首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响   总被引:76,自引:11,他引:76  
通过田间定位试验与土壤渗漏仪 (Lysimeter)模拟试验 ,研究太湖地区稻麦生产中氮肥过量施用带来氮肥利用率低与环境污染问题 ,探讨本区稻麦高产与减少氮肥淋洗的适宜氮肥用量。初步试验结果表明 ,氮肥适宜用量随着稻麦产量的提高而增加 ,本区两种主要土壤水稻、小麦高产的氮肥适宜用量(以N计 )分别为 2 2 5~ 2 70kghm- 2 与 1 80~ 2 2 5kghm- 2 ;适宜的氮肥用量使单位面积的有效穗数和每穗的结实颖花数均高 ,因而产量高。氮素的淋洗以NO- 3 N为主 ,主要发生在麦季与泡田插秧初期 ,其含量随着施氮量的增加而增加 ,每hm2 施N 2 2 5kg的模拟试验 ,麦季渗漏液的NO- 3 N浓度在 5 4~ 2 1 3mgL- 1,有60 %的样次超过污染标准 (NO- 3 N 1 0mgL- 1) ;田间试验 ,麦季施N量在 2 70~ 31 5kghm- 2 范围内 ,地下水NO- 3 N浓度在 1 9~ 1 1 0mgL- 1,有 2 0 %的样次接近 ,1 0 %的样次超过污染标准。长期NO- 3 N渗漏累积 ,势必对地下水构成潜在威胁。  相似文献   

2.
北京市平原农区深层地下水硝态氮污染状况研究   总被引:37,自引:0,他引:37       下载免费PDF全文
对北京市平原农区481眼深层井硝态氮含量进行了分析。结果表明,北京市平原农区深层地下水硝态氮(NO-3N)含量平均为5.74mgL-1,其中48.4%的调查机井受到人类活动的影响(NO-3N≥2mgL-1),21.0%的机井超过国际安全允许上限(NO-3N≥10mgL-1),8.1%的机井超过我国饮用水上限(NO-3N≥20mgL-1)。地下水位在120~200m的饮用水质量总体较好,硝态氮平均含量为5.16mgL-1,超标率为13.8%;而地下水位在70~100m的农灌水质量相对较差,硝态氮平均含量为5.98mgL-1,超标率为24.1%。近郊地下水质量劣于远郊,其中近郊饮用水超标率为38.7%,远郊为3.0%;近郊农灌水超标率为52.6%,远郊为15.3%。地下水硝态氮超标区域主要集中在老菜区。总体来看,北京市平原农区地下水硝态氮污染程度已超过欧美国家,必需及早采取有效措施加以控制。  相似文献   

3.
利用 3年 6季氮肥试验研究了冬小麦—夏玉米轮作制度下 ,冀东褐土剖面碱解氮、NO-3 -N含量时空迁移变化和土壤氮素安全值指标。结果表明 ,土壤碱解氮自上而下依次递减 ,NO-3 -N呈“V”字型变化 ,二者均与施肥水平及植株生长状况密切相关 ,在 2 0~ 40cm区域出现碱解氮亏缺区 ,N2处理较为明显。N2处理的地下水NO-3 -N含量已超标 ,建议高产条件下土壤环境投氮安全值为 42 0~ 450kghm- 2 较为适宜  相似文献   

4.
冬小麦/夏玉米轮作中NO3-N在土壤剖面的累积及移动   总被引:41,自引:0,他引:41  
巨晓棠 《土壤学报》2003,40(4):538-546
通过田间试验研究了冬小麦 /夏玉米轮作中NO- 3 N在土壤剖面的累积及移动 ,结果表明 ,尿素施入旱地土壤后 ,硝化作用一般在 7d之内完成 ,NH 4 N只在施肥后的短期内保持较高浓度 ,其它时期NH 4 N含量基本在 1~ 3mgkg- 1 范围内 ,土壤剖面不同层次NH 4 N一般也低于 4mgkg- 1 ,NH 4 N的含量不能反映土壤有效氮的水平。土壤剖面中的NO- 3 N随施氮量的增加而显著升高。在低施氮量条件下 (N <12 0kghm- 2 ) ,NO- 3 N主要在 0~ 40cm土层内移动 ,但当施氮量高于N 2 40kghm- 2 时 ,冬小麦季即有相当数量的氮移出 0~ 10 0cm土体。NO- 3 N在土体中的移动存在着很大的年际变化 ,在干旱年份 ,即使夏玉米季 ,NO- 3 N向深层移动的可能性也很小。试验年份中 ,除 1999年夏玉米季发生了较严重的气体损失以外 (该季节特别干旱 ) ,其余季节损失的肥料氮主要以NO- 3 N的形式在深层土壤剖面中累积 ,这在两个试验点的结果相当一致。  相似文献   

5.
利用矿化培养与田间试验的方法,探讨了太湖地区长期施氮条件下,氮肥用量对土壤供氮、水稻吸氮与环境的影响。初步试验结果表明:多年施用氮肥能够提高土壤的供氮能力,并随施N量的增加而增加。增加氮肥用量能够提高稻株含氮量和吸氮量,但氮素向谷粒的转移率降低,试验区水稻氮肥用量以225~270kghm-2左右为佳。稻田田面水和渗漏液的N素养分动态变化显示,施N会造成田面水NH4 N和NO3-N含量的短暂升高,但不同施N量之间相差并不显著。稻田渗漏液中的氮以硝态氮为主,通常在淹水泡田后的7d内有一个NO3-N含量的峰值期,NO3-N含量在1.62~2.75mgL-1之间,约10d后降至0.5mgL-1以下;NH4 N含量变化有随施N量而增加的趋势,高峰期通常出现在分蘖末期,其余时间NH4 N含量在0.2mgL-1以下。  相似文献   

6.
黑钙土烤烟氮素积累、分配的研究   总被引:4,自引:1,他引:3  
通过对黑钙土上烤烟氮素积累与分配研究,结果表明,从烟株全生育期内氮素含量与积累结果可看出,不施氮肥处理,烤烟氮积累总量为96.97 kghm-2,黑钙土土壤供氮能力强;施氮处理N1(52.5 kghm-2)和N2(67.5 kghm-2)氮积累总量分别为117.94和121.59 kghm-2,烟株氮积累量同施氮量成正比,各部位烟叶氮素含量范围适中,从不同部位烟叶氮积累表明,N1和N2处理上部叶氮积累量分别为42.93 kghm-2和43.90 kghm-2,下部叶、茎花氮积累量相差不大,增加氮肥用量,烟株氮素主要集中在上部烟叶。从烤烟经济效益角度考虑,黑钙土上施氮量应控制在52.5~67.5 kghm-2之间比较适宜。  相似文献   

7.
自然状态下灌溉稻田每年比旱地要多固氮27kg hm^-2,可以减少氮肥用量,既节约农本和资源,又缓解对环境的压力。太湖流域不同类型稻田在水循环中可吸纳氮素N2~20kg hm^-2,是氮素的汇。该区平原稻麦轮作田氮素的径流流失量平均小于当年施氮量的5%,对苏南太湖地区面源污染的相对贡献率仅为7.5%,不是该区氮素面源污染的主要组成。稻田氮素向下淋失迁移的量低于麦田;太湖地区井水中硝态氮的超标率自20世纪80年代中期至今没有变化,说明该区井水中硝态氮含量高低与农业上氮肥用量没有直接联系。尿素挥发损失量稻季达施氮量的6%-21%,麦季为3.1%-6.5%;稻季氨挥发损失高于麦季;湿沉降带入土壤或水体的氮也是夏(稻)季高于麦季。总体上看,稻田向环境输出的氮少,而固定、汇集的氮多,“稻田圈”是保护环境的重要生态单元。  相似文献   

8.
春秋季红壤旱地氨挥发对氮施用量、气象因子的响应   总被引:1,自引:0,他引:1  
通过红壤旱地种植牧草马唐和蔬菜冬萝卜轮作试验,研究了在春秋二季红壤旱地氨挥发对不同施氮量和气象因子的响应。结果表明,红壤旱地春季牧草实验,氮肥处理N90、N160和N230,氨挥发持续10~17d,在施肥后6~8d达到峰值,峰值(扣除对照N0)分别为N0.11、0.57和1.84kghm-2d-1。秋季氮肥处理N70、N130、N190和N250以基肥和以水带肥追施(基/追比为7∶3)氨挥发持续时间均为10~11d,基肥氨挥发峰值(扣除对照N0)分别为N0.02、0.05、0.06kghm-2d-1和0.09kghm-2d-1;追肥氨挥发峰值(扣除对照N0)分别为N0.05、0.22、0.38kghm-2d-1和0.72kghm-2d-1。不同施氮处理,春季累计氨挥发量为N0.67~5.16kghm-2,占施入肥料N的0.74%~2.24%;秋季累计氨挥发量为N0.37~3.04kghm-2,占施入肥料N的1.31%~3.69%。红壤旱地春秋二季氨挥发量(y)均随施N量(x)的提高而指数递增,其关系式分别为:y=0.1576e0.0146x和y=0.1826e0.0112x。显著性检验表明,春秋两季不同施氮量处理之间,土壤氨挥发量及挥发通量差异均达到显著水平。春秋二季基肥氨挥发总量和通量均与气温、气压、蒸发量和土温等环境气象因子有较好的相关性(p<0.05)。  相似文献   

9.
田间条件下,以花育22号和花育25号为试材,采用膜下滴灌方法,设置花生初花后20d灌水(WN0)、灌水施N 20kg/hm~2(WN1)和灌水施N 30kg/hm~2(WN2)处理,以田间自然降雨条件为对照,研究开花期补充水肥对0—100cm剖面土壤水分、水解性氮、速效磷(Olsen-P)和NO-3-N含量变化及迁移特征的影响。结果表明:(1)开花期灌水施肥使0—100cm土壤剖面土壤含水量均随土层深度增加而升高,利于0—60cm土层土壤含水量保持稳定;施用氮肥可使0—60cm土层土壤含水量升高滞后于不施肥处理10d左右,高量施氮处理使水分下渗速度减缓且20—40cm土层含水量变异性增大。(2)开花期灌水施氮肥提高了0—60cm土层NO-3-N含量,灌水施肥10~20d后是NO-3-N淋失迁移的风险期,其淋溶迁移时间与土壤水分同步。高量施氮肥使土壤硝态氮淋溶风险提前10d。(3)花后补充水分并施氮肥均可提高0—100cm剖面土壤水解性氮含量,不施氮肥处理使开花后60d时0—40cm土层水解氮含量降至57.4~89.6mg/kg,高量施氮使土壤水解性氮素养分向下淋溶风险增强。(4)开花后补充水分和氮肥处理均明显增加0—40cm土壤Olsen-P含量,施氮肥使磷素供应强度高峰后移20~40d。花生开花期灌水补充氮肥可使0—60cm土层土壤含水量、NO-3-N含量、水解氮含量和0—40cm土壤Olsen-P含量升高且水氮下渗速度减缓,促进水肥利用效率提高,但施氮量不应超过30kg/hm~2,以降低氮素养分淋失迁移风险。  相似文献   

10.
  【目的】  当前华北平原冬小麦–夏玉米生产中,存在氮肥投入量大、氮肥利用效率低等问题,在滴灌水肥一体化条件下研究施氮量对冬小麦–夏玉米周年产量、氮素利用效率和土壤全氮含量、硝态氮残留的影响,以期为该地区小麦–玉米节肥、高产高效的栽培模式提供理论依据。  【方法】  于2018—2020年在青岛农业大学胶州现代农业示范园开展小麦、玉米滴灌施肥田间试验。设冬小麦/夏玉米生长季不施氮(N0)和施氮 150/150 kg/hm2 (N1)、210/225 kg/hm2 (N2) 和270/300 kg/hm2 (N3) 4个水平,以传统施肥方式和常规施氮量240/240 kg/hm2为对照(CK)。分析冬小麦和夏玉米产量、氮素吸收量和土壤氮素残留量。  【结果】  N2处理冬小麦、夏玉米产量最高,与N3处理无显著差异,但显著高于N0、N1和CK处理;N3处理冬小麦、夏玉米的干物质积累量、氮素吸收量最高,与N2处理差异较小,而显著高于N0、N1和CK处理。冬小麦、夏玉米氮肥偏生产力随着施氮量的提高而降低;冬小麦季氮素利用效率随着施氮量的提高而降低;夏玉米季,N2、N1和N0处理的氮素利用效率显著高于N3和CK处理,且N0、N1和N2处理间无显著差异;冬小麦、夏玉米氮肥农学利用率均随着施氮量的提高而降低,N2施氮水平下,氮素利用效率和氮肥农学利用率均表现较优。随着施氮量的增加,0—100 cm土层土壤全氮含量和硝态氮含量呈增加的趋势,全氮积累主要集中在0—40 cm土层,N3、N2和CK处理0—100 cm土层土壤全氮含量与N0和N1处理之间的差异随着轮作年数的增加而逐渐增大,N2处理较N3和CK处理有效抑制了硝态氮在表层土壤的积累和向深层土壤的迁移,降低了硝态氮淋失风险。  【结论】  冬小麦季施氮210 kg/hm2和夏玉米季施氮225 kg/hm2 (N2)可实现周年作物增产高效,提高氮素利用效率,显著降低硝态氮向深层土壤迁移,降低硝态氮淋失风险,是滴灌水肥一体化下华北平原麦玉周年轮作适宜的施氮量。  相似文献   

11.
[目的]探讨不同生物质炭施用量条件下旱地红壤中NO-3-N的含量及水平运移规律,为该地区的农田水分管理和环境保护提供科学依据。[方法]采用室内水平扩散率仪测定不同生物质炭施用量[C0(0t/hm~2,不施用生物质炭),C1(2.5t/hm~2),C2(5t/hm~2),C3(10t/hm~2),C4(20t/hm~2),C5(30t/hm~2)和C6(40t/hm~2)]条件下土壤中硝态氮水平运移速率和运移浓度。[结果]生物质炭施用对土壤中硝态氮的水平运移速率和水平运移浓度影响显著。随着生物质炭施用量的增加,硝态氮的水平运移速率和水平运移浓度呈先增加后降低的趋势,而土壤水扩散率呈逐渐降低趋势。C5(30t/hm~2)处理下硝态氮的水平运移速率和水平运移浓度均出现最大值,分别为0.67cm/min,165.52mg/kg。随着生物质炭施用量的继续增加,C6(40t/hm~2)处理的硝态氮的水平运移速率和水平运移浓度较C5(30t/hm~2)处理有所降低,硝态氮浓度最大值均出现在湿润峰峰面上。分析影响硝态氮水平运移规律的因素表明,生物质炭降低了土壤的容重、增加了土壤有机碳和孔隙度,从而导致了各处理硝态氮的水平运移规律发生了变化。[结论]生物质炭可以改善土壤的理化性状,促进硝态氮的水平运移,在利用生物质炭改良旱地红壤理化性状的同时,也要注意防止氮素流失对环境的影响,降低其对地表水的潜在污染风险。  相似文献   

12.
山西省太原市旱作农区大气活性氮干湿沉降年度变化特征   总被引:6,自引:0,他引:6  
鉴于大气氮素沉降对整个生态系统的重要影响,我国近年来陆续开展了不同尺度的大气氮素干、湿沉降的研究,但少有农业区多年连续监测的资料。本研究利用DELTA系统、被动采样器和雨量器在山西省太原市郊区阳曲县河村旱作农业区进行了4年的监测试验,观测大气氮素干、湿沉降的时间变异。结果表明:2011年4月—2015年3月,河村4年大气活性氮NH_3、HNO_3、NO_2、颗粒态NO_3~-(pNO_3~-)、颗粒态NH_4~+(pNH_4~+)平均沉降量分别为4.50 kg(N)·hm~(-2)·a~(-1)、3.54 kg(N)·hm~(-2)·a~(-1)、2.56 kg(N)·hm~(-2)·a~(-1)、1.62 kg(N)·hm~(-2)·a~(-1)、2.75 kg(N)·hm~(-2)·a~(-1),大气氮素干沉降总量为12.38~18.95 kg(N)·hm~(-2)·a~(-1),以2011年的氮干沉降量最高,2014年的最低。2011年4月—2015年3月各月氮干沉降量与氨气沉降量之间存在显著正相关,相关系数在0.809 8~0.937 1,由此可知,该地区活性氮沉降主要受农业氨气排放的影响。河村4年雨水中NO_3~-、NH_4~+平均浓度分别为3.20 mg(N)·L~(-1)和2.43 mg(N)·L~(-1),大气氮素湿沉降11.67~41.31 kg(N)·hm~(-2)·a~(-1)。年度间氮素湿沉降存在很大差异,以2012年氮素年湿沉降量最高,2014年最低,每年大气氮素湿沉降占氮总沉降量的份额超过50%。此外,4年湿沉降中不仅NO_3~--N和NH_4~+-N之间、且二者与降雨量也呈显著线性或二次相关关系,说明降雨量对NO_3~--N和NH_4~+-N的湿沉降影响较大。本研究表明太原市旱作农区不同年份间氮素湿沉降比干沉降差异更大,且总沉降数量较高。虽然是旱作区,该地区氮素干沉降略低于湿沉降。研究结果为该地区农田氮肥施用和氮素循环监测提供了理论依据。  相似文献   

13.
Biological processes can achieve nitrate removal from groundwater. The sulfur/limestone autotrophic denitrification by Thiobacillus denitrificans was evaluated with three laboratory-scale column reactors. The optimum sulfur/limestone ratio was determined to be 2:1 (mass/mass). Different hydraulic retention times were used during the column tests to examine nitrate removal efficiencies. Under an HRTs of 13 h, nitrate concentration of 60 mgNO3 --N L-1 was reduced to less than 5 mg NO3 --N L-1. On a higher HRT of 26 h the nitrate removal efficiency was close to 100% for all nitrate-nitrogen loading rates. Different initial nitrate-nitrogen concentrations (30, 60, and 90 mg NO3 --N L-1) were used in the study. Column tests showed that the nitrate-nitrogen loading rate in this study was between 50 to 100 g NO3 --N m-3 d-1 to obtain a removal efficiency of 80–100%. It was found that approximately 6 mg SO4 2- was produced for 1 mg NO3 --N removed. Nitrite-nitrogen in all cases was less than the maximum allowable concentration of 1 mg NO2 --N L-1. Effluent pH was stable in the range of 7 to 8; the effluent dissolved oxygen was less than 0.15 mg L-1 and the oxidation-reduction potential in all columns was in the range of –110 to –250 mV.  相似文献   

14.
稻田土壤中氮素淋失的研究   总被引:88,自引:3,他引:88  
本文应用稻田大型原状土柱渗漏计,研究了双季稻田土壤中氮素随渗漏水流淋失的形态、数量、季节性变化以及若干农化因子的影响。明确了稻田中氮素淋失的基本形态是硝态氮(NO3^--N),估算出双季稻田中氮素淋失总量可接近30kgN/ha,同时肯定了农田施用氮肥对地下水体环境可能的NO3^--N污染,建议双季稻田中每季水稻的氮肥用量宜控制在150kgN/ha;本文还证实氮肥用量对氮素淋失有明显影响,不同氮肥品  相似文献   

15.
对不同施肥条件下23年小麦连作地和苜蓿连作地土壤矿质氮分布和累积进行研究,探讨种植浅根系和深根系植物对硝态氮淋溶的影响。结果表明,不施肥(CK)和单施磷(P)肥,小麦和苜蓿连作地土壤硝态氮主要集中在0—60 cm土层,0—60 cm土层以下硝态氮含量变化稳定并小于2 mg/kg。氮肥、磷肥和有机肥配施(NPM)时,小麦连作地土壤硝态氮累积在20—100 cm和140—320 cm土层,年累积速率可达42.12 kg/(hm2.a);苜蓿连作土壤硝态氮主要集中在0—60 cm土层,仅在200—300 cm土层出现轻微累积,年累积速率仅为1.01 kg/(hm2.a)。在不施肥和单施磷肥下,种植小麦或苜蓿对土壤硝态氮残留量影响不显著,而氮、磷和有机肥配施时,小麦连作地土壤硝态氮残留量迅速增加,并与不施肥、单施磷肥处理有显著差异;苜蓿连作地土壤硝态氮残留量虽有少量增加,但与不施肥、单施磷肥处理无显著差异。不施肥、单施磷肥和氮、磷和有机肥配施,小麦连作、苜蓿连作地土壤剖面铵态氮含量主要在10—20 mg/kg之间波动,在土壤剖面无明显的累积现象,铵态氮残留量受施肥和作物种类的影响不显著。  相似文献   

16.
硝酸盐反射仪和SPAD法对玉米氮素营养诊断的比较   总被引:1,自引:0,他引:1  
精准的营养诊断是了解作物氮素营养及推荐施肥的基础。本文在田间滴灌条件下利用SPAD叶绿素仪(SPAD-502 Plus)和硝酸盐反射仪(RQ flex10)两种诊断方法对玉米关键生育时期的氮素营养诊断进行研究,旨在筛选出适宜的诊断方法,并依据诊断值建立滴灌玉米不同生育时期的施肥模型。试验设置0 kg(N)·hm~(-2)(N0)、225 kg(N)·hm~(-2)(N225)、330 kg(N)·hm~(-2)(N330)、435 kg(N)·hm~(-2)(N435)和540 kg(N)·hm~(-2)(N540)5个施氮水平,在不同生育时期测定了玉米叶片SPAD值和叶鞘NO_3~-含量,并分别与施氮量、植株全氮含量、产量进行方程拟合,比较两种诊断方法对玉米氮素营养的响应。研究结果表明:1)玉米叶片SPAD值和叶鞘NO_3~-含量均随施氮量的增加而显著升高,且在拔节期对施氮量的响应最敏感。叶鞘NO_3~-含量对施氮量变化的响应较SPAD值大,其与施氮量及玉米产量的拟合度均高于SPAD值,说明硝酸盐反射仪法对滴灌玉米氮素丰缺的反应更灵敏。2)玉米全氮含量与叶片SPAD值呈显著线性关系,而与叶鞘NO_3~-含量则以线性加平台表示。当叶鞘NO_3~-含量小于186 mg·L~(-1)时,植株全氮与NO_3~-间呈显著线性相关;当叶鞘NO_3~-含量大于186 mg·L~(-1)时,植株全氮随NO_3~-含量增加趋于不变。3)本农作区滴灌玉米最佳经济施氮量为402.5 kg·hm~(-2),对应的玉米产量为17 049 kg·hm~(-2)。玉米拔节期、抽雄吐丝期和灌浆期的临界叶鞘NO_3~-含量分别为729.3 mg·L~(-1)、536 mg·L~(-1)和81.2 mg·L~(-1)。SPAD叶绿素仪和硝酸盐反射仪均可对滴灌玉米进行氮素营养诊断,但硝酸盐速测值能更敏感地反映氮素丰缺状况,基于硝酸盐反射法进行作物氮素营养诊断及推荐施肥具有较好的准确性与适用性。  相似文献   

17.
华北山前平原农田土壤硝态氮淋失与调控研究   总被引:11,自引:5,他引:6  
本文依托中国科学院栾城农业生态系统试验站小麦-玉米一年两熟长期定位试验, 应用土钻取土和土壤溶液取样器取水的方法, 研究了不同农田管理措施下土壤硝态氮的累积变化, 计算了不同氮肥处理通过根系吸收层的硝态氮淋失通量。结果表明, 小麦-玉米生长季土壤硝态氮累积量和淋失量随着施氮量的增加显著增加, 相同氮肥水平下增施磷、钾肥增加了作物的收获氮量, 施磷肥增加的作物收获氮量最高可达123kg·hm-2·a-1, 施钾肥增加的作物收获氮量最高为31 kg·hm-2·a-1。不同灌溉水平下0~400 cm 土体累积硝态氮随着灌溉量的增加而降低, 控制灌溉(小麦季不灌水, 玉米季灌溉1 水)、非充分灌溉(小麦季灌溉2~3 水, 玉米季按需灌溉)、充分灌溉(小麦季灌溉4~5 水, 玉米季按需灌溉)各处理剖面累积硝态氮量分别为1 698 kg·hm-2、1148 kg·hm-2 和961 kg·hm-2。与非充分灌溉和充分灌溉处理相比, 控制灌溉在100~200 cm 土层硝态氮累积量显著高于其他层次, 2003~2005 年间控制灌溉剖面增加的硝态氮量占施肥总量的23%; 非充分灌溉处理剖面增加的硝态氮量占施肥总量的22%; 充分灌溉处理剖面增加的硝态氮量占施肥总量的47%。免耕措施降低了作物产量, 影响土壤水的运移, 增加了硝态氮的淋失风险。根据作物所需降低氮素投入(N 200 kg·hm-2·a-1), 增施磷、钾肥, 控制灌溉量是减少华北山前平原地区硝态氮淋失, 保护地下水的有效措施。  相似文献   

18.
施氮和豌豆/玉米间作对土壤无机氮时空分布的影响   总被引:4,自引:1,他引:3  
为探明甘肃河西走廊绿洲灌区豌豆/玉米间作体系土壤无机氮时空分布现状和过量施用氮肥对环境的影响,2011年在田间试验条件下,采用土钻法采集土壤剖面样品,采用Ca Cl2溶液浸提、流动分析仪测定土壤无机氮含量的方法,研究了不同氮水平[0 kg(N)·hm?2、75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2、450 kg(N)·hm?2]下豌豆/玉米间作体系土壤无机氮时空分布规律。结果表明:作物整个生育期内,灌漠土无机氮以硝态氮为主,其含量是铵态氮的7.55倍。在玉米整个生育期内,与不施氮相比,75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2和450 kg(N)·hm?2处理的土壤硝态氮含量分别增加29.7%、67.5%、88.2%和134.3%。与豌豆收获期相比,在玉米收获时土壤硝态氮含量平均降低44.2%。间作豌豆和间作玉米分别比对应的单作在0~120 cm土层硝态氮含量降低6.1%和5.1%。豌豆/玉米间作体系土壤无机氮累积量在不同施氮量和不同生育时期都是表层(0~20 cm)最高。豌豆收获后,0~60 cm土层土壤无机氮累积量间作豌豆和间作玉米分别比相应单作降低4.9%和1.9%,60~120 cm土层降低10.8%和9.2%;玉米收获后0~60 cm土层平均降低28.2%和9.4%,60~120 cm土层平均降低23.5%和12.5%。土壤无机氮残留量间作豌豆比单作豌豆在0~60 cm土层降低4.9%,60~120 cm降低10.9%。因此,施用氮肥显著增加了土壤无机氮含量和累积量,且主要影响土壤硝态氮。过量的氮肥投入会因作物不能及时全部吸收而被大水漫灌和降雨等途径淋洗到土壤深层,造成氮肥损失和农田环境污染。间作能显著降低土壤无机氮浓度和累积量,特别在作物生长后期对土壤无机氮累积的降低作用更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号