sufficient.  相似文献   

7.
J. Sybenga 《Euphytica》1996,89(1):143-151
Summary Cytological tester sets include series of aneuploids (nullisomics, monosomics, trisomics of different types, tetrasomies), series of rearranged chromosomes (translocations, inversions, duplications, deficiencies) and series of chromosomes recognizable by specific microscopically visible markers (C- or other banding, molecular markers). In rye, only a few (mainly tertiary and telocentric) monosomics and no viable nullisomics have been found. Several sets of primary trisomics and some telocentric sets, usually not fully complete, have been developed, but few are still available for gene localization. A few tertiary trisomics have been derived from translocation heterozygotes. Extensively used are different sets of additions of rye chromosomes to wheat. A relatively widely distributed set of marked chromosomes is the Wageningen translocation tester set, complemented with translocations from different other institutions. A disadvantage of rye translocations is insufficient heterozygote semisterility. Series of otherwise rearranged chromosomes have not been reported. Sets of lines with chromosomes conspicuously differing from the standard C-banding pattern have been obtained. Molecular markers are available for most rye chromosome, but lack of heterozygosity, necessary for classification after in situ hybridization is a restriction for use as cytological testers. In the cases of most translocations, C-banding and in situ molecular markers, each separate plant in a segregating population must be screened cytologically, whereas with aneuploid markers or with translocations having sufficient heterozygote semisterility, analyzing segregations is sufficient.  相似文献   

8.
Blueberry (Vaccinium section Cyanococcus, family Ericaceae) is a shrub that produces multiple-seeded berries in which only a fraction of the ovules develop into viable seeds. A recessive yellowleaf marker gene was used to evaluate the efectiveness of a single pollination versus multiple pollinations in producing seeds in Vaccinium elliottii Chapm. A multiple-pollination experiment was conducted to see if the first pollen applied or the second produced more progeny, and to see if multiple pollinations increased the number of seedlings produced. Flowers of diploid yellowleaf Vaccinium elliottii were pollinated from one to four times at daily intervals. Pollen from redleaf and yellowleaf plants was used to produce two types of seedlings that could be distinguished visually. Generally, percent berry set, seeds per berry, and seed germination were not increased by multiple pollination. After multiple pollination, the pollen applied first always produced the most seedlings. Prior pollination greatly reduced seed set from subsequent pollination, but subsequent pollination caused little or no decrease in the number of seeds set by the first pollination. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
K. H. Lee  H. Namai 《Euphytica》1992,60(1):1-13
Summary Aneuploids with 2n=21 and 2n=22 derived from crossing of sesquidiploids (2n=29, AAC) and Brassica campestris (2n=20, AA) were selfed successively in order to follow the changes in chromosome number of the progenies for three consecutive generations. Progenies with 2n=22, 23 and 24 obtained after selfing of S0 generation and the succeeding S1, S2 and S3 generations were analyzed in terms of pollen stainability, % seed set as well as cytogenetically based on meiotic behaviour with the aim of determining the possibility of addition of one or more alien chromosomes into n=10 species which may lead to differentiation of single or plural disomic addition lines. The generation of aneuploids with 2n=21 progressed in such a way that most plants seem to revert to the 2n=20 chromosome number of B. campestris after selfing. From 2n=22 aneuploids, however, the succeeding progenies showed high frequency of plants with two additional chromosomes which accounted for 50.6% and 52.9% of total S3 progenies via 2n=22 and 2n=24 S2 generations, respectively. The meiotic behaviour of these progenies indicated evidence for a rule governing the frequency distribution of chromosome number among these addition lines and high possibility to breed such disomic plants with 2n=22. A method of selecting stable aneuploids was suggested in addition to the possible role of pollination biology at various processes of such breeding program.  相似文献   

10.
Nicotiana glauca is of potential interest to breeders as it carries resistance to black root rot of tobacco. Cytological investigations of sexual interspecific hybrids of N. tabacum T′T′TT (2n = 4x = 48) cv. ‘Wiślica’ × N. glauca GG (2n = 2x = 24) were carried out. The analyses of chromosome association at diakinesis and metaphase I in the PMCs of amphihaploid F1 T′TG (2n = 3x = 36) revealed low variable pairing with 0–5 bivalents. The sterile amphihaploids F1 were converted into partial female fertile amphidiploids T′T′TTGG by chromosome doubling. Among 36 mature plants obtained, 15 were found to have chromosome numbers (2n = 6x = 72) and were verified as amphidiploids, 9 had (2n = 6x = 70 or 71) chromosomes while the remaining 12 were haploid. True amphidiploids, in spite of quite high chromosome pairing during meiosis, were very different in pollen fertility, ranging from 0% to 85%. Male fertility disturbances did not correlate with the degree of female fertility upon pollination with N. tabacum. Sesquidiploids T′TG (2n = 5x = 60) obtained from backcrossing the amphidiploids to parental tobacco showed more than 22 bivalents, 10–12 univalents and occasional multivalents that indicated the possibility of interchange events between N. tabacum and N. glauca genomes.  相似文献   

11.
A. J. Pritchard 《Euphytica》1965,14(3):307-314
Hybridization between S. almum (2n=40) and diploid (2n=20) species of Sorghum resulted in plants with 2n=40 and 2n=30 chromosomes. As segregation for many characters occurred in the offspring of those with 2n=40, hybrids of this type provide a means of transferring genes from the diploid to the tetraploid species of Eu-sorghum. Segregations for some genes in the progeny of these hybrids revealed heterozygosity in S. almum which may indicate that one of the ancestors of S. almum was a variety of S. vulgare very similar to the commercial grain sorghum.The triploids were only slightly fertile and the chromosome numbers of plants resulting from backcrossing to S. almum ranged from 30 to 46. Some of the plants with the higher chromosome numbers were self-fertile and segregation for genes which were present in the original diploid and tetraploid parents were observed in their off-spring. Backcrossing the triploid to the diploid parent produced fertile plants with 2n=20 and it is possible that the triploids could be used to transfer genes from the tetraploid to the diploid species of Eu-sorghum.The chromosome pairing in the triploids was similar to that expected in an autotriploid, but some non-homologous pairing was detected which may be the result of duplication of some chromosomes or chromosome segments within the genome (n=10) of S. vulgare.  相似文献   

12.
Summary Crosses between Fragaria moschata (2n=42) and Potentilla fruticosa (2n=14) produced many seeds; about half of these germinated, but only nine plants were obtained from 554 seedlings. Five plants died without flowering, and four were vigorous but sterile. Four plants had the expected chromosome number (2n=28), one plant had 21 chromosomes, and four were aneuploid with 23, 24, 25 and 27 chromosomes respectively. Response to growth substances giving elongated stem internodes and swollen but not succulent receptacles provided evidence that two of the plant were hybrids. It is suggested that all nine plants originated from a normal fertilisation which was followed in some cases by chromosome elimination at an early stage of embryo development.  相似文献   

13.
With the aim of utilizing allotriploid (2n = 3x = 36) lily hybrids (Lilium) in introgression breeding, different types of crosses were made. First, using diploid Asiatic lilies (2n = 2x = 24), reciprocal crosses (3x − 2x and 2x − 3x) were made with allotriploid hybrids (AOA) obtained by backcrosses of F1 Oriental × Asiatic hybrids (OA) to Asiatic cultivars (A). Secondly, the AOA allotriploids were crossed with allotetraploid (OAOA, 2n = 4x = 48), in 3x − 4x combination. Finally, the AOA allotriploids where crossed to 2n gamete producer F1 OA hybrids (3x − 2x (2n)). Two types of triploids were used as parents in the different types of crosses, derived from: (a) mitotic polyploidization and (b) sexual polyploidization. Ploidy level of the progeny was determined by estimating the DNA values through flowcytometry as well as chromosome counting. The aneuploid progeny plants from 3x − 2x and reciprocal crosses had approximate diploid levels and in 3x − 4x crosses and 3x − 2x (2n) the progeny had approximate tetraploid levels. Balanced euploid gametes (x, 2x and 3x) were formed in the AOA genotypes. Recombinant chromosomes were found in the progenies of all crosses, except in the case of 2x − 3x crosses through genomic in situ hybridization (GISH) analyses. Recombinant chromosomes occurred in the F1 OA hybrid when the triploid AOA hybrid was derived through sexual polyploidization, but not through mitotic polyploidization with two exceptions. Those recombinant chromosomes were transmitted to the progenies in variable frequencies.  相似文献   

14.
Interspecific hybrids from cross incompatible relatives of sweetpotato   总被引:1,自引:0,他引:1  
Summary Hybrids were obtained from Ipomoea interspecific crosses through ovule culture. The hybridity of the progeny obtained from I. triloba × IitI. trifida and (I. triloba × I. lacunosa) × I. batatas (4x) crosses was established by comparisons of floral morphology and analyses of peroxidase and esterase isozymes. The hybrids displayed the inflorescence type and sepal shape and texture of their male parents, while corolla size and anther and nectary color tended to be intermediate to their parents. The isozyme banding patterns of the hybrids contained bands present in the patterns of each of their parents. Pollen grain viability, measured by aceto-carmine stainability, was 44.1%, 92.3% and 82.4%, respectively, for the I. triloba × I. trifida hybrid and the (I. triloba × I. lacunosa) × I. batatas (4x) hybrids, H1 and H2. A controlled pollination study revealed that the I. triloba × I. trifida, and the (I. triloba × I. lacunosa) × I. batatas (4x) hybrids, H1 and H2 were partially self fertile with 6%, 70% and 13%, respectively, of the pollinated flowers producing viable seed. Success in backcrossing and sib-mating varied with the cross combination.  相似文献   

15.
N. Inomata 《Euphytica》2003,133(1):57-64
The cytogenetic study was investigated in the intergeneric F1 hybrid, F2and backcross progenies (BC1). The plants used were Brassica juncea(2n=36) and Diplotaxis virgata(2n=18). Three intergeneric F1 hybrids between two species were produced through ovary culture. They showed 36 chromosomes. It might consist one genome of B. juncea and two genomes of D. virgata. The morphology of the leaves resembled that of B. juncea. The color of the petals was yellow that was like in D. virgata. The size of the petal was similar to that of B. juncea. The mean pollen fertility was15.3% and the chromosome associations in the first meiotic division were(0–1)IV+(0–2)III+(8–12)II+(12–20)I. Many F2 and BC1seeds were harvested after open pollination and backcross of the F1 hybrids withB. juncea, respectively. The F2seedlings showed different chromosome constitutions and the range was from 28 to54 chromosomes. Most seedlings had 38chromosomes followed by 36, 40 and 54. The BC1 seedlings also showed different chromosome constitutions and the range was from 29 to 62. Most seedlings had both 40and 54 chromosomes followed by 36, 46 and52. In the first meiotic division of F2 and BC1 plants, a high frequency of bivalent associations was observed in all the various kinds of somatic chromosomes. Many F3 and BC2 seeds were obtained by self-pollination and open pollination of both F2 and BC1 plants, and by backcrossing both F2 and BC1plants with B. juncea, respectively,especially, three type progeny with 36, 40or 54 chromosomes. The somatic chromosomes of the F3 and BC2 plants were further investigated. The bridge plants between B. juncea and D. virgata with 36 chromosomes may be utilized for breeding of other Brassica crops as well as B. juncea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Fenny Dane  T. Tsuchiya 《Euphytica》1976,25(1):367-374
Summary Cytological investigations of 50 wild Cucumis introductions revealed the presence of three tetraploid species with 2n=48 chromosomes, and one hexaploid species with 2n=72 chromosomes, while all other species are diploid containing 2ns=14 or 2n=24 chromosomes. Two of the tetraploid species, C. heptadactylus (P.I. 282446), and a species related to C. zeyheri (P.I. 273192, 299570, 299571, and 299572) are natives of South Africa, while C. aculeatus (P.I. 193967, 196844, 273648, 273649, and 273650) is found in Ethiopia. The hexaploid, C. figarei (P.I. 343699, 343700, 343701), is a native of Nigeria. All polyploids are perennial, have efficient vegetative reproduction systems, and may have originated from the spontaneous formation of polysomatic cells.Supported by the Colorado State University Experiment Station and published as Scientific Series Paper No. 2089.  相似文献   

17.
Summary Fourteen germplasm accessions of Paspalum compressifolium native from southern Brazil were cytologically and embryologically analysed. The study revealed that one accession was diploid (2n=20), twelve were tetraploid (2n=40) and one was hexaploid (2n=60). This is the first report of diploid and hexaploid cytotypes for this species. Studies on microsporogenesis, megasporogenesis, and embryo sac development indicated that the diploid cytotype had regular meiotic behavior and reproduces sexually. Tetraploid cytotype usually had an important proportion of chromosomes that associated as quadrivalents during meiosis and reproduced by mean of aposporous apomixis. The hexaploid cytotype showed irregular meiotic behavior with about one third of the chromosomes associated as multivalents and reproduced by aposporous apomixis. Thus, P. compressifolium could be an agamic complex. Breeding in this complex is possible due to the presence of diploid sexuals which can be treated by colchicine and pollinated by apomicts.  相似文献   

18.
Summary Solanum commersonii Dun. is a diploid (2n=2x=24, 1EBN) wild species of potential value for potato breeding. It is a reproductively isolated species and cannot be crossed with Tuberosum haploids (2n=2x=24, 2EBN) or other diploid 2EBNSolanum species. In order to overcome the EBN barriers, triploid hybrids were produced between Phureja-Tuberosum haploid hybrids, which form 2n pollen grains by parallel spindles, and tetraploidS. commersonii. Microsporogenesis analysis of the triploids indicated a trend towards low values of chromosome distribution at Anaphase I; lagging chromosomes were often observed as well. Despite these abnormalities, the percentage of stainable pollen was very high, ranging from 5.0% to 74.3%. A high variation in pollen grain diameter was also evident. Parallel and tripolar orientation of spindles at Metaphase II of microsporogenesis was a common feature of all the triploids analyzed, but dyads and triads were observed at a very low frequency. Therefore, also the frequency of 2n pollen was very low; the different size of stainable pollen appears to represent the ploidy levels which are possible according to the distribution of chromosomes in Anaphase I. The results obtained also suggest thatS. commersonii could have minor genes acting at the end of meiosis in such a way that, despite the presence of parallel/tripolar spindles, dyads/triads are not formed.Contribution no. 124 from the Research Center for Vegetable Breeding.  相似文献   

19.
Summary By means of pachytene analysis 11 of the 12 possible types of primary trisomics of diploid S. tuberosum have been identified. The typical trivalent configurations for each chromosome are illustrated. Triplo-4,5,7 and 9 occurred more frequently whereas triplo-1 is still lacking in the series. Some of the features of trivalent associations at pachytene are discussed, as also the fact that in the present study only primary trisomics have been found.  相似文献   

20.
Summary We cultured colchicine-treated hybrid ovules in vitro to produce fertile amphidiploids of C. persicum (2n=2x=48. referred to as AA) × C. purpurascens (2n=2x=34, referred to as BB). Seedlings and mature plants were obtained from the ovules without colchicine and those exposed to 50 mg/l colchicine for 5, 10 and 15 days, whereas they were not obtained from the ovules exposed to 50 mg/l colchicine for 20 days and 500 mg/l for 5, 10, 15 and 20 days. Although 8 mature hybrids derived from the ovules without colchicine produced a few fertile pollen grains, they failed to produce viable seeds by self-fertilization. The hybrids had 41 somatic chromosomes. Four and 3 mature plants were derived from ovules exposed to 50 mg/l colchicine for 10 and 15 days, respectively. One each among 4 and 3 mature plants showed a high frequency of pollen grain fertility, produced several seeds by self-fertilization, and had 82 somatic chromosomes which is twice the number of hybrid chromosomes (2n=41, AB). These findings indicated that these plants are amphidiploids (2n=82, AABB) between C. persicum and C. purpurascens. Three and 2 viable seeds were derived by the conventional crosses of diploid C. persicum × the amphidiploid and the amphidiploid × C. purpurascens, respectively. Flowering plants that developed from the seeds of diploid C. persicum × the amphidiploid were barely fertile and had 65 somatic chromosomes (2n=65, AAB), whereas those that developed from the seeds of the amphidiploid × C. purpurascens were barely fertile and had 58 somatic chromosomes (2n=58, ABB). The somatic chromosomes indicated that these plants are probably sesquidiploids between the amphidiploid and either C. persicum or C. purpurascens. The interspecific cross-breeding of cyclamen using the amphidiploids and the sesquidiploids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号