首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Dujardin  W. W. Hanna 《Euphytica》1988,38(3):229-235
Summary An interspecific hybridization program designed to transfer gene(s) controlling apomixis from Pennisetum squamulatum Fresen. (2n=6x=54) to induced tetraploid (2n=4x=28) cultivated pearl millet, Pennisetum americanum (L.) Leeke resulted in four offtype plants, two with 27 chromosomes and two with 28 chromosomes. These plants were found among 217 spaced plants established from open-pollinated seed of an apomictic 21-chromosome polyhaploid (2n=21) plant derived from an apomictic interspecific hybrid (2n=41) between tetraploid pearl millet and Pennisetum squamulatum. It appeared that a 21- (or 20-) chromosome unreduced egg from the apomictic polyhaploid united with a 7-chromosome pearl millet (2n=2x=14) gamete to produce a 28- (or 27-) chromosome offspring. Meiotic chromosome behavior was irregular averaging from 3.60 to 4.05 bivalents per microsporocyte in the 27- and 28-chromosome hybrids. The 27- or 28-chromosome hybrids, like the 21-chromosome female parent, shed no pollen, but set from 1.8 to 28 seed per panicle when allowed to outcross with pearl millet. Progeny of the 28-chromosome hybrids were uniform and identical to their respective female parents, indicating that apomixis had been effectively transferred through the egg. In addition, a 56-chromosome plant resulting from chromosome doubling of a 28-chromosome hybrid was identified. Pollen was 68 per cent stainable and the plant averaged 2.3 selfed seeds per panicle. Chromosomes of the 56-chromosome plant paired as bivalents (x=10.67) or associated in multivalents. Three to nine chromosomes remained unpaired at metaphase I. Multiple four-nucleate embryo sacs indicated the 56-chromosome hybrid was an obligate apomict. The production of 27-, 28-, and 56-chromosome hybrid derivatives were the results of interspecific hybridization, haploidization, fertilization of unreduced apomictic eggs, and spontaneous chromosome doubling. These mechanisms resulted in new unique genome combinations between x=7 and x=9 Pennisetum species.  相似文献   

2.
Summary An aneuploid hybrid (2n=23) of Fragaria moschata (2n=42) and Potentilla fruticosa (2n=14) was backcrossed with pollen of both parents, separately and combined in a pollen mixture. Seven vigorous progeny were obtained. The origin of the exeptional chromosome numbers, 2n=44, 49, 63, 63, 65, 67, 67, is discussed, and it is shown that each of the numbers could be produced by the fertilisation of unreduced and double unreduced gametes of the hybrid by normally reduced gametes of one of the parental species.  相似文献   

3.
C. H. Park  P. D. Walton 《Euphytica》1990,45(3):217-222
Summary Fifty four hybrid plants between Elymus canadensis and Psathyrostachys juncea were obtained by handpollination and embryo culture. The average cross compatibility between both species was 31.2 percent. One amphiploid plant was induced by colchicine treatment. The hybrid and amphiploid plants resembled P. juncea in appearance but showed a higher plant height and dry matter yield than the parents. The hybrids showed extremely low pollen stainability and were completely sterile. With the exception of one plant (2n=3x+1=22), all hybrid plants were allotriploids (SHN, 2n=3x=21). The amphiploid plant (SSHHNN, 2n=6x=42) showed 58.9% pollen stainability and 11.6% seed fertility.Mean chromosome associations of the hybrids and amphiploid at metaphase I were 0.02IV+0.06III+2.03II+16.91I and 0.07III+18.00II+5.85I, respectively. Lagging chromosomes, chromosome bridges, abnormal cytokinesis, and micronuclei were occasionally observed at the anaphase, telophase, or tetrad stage.  相似文献   

4.
Summary Low temperature and humidity were used for the storage of pollen of four species of Fragaria (2n=14, 42 and 56) and two species of Potentilla (2n=14). The stainability of Fragaria pollen was assessed over a number of years by use of aceto-carmine stain and its viability by cross-pollinations; stainability of Potentilla pollen was assessed by acetocarmine. Fragaria pollen so stored remained stainable for seven years and showed the ability to set seed for three years. over the latter period, aceto-carmine staining gave a reasonable prediction of seed set produced by the stored pollen of Fragaria and so is of value in estimating pollen viability in that genus. Potentilla pollen remained stainable for three years.  相似文献   

5.
Summary We cultured colchicine-treated hybrid ovules in vitro to produce fertile amphidiploids of C. persicum (2n=2x=48. referred to as AA) × C. purpurascens (2n=2x=34, referred to as BB). Seedlings and mature plants were obtained from the ovules without colchicine and those exposed to 50 mg/l colchicine for 5, 10 and 15 days, whereas they were not obtained from the ovules exposed to 50 mg/l colchicine for 20 days and 500 mg/l for 5, 10, 15 and 20 days. Although 8 mature hybrids derived from the ovules without colchicine produced a few fertile pollen grains, they failed to produce viable seeds by self-fertilization. The hybrids had 41 somatic chromosomes. Four and 3 mature plants were derived from ovules exposed to 50 mg/l colchicine for 10 and 15 days, respectively. One each among 4 and 3 mature plants showed a high frequency of pollen grain fertility, produced several seeds by self-fertilization, and had 82 somatic chromosomes which is twice the number of hybrid chromosomes (2n=41, AB). These findings indicated that these plants are amphidiploids (2n=82, AABB) between C. persicum and C. purpurascens. Three and 2 viable seeds were derived by the conventional crosses of diploid C. persicum × the amphidiploid and the amphidiploid × C. purpurascens, respectively. Flowering plants that developed from the seeds of diploid C. persicum × the amphidiploid were barely fertile and had 65 somatic chromosomes (2n=65, AAB), whereas those that developed from the seeds of the amphidiploid × C. purpurascens were barely fertile and had 58 somatic chromosomes (2n=58, ABB). The somatic chromosomes indicated that these plants are probably sesquidiploids between the amphidiploid and either C. persicum or C. purpurascens. The interspecific cross-breeding of cyclamen using the amphidiploids and the sesquidiploids is discussed.  相似文献   

6.
Summary Atrazine resistant Brassica napus × B. oleracea F1 hybrids were backcrossed to both parental species. The backcrosses to B. napus produced seeds in both directions but results were much better when the F1 hybrid was the pollen parent. Backcrosses to B. oleracea failed completely but BC1s were rescued by embryo culture both from a tetraploid hybrid (2n = 4x = 37; A1C1CC) and sesquidiploid hybrids (2n = 3x = 8; A1C1C). Progeny of crosses between the tetraploid hybrid and B. oleracea had between 25 and 28 chromosomes. That of crosses between the sesquidiploid hybrid and B. oleracea had between 21 and 27. A few plants that had chromosome counts outside the expected range may have originated from either diploid parthenogenesis, unreduced gametes or spontaneous chromosome doubling during in vitro culture. Pollen stainability of the BC1s ranged from 0% to 91.5%. All the BC1s to B. oleracea were resistant to atrazine.  相似文献   

7.
Summary A self-fertile trigeneric hybrid in the Triticeae involving species from the Hordeum, Triticum and Secale genera has been produced. The trigeneric hybrid was obtained by crossing octoploid triticale (x Triticosecale Wittmack) with octoploid tritordeum (H. chilense × T. aestivum amphiploid). The trigeneric hybrid presented a genome constitution AABBDDRHch and 2n=8X=56 chromosomes. The cytogenetical analyses showed no chromosome instability nor homeologous pairing between Hordeum and Secale chromosomes. In the F2 generation the chromosome number ranged from 42 to 52. Within this range, the plants with smaller numbers of chromosomes were more frequent. A preferential transmission of rye chromosomes could be inferred.  相似文献   

8.
Summary Interspecific substitutions of the nucleus of Helianthus annuus (2n=34) into the cytoplasm of H. petiolaris (2n=34) were obtained by successive backcrossing using cultivated sunflower, H. annuus, as the recurrent pollen parent.Meiosis in the F1 was characterized by multivalents, suggesting that 10 of the 34 chromosomes were heterozygous for chromosomal interchanges. An additional pair of chromosomes also contained a paracentric inversion. Continued backcrossing resulted in rapid elimination of the meiotic aberrations evident in the F1. In the BC1, 1 of 11 plants had normal meiosis and by the BC2, only 13 of 54 plants had meiotic aberrations similar to those of the F1. However, trisomic progeny (2n=35) were found in 3 of the 11 BC1 plants and 20 of the 54 BC2 plants. No meiotic aberrations were observed in BC3 or BC4 plants. Plants with indehiscent anthers, and considered to be male sterile (M.S.), first occurred in the BC1 and, by the BC2, 51 of 54 plants were M.S. All 19 BC3 and 16 BC4 plants were M.S. Preliminary investigations suggest that the pollen from such plants is sterile and that the sterility is cytoplasmic rather than genetic.Disc-flower measurements were a useful technique for selecting samples at the correct stage of microsporogenesis, but could not be used to distinguish between successive backcrosses.  相似文献   

9.
J. H. Heering  J. Hanson 《Euphytica》1993,71(1-2):21-28
Summary The somatic chromosome number in Sesbania sesban var. nubica, S. goetzei and S. keniensis (Leguminosae; Papilionoidae) was found to be 2n=12. These findings were in agreement with earlier reports on S. sesban and S. keniensis. The chromosome number 2n=12 is a new record for S. goetzei. Similarities in karyotypes were found in the three species. All species had one pair of long metacentric chromosomes; the second pair was submedian, followed by four smaller pairs of metacentric chromosomes. Nucleolar organiser regions in the form of satellites were found on the short arm of the fourth chromosome pair in S. sesban and S. keniensis. Interspecific crosses in all possible combinations were carried out, resulting in pod and viable seed formation for the crosses S. sesban x S. goetzei, S. sesban x S. keniensis, S. goetzei x S. sesban and S. goetzei x S. keniensis. The two crosses with S. keniensis as a female parent were unsuccessful. The hybrid plants established normally and produced viable seeds.  相似文献   

10.
N. Inomata 《Euphytica》2005,145(1-2):87-93
Brassica napus (2n = 38) and Diplotaxis harra (2n = 26) were used to investigate gene transfer from D. harra to B. napus. Intergeneric F1 hybrids (dihaploid 2n = 32 chromosomes) were obtained through ovary culture. The chromosome associations in the first meiotic division was (0–2)III + (2–10)II + (12–28)I. Many seeds were harvested in the F1 hybrid after backcrossing with B. napus, and from open pollination of the F1 hybrid. Somatic chromosome numbers of BC1 and hybrid plants varied from 2n = 26 to 52. In the first meiotic division, high frequencies of bivalent association and relatively low pollen fertility were observed. BC2 plants generated from the BC1 plants with 2n = 38 chromosomes, 69.6% showed 2n = 38 chromosomes. Many aneuploids with addition and deletion of chromosomes were also obtained. A bridge plant between B. napus and D. harra with 2n = 32 chromosomes should be valuable material for the breeding of brassica crops.  相似文献   

11.
M. Kato  S. Tokumasu 《Euphytica》1980,29(1):97-106
Summary Nucleus substitution of Brassica japonica (2n=20) with Raphanus sativus (2n=18) was carried out by means of repeated backcrossing of Brassicoraphavus (2n=37) to R. sativus as a pollen donor. In the course of nucleus substitution, chlorophyll deficiency appeared. Plants with more than 28 chromosomes, like their parents, had green leaves and those with 24 to 26 chromosomes had yellowish green ones. Almost all plants with 18 to 23 chromosomes showed yellow or whitish yellow. The R. sativus with B. japonica cytoplasm (2n=18) was obtained after four successive backerosses. The completely substituted R. sativus showed the same fertility as the true R. sativus used as a recurrent parent. It is assumed that the chlorophyll deficiency is caused by disharmony between the B. japonica cytoplasm and the R. sativus nucleus. The chlorophyll deficiency is discussed in comparison with male sterility or other characters which sometimes occur in alloplasmic Raphanus and Brassica species.  相似文献   

12.
N. Inomata 《Euphytica》2003,133(1):57-64
The cytogenetic study was investigated in the intergeneric F1 hybrid, F2and backcross progenies (BC1). The plants used were Brassica juncea(2n=36) and Diplotaxis virgata(2n=18). Three intergeneric F1 hybrids between two species were produced through ovary culture. They showed 36 chromosomes. It might consist one genome of B. juncea and two genomes of D. virgata. The morphology of the leaves resembled that of B. juncea. The color of the petals was yellow that was like in D. virgata. The size of the petal was similar to that of B. juncea. The mean pollen fertility was15.3% and the chromosome associations in the first meiotic division were(0–1)IV+(0–2)III+(8–12)II+(12–20)I. Many F2 and BC1seeds were harvested after open pollination and backcross of the F1 hybrids withB. juncea, respectively. The F2seedlings showed different chromosome constitutions and the range was from 28 to54 chromosomes. Most seedlings had 38chromosomes followed by 36, 40 and 54. The BC1 seedlings also showed different chromosome constitutions and the range was from 29 to 62. Most seedlings had both 40and 54 chromosomes followed by 36, 46 and52. In the first meiotic division of F2 and BC1 plants, a high frequency of bivalent associations was observed in all the various kinds of somatic chromosomes. Many F3 and BC2 seeds were obtained by self-pollination and open pollination of both F2 and BC1 plants, and by backcrossing both F2 and BC1plants with B. juncea, respectively,especially, three type progeny with 36, 40or 54 chromosomes. The somatic chromosomes of the F3 and BC2 plants were further investigated. The bridge plants between B. juncea and D. virgata with 36 chromosomes may be utilized for breeding of other Brassica crops as well as B. juncea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
K. H. Lee  H. Namai 《Euphytica》1992,60(1):1-13
Summary Aneuploids with 2n=21 and 2n=22 derived from crossing of sesquidiploids (2n=29, AAC) and Brassica campestris (2n=20, AA) were selfed successively in order to follow the changes in chromosome number of the progenies for three consecutive generations. Progenies with 2n=22, 23 and 24 obtained after selfing of S0 generation and the succeeding S1, S2 and S3 generations were analyzed in terms of pollen stainability, % seed set as well as cytogenetically based on meiotic behaviour with the aim of determining the possibility of addition of one or more alien chromosomes into n=10 species which may lead to differentiation of single or plural disomic addition lines. The generation of aneuploids with 2n=21 progressed in such a way that most plants seem to revert to the 2n=20 chromosome number of B. campestris after selfing. From 2n=22 aneuploids, however, the succeeding progenies showed high frequency of plants with two additional chromosomes which accounted for 50.6% and 52.9% of total S3 progenies via 2n=22 and 2n=24 S2 generations, respectively. The meiotic behaviour of these progenies indicated evidence for a rule governing the frequency distribution of chromosome number among these addition lines and high possibility to breed such disomic plants with 2n=22. A method of selecting stable aneuploids was suggested in addition to the possible role of pollination biology at various processes of such breeding program.  相似文献   

14.
Summary Fifteen species from the genus Agropyron were crossed together. Fourteen of the crosses did not produce fruits. Twenty crosses produced varying numbers of caryopses. Of the fruits produced, 22% contained no embryos. For a variety of reasons it was possible to obtain only 2 plants from the remaining 140 embryos. The crosses which yielded viable plants were between A. trachycaulum cv. Primar (2n=28) and A. intermedium cv. Chief (2n=42) as well as between A. trachycaulum from Lethbridge (2n=28) and A. desertorum cv. Nordan (2n=28). The somatic chromosome numbers for the hybrids are 37 and 28. respectively. Studies of vegetative plant character are presented.  相似文献   

15.
Summary Interspecific somatic hybrid plants were regenerated after electrofusion of mesophyll protoplasts with the objective of transferring resistance to Verticillium dahliae from Solanum torvum into potato. Early selection of the putative hybrids was based on differences in cultural behaviour of the parental and hybrid calli (particularly the ability of the latter to regenerate early) in combination with morphological markers. Four putative hybrids were recovered from hundreds of calli, probably resulting from complementation of the two parental genomes. The regenerates were tetraploids (2n=4×=48 chromosomes) and exhibited intermediate traits including leaf form, plant morphology and the presence of anthocyanin. The hybrid nature of the four selected plants was confirmed by examining isoenzyme patterns for isocitrate dehydrogenase (Idh), malate dehydrogenase (Mdh), phosphoglucoisomerase (Pgi) and 6-phosphogluconate dehydrogenase (6-Pgd). While the hybrid plants rooted readily and grew vigorously under in vitro conditions, in the greenhouse their development and growth were retarded by difficulties in rooting. When grafted on potato or S. torvum rootstocks, the hybrid plants recovered normal development and growth. Again, they exhibited intermediate morphological traits. Tests for resistance realized in vitro with medium containing 50% Verticillium wilt filtrate showed that all the somatic hybrids were resistant to the fungus filtrate.  相似文献   

16.
S. Tokumasu  M. Kato 《Euphytica》1988,39(2):145-151
Summary In order to elucidate the mechanism of low fertility of Brassicoraphanus, i.e., amphidiploids between Brassica japonica Sieb. and Raphanus sativus L., the chromosome number of 253 plants was studied during the 3rd–9th generations for their seed fertility. Meiotic irregularity showed no connection with degree of sterility. Brassicoraphanus consisted of euploids (2n=38), hyperploids (2n=39–43) and hypoploids (2n=34–37) with white or yellow flowers. The number of plants was highest in euploids and became lower as the chromosome number diverged from the euploid number. Further, seed fertility was highest and the range of its variation widest in euploids. The seed fertility of aneuploids became lower and its variation narrower in proportion to the number of chromosomes additional to or missing from the euploid number. Yellow-flowered plants were superior in seed fertility to white-flowered plants. Seed fertility of plants is primarily affected by their chromosome numbers and secondarily modified by genic effects. As a whole, seed fertility of Brassicoraphanus increased gradually and its variation widened with the advance of generations. This was explained mainly by the increase of balanced combinations of genes.  相似文献   

17.
Summary Eight triazine resistant (Brassica napus x B. oleracea) x B. oleracea interspecific hybrids with chromosome numbers ranging from 25 to 27 were backcrossed a second time to B. oleracea but no seed was formed. However, in vitro embryo rescue on 77 developing ovules yielded nine BC2 plants with chromosome numbers between 19 and 25 and in which the herbicide resistance was still strongly expressed. Three of these plants (NOH-8B2B1, 2n=20; NOH-8B2B3 and NOH-8B2B4, 2n=19) were backcrossed again to B. oleracea. Two of the three plants produced seed which germinated to produce triazine resistan BBC3s with 18, 19 or 20 chromosomes. The triazine resistant B. campestris cytoplasm has now been stabilized in B. oleracea.  相似文献   

18.
S. Tokumasu 《Euphytica》1976,25(1):463-470
Summary Amphidiploids (Brassicoraphanus) were produced by means of colchicine treatment of F1 hybrids between Brassica japonica Sieb. and Raphanus sativus L. The cytology of the amphidiploids was studied from F1 to F3 generations. Some plants had the euploid chromosome number 2n=38, whereas others had the aneuploid number 2n=37. One or two of either quadrivalents or trivalents, as well as some univalents, were seen in most of the plants examined. All the plants showed a low seed fertility. In F3 generation there arose some yellow-flowered plants, all of which showed a higher seed fertility than normal white-flowered plants. It is postulated that the change of flower colour might originate in the segmental exchange of only partially homologous chromosomes following multivalent formation. A gene causing white flower colour was perhaps closely linked to a gene causing sterility, and both genes were probably excluded together through the segmental exchange of the chromosomes. Therefore, it can be said that the increase of fertility was induced by cytological irregularity.  相似文献   

19.
D. J. Cox 《Euphytica》1991,55(1):57-63
Summary Monosomic alien addition lines combining individual F. drymeja chromosomes and the L. multiflorum complement were isolated from the cross between the triploid hybrid L. multiflorum (4x) × F. drymeja (2x) and diploid L. multiflorum (2x). Chromosome pairing in the addition lines was studied at metaphase 1 of meiosis and the relationship between single F. drymeja chromosomes and the corresponding homologous pair in L. multiflorum is discussed. Trivalent frequency in the addition lines was higher than expected from observations of chromosome pairing in the triploid hybrid and there were differences between lines in the number of trivalent associations formed. There is some evidence to suggest that trivalent frequency is not entirely dependent on chromosome length and that transmission of the alien chromosome in the female is dependent on the size of the added chromosome. Morphological studies were made to assess the phenotypic effects of the addition of single F. drymeja chromosomes to the L. multiflorum complement. Two plants (2n=14) with recombination between a L. multiflorum and a F. drymeja chromosome were identified.  相似文献   

20.
Genetic capacity for green plant regeneration in anther culture were mapped in a population comprising 50 doubled haploid lines from a cross between two wheat varieties ‘Ciano’ and ‘Walter’ with widely different capacity for green plant regeneration. Bulked segregant analysis with AFLP markers and composite interval mapping detected four QTLs for green plant percentage on chromosomes 2AL (QGpp.kvl-2A), 2BL (QGpp.kvl-2B.1 and QGpp.kvl-2B.2) and 5BL (QGpp.kvl-5B).The three QTLs detected on chromosome 2AL and 2BL all derived their alleles favouring green plant formation from the responsive parent ‘Ciano’.The remaining QTL on chromosome 5BL had the allele favouring green plants from the low responding parent ‘Walter’. In a multiple regression analysis the four QTLs could explain a total of 80% of the genotypic variation for green plant percentage. None of the chromosomal regions with QTLs for green plant percentage showed significant influence on either embryo formation or regeneration frequencies from the anther culture. The three major QTLs located on group two chromosomes were fixed in a second DH population derived from two parents ‘Ciano’ and ‘Benoist’,both with high capacity to produce green plants. A QTL explaining31.5% of the genetic variation for green plant formation were detected on chromosome 5BL in this cross as well. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号