首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
利用沈阳农业大学长期定位试验站裸地和覆膜的不同施肥处理(不施肥、单施氮肥、有机肥、有机无机肥配施)及其附近不同土地利用方式,探讨了不同施肥处理和覆膜对整个生长季的棕壤Olsen-P剖面(0—100 cm)分布及动态变化的影响。结果表明,耕地棕壤各施肥处理土壤剖面Olsen-P含量均表现为0—20 cm和60—100 cm大于20—60 cm;而自然草地、自然林地棕壤Olsen-P含量则随深度加深(0—100 cm)而逐渐增多。施用有机肥或有机无机肥配施处理的Olsen-P含量在60 cm土层以上均远大于不施肥或单施氮肥处理;覆膜后不施肥、有机肥、有机无机肥配施处理土壤0—40 cm土层的Olsen-P含量略有降低(0—20 cm土层有机肥处理除外),但差异未达到显著水平。说明施有机肥或有机无机肥配施,是补充土壤Olsen-P的有效措施;但施肥时应深施以补充表层以下土壤Olsen-P含量。覆膜未对本研究的棕壤Olsen-P含量产生显著的负面影响。  相似文献   

2.
利用沈阳农业大学长期定位试验站裸地和覆膜的不同施肥处理(不施肥、单施氮肥、有机肥、有机无机肥配施)及其附近不同土地利用方式,探讨了不同施肥处理和覆膜对整个生长季的棕壤Olsen-P剖面(0—100.cm)分布及动态变化的影响。结果表明,耕地棕壤各施肥处理土壤剖面Olsen-P含量均表现为0—20.cm和60—100.cm大于20—60.cm;而自然草地、自然林地棕壤Olsen-P含量则随深度加深(0—100.cm)而逐渐增多。施用有机肥或有机无机肥配施处理的Olsen-P含量在60.cm土层以上均远大于不施肥或单施氮肥处理;覆膜后不施肥、有机肥、有机无机肥配施处理土壤0—40.cm土层的Olsen-P含量略有降低(0—20.cm土层有机肥处理除外),但差异未达到显著水平。说明施有机肥或有机无机肥配施,是补充土壤Olsen-P的有效措施;但施肥时应深施以补充表层以下土壤Olsen-P含量。覆膜未对本研究的棕壤Olsen-P含量产生显著的负面影响。  相似文献   

3.
设施蔬菜地因其高度集约化的栽培条件和管理方式对土壤养分状况影响极大,但随着种植年限的增加,土壤中氮、磷残留趋势并不清楚。基于此,采取野外调查采样与实验室分析相结合的方法,对山西省晋中市太谷县范村镇象谷村不同种植年限(10、20、30年)温室大棚土壤主要肥力指标进行综合分析,了解褐土区设施蔬菜地土壤主要养分氮、磷残留和迁移特征。结果表明:不同种植年限大棚土壤氮、磷均出现表层(0~20 cm)累积的现象。随着土层深度的增加,不同年限大棚土壤NO3--N残留量均有降低的趋势,各棚龄土壤0~100 cm土层的硝态氮(NO3--N)残留量均显著高于100~200、200~300、300~400 cm土层土体的残留量,10、20、30年棚龄土壤0~100 cm土层的NO3--N残留量分别为100~200、200~300、300~400 cm 土层土体内NO3--N残留量的34.9%、43.4%、40.9%,且20年的残留量占比最高;不同棚龄相应各层土体NO3--N残留量均高于大田。随着棚龄增加,土壤0~20 cm土层的有效磷(Olsen-P)含量表现为先升高后降低的趋势,不同棚龄Olsen-P含量(0~40 cm土层)是大田3.8~5.6倍,均以20年棚龄的含量最高。10年棚龄20~40 cm土层和20年棚龄40~60 cm土层的Olsen-P含量均已接近大田表层值(24.66 mg/kg),不同棚龄土壤Olsen-P含量从40 cm土层开始均急剧下降。0~400 cm土层土体内全氮与NO3--N含量呈显著线性相关,0~100 cm土层土体全磷和Olsen-P含量之间呈乘幂相关关系,由各自的决定系数可知,土壤中50%左右的NO3--N和Olsen-P含量受全氮量和全磷量的影响。此外,褐土区磷淋溶阈值为45.1 mg/kg,超过此值该区域土壤存在磷淋溶风险。总之,大棚内短期投入大量肥料的生产方式导致土壤中特别是0~20 cm表层土壤氮和磷的大量残留,而长期水肥的高投入又引起有效态氮和磷的淋溶,进而在土壤深层次残留。  相似文献   

4.
通过室内土柱渗透试验,研究了不同灌水和施氮对黄土性土壤中NO3^--N迁移和淋失的影响。结果表明:土壤含水量随灌水量增大而增大,大灌水定额时,在近饱和土壤水分条件下,氮素淋失严重;在小灌水定额条件下,0-35 cm土层含水量显著减小,NO3^--N未发生淋失;施氮量一定时,土壤剖面NO3^--N含量随灌水量增大而减小,随土层深度增加呈显著增加趋势;土壤剖面NO3^--N含量随施氮水平的增加有递增趋势、与土壤含水量成消长关系。土壤NO3^--N累积量与施氮量、土层深度、渗透时间成正比,与灌水量成反比,符合多元非线性模型。因此,为减小NO3--N淋溶损失,从经济和环境效益方面考虑,黄土性土壤适宜灌水量应小于121 mm,次施氮量不宜高于2.40 mg/cm^2。  相似文献   

5.
设施菜田不同施氮处理对硝酸盐迁移和积累的影响   总被引:1,自引:0,他引:1  
在设施菜地条件下,研究了氮肥减施及配施抑制剂处理在黄瓜生长期对土壤NO3--N迁移累积的影响。结果表明,氮肥减施处理可显著降低土壤表层和整个土体的NO3--N含量。常规施氮量时0~40 cm土层的NO3--N含量均高于其它处理,减氮30%后0~40 cm土层未出现NO3--N显著积累现象;氮肥配施抑制剂处理不同程度降低了土壤NO3--N含量,且抑制硝态氮向下层土壤淋失,其中抑制剂组合的效果最好。氮肥配施抑制剂,可以有效控制NO3--N在土壤和植物体内的过量累积,减少硝态氮淋溶损失。  相似文献   

6.
【目的】黄淮海平原高产麦田水肥资源的大量投入带来了水肥利用率低、氮素损失量大等一系列问题,本文研究了滴灌施肥对黄淮海平原冬小麦大田氮素利用和损失的影响,以期为小麦高产高效施肥提供新的技术手段。【方法】以尿素、NH4H2PO4和KCl混合的水溶性肥料为材料,在山东桓台进行冬小麦主要生育期测墒补灌并随水施肥的田间试验,设置4个施氮量处理,即N0(不施肥)、N1(94.5 kg/hm2)、N2(189 kg/hm2)和N3(270 kg/hm2),分析了大田土壤NO-3-N空间分布、剖面累积及氮素的平衡。【结果】1)滴灌施肥24 h后,随施氮量的增加,在滴头周围水平方向上土壤NO-3-N从在湿润土体边缘聚集逐渐变化为在滴头下方聚集,当施氮量为189 kg/hm2时,滴灌施肥后滴头下方和湿润土体边缘的NO-3-N含量差异不显著,在滴头周围水平方向上均匀性最好;NO-3-N在滴头下方土壤内随水运移深度主要在60 cm以上,滴灌施肥后滴头下方垂直方向上NO-3-N没有在湿润体边缘聚集。2)冬小麦收获后,0—100 cm土壤剖面NO-3-N累积量随施氮量的增加而逐渐增加,且施氮量超过N 189kg/hm2后,土壤剖面NO-3-N累积量的增加幅度加大,0—40 cm土层的NO-3-N增加量显著高于其他土层,N0、N1、N2和N3处理0—40 cm土层NO-3-N累积量所占比例分别为66%、72%、72%和71%。3)随着施氮量的增加,冬小麦吸氮量和籽粒产量先增加后下降,而0—100 cm土层氮素残留量、表观损失量不断增加,滴灌施肥条件下氮素表观损失量较低,N1、N2和N3的表观损失率分别为20%、17%和16%。【结论】滴灌施肥措施下,合理的灌溉量可以调节滴灌施肥后硝态氮主要向下运移至作物根区范围,集中在作物根系最密集的0—40 cm范围内,肥液浓度对硝态氮运移深度影响不大。施入适宜量氮肥有利于提高滴头下方湿润体内水平方向上NO-3-N分布的均匀度,从而促进作物对氮素的吸收。施氮量为189 kg/hm2的N2处理获得了最高的籽粒产量和氮肥利用效率,播前和收获后根区土壤NO-3-N累积量基本达到平衡,是试验筛选出的最佳滴灌施氮模式。  相似文献   

7.
减氮配施有机物质对土壤氮素淋失的调控作用   总被引:2,自引:1,他引:1  
采用室内土柱模拟试验方法,研究不同氮肥施用下1m土体中氮素的分布和移动特征,揭示土壤氮素动态变化规律。结果表明:FN(农民习惯施无机氮用量)、RN(根据土壤养分供应和作物需求确定的推荐无机氮用量)显著增加了土壤上层NH_4^+-N和NO_3^--N向下层淋失。RN+HA(与推荐无机氮纯养分相等的锌腐酸尿素)和RN40%+OMB(推荐无机氮肥减60%基础上配施自制有机调理物质)可延长上层土壤NH_4^+-N峰值出现时间,降低下层NH_4^+-N。淋溶结束后,等氮量下增施HA较RN降低60cm以下NH_4^+-N残留29.7%~54.2%;降低60—80cm NO_3^--N累积17.4%。RN40%+OMB处理无机氮肥用量最小,0—20cm的NH_4^+-N最高,40—100cm稳定在2.0mg/kg左右;0—20,20—40cm土层NO_3^--N较RN+HA增加12.3%和2.0%,显著降低40cm以下NO_3^--N残留。RN+HA和RN40%+OMB较RN的土壤总无机氮残留分别减少7.4%和20.2%,降低表观淋失率。因此,RN40%+OMB可较好地抑制氮素下移,降低氮素淋失风险,为减少氮素淋失、明确合理氮肥施用方式提供科学依据。  相似文献   

8.
下辽河平原潮棕壤稻田的无机态氮淋溶   总被引:3,自引:0,他引:3  
应用陶土渗滤管法.研究了不同施氮和渗漏条件下潮棕壤稻田的氮淋溶损失。结果表明:稻季各次施用氮肥后,60cm和90cm深处渗漏液中NH4^+-N含量都小于2mg/L。并且各施氮肥处理和对照间差别不显著;但硝酸盐淋溶比较显著,多集中在3~15mg/L之间。硝酸盐淋溶随施氮量增加而增加,90cm深度渗漏液中这一趋势更为明显。水分渗漏状况影响硝酸盐在不同土层深度的累积:渗水越快。硝酸盐淋溶深度越大。渗水较快或者施氮量高时,硝酸盐的淋溶浓度高于国际饮用水卫生标准10mg/L。施用基肥后灌水.NH4^+ -N、NO3^- -N立即出现高峰.而施用分蘖肥和穗肥后,高峰出现在施肥后10d或更久;另处基肥时期淋溶氮的浓度也比较高。  相似文献   

9.
不同施氮水平对深层包气带土壤氮素淋溶累积的影响   总被引:18,自引:6,他引:12  
为研究深层包气带土壤中氮素的迁移规律,采用田间小区试验,研究了不同施氮水平(142.5、285和427.5kg/hm2)对夏玉米种植期间0~500cm包气带土壤中氮素淋溶累积的影响。结果表明,不同施氮水平对NO3--N、NH4+-N和总氮有显著影响,施氮越多,NO3--N、NH4+-N和总氮在土壤中的淋溶累积也就越多,夏玉米生育期间土壤中氮素的淋溶累积含量随着夏玉米生长逐渐减少。在0~200cm土层中,收获后不同施肥水平土壤中NO3--N和总氮累积量随施氮量增加而增多,285kg/hm2施氮水平NH4+-N累积量最多,427.5kg/hm2施氮水平NH4+-N累积量最少,但相差不超过0.1kg/hm2,收获后土壤中氮素累积量有损失。夏玉米生育期间不同施氮水平对土壤NO3--N、NH4+-N和总氮的影响深度主要为0~145cm。粉砂壤土中氮素更易累积,砂质壤土中氮素较易随水分淋溶至下层。142.5kg/hm2施氮水平可有效减少NO3--N在土壤中的淋溶损失,降低土壤中NH4+-N和总氮的含量,对地下水构成的潜在污染风险最小。北京地区地下水埋深较深,NO3--N不易淋溶至地下水,但长期大量施用氮肥、田间土壤大孔隙的存在等会加速NO3--N向深层土壤迁移,对地下水水质构成威胁。  相似文献   

10.
通过在中国科学院长武黄土高原农业生态试验站半覆膜种植春玉米大田试验,研究了减氮及秸秆深埋对土壤电导率、土壤硝态氮淋溶和玉米产量的影响,旨在为提高氮肥利用效率和保护环境提供理论依据。试验设5个处理3个重复,处理包括不施氮(CK)、常规施氮(CON1,N 250kg/hm2)、常规施氮加秸秆(CON2,N 250kg/hm2+秸秆)、减量施氮(CR1,N 200kg/hm2)和减量施氮加秸秆(CR2,N 200kg/hm2+秸秆)。测量了春玉米各生育期土层剖面土壤电导率、收获期土壤硝态氮含量和春玉米产量。结果表明:土壤电导率在分蘖期、拔节期40—150cm土层出现峰值,在抽穗期、成熟期40—200cm土层出现峰值,峰值范围下移。在0—150cm土层范围内,土壤电导率整体呈现CON2CON1,CR2CR1。在0—150cm土层范围内,常规施氮土壤电导率高于减量施氮。与常规施氮相比,减量施氮减少了土壤剖面硝态氮含量,同时,采取秸秆深埋措施也能减少土壤剖面硝态氮含量,并延缓硝态氮的淋溶下移。与常规施氮相比,减量20%施氮增产9.59%。施氮条件下,秸秆深埋时,有利于提高作物产量,提高氮肥增产潜力。秸秆深埋有利于提高土壤电导率,减少土壤硝态氮含量,阻控土壤硝态氮向下淋溶,提高玉米产量。  相似文献   

11.
利用 3年 6季氮肥试验研究了冬小麦—夏玉米轮作制度下 ,冀东褐土剖面碱解氮、NO-3 -N含量时空迁移变化和土壤氮素安全值指标。结果表明 ,土壤碱解氮自上而下依次递减 ,NO-3 -N呈“V”字型变化 ,二者均与施肥水平及植株生长状况密切相关 ,在 2 0~ 40cm区域出现碱解氮亏缺区 ,N2处理较为明显。N2处理的地下水NO-3 -N含量已超标 ,建议高产条件下土壤环境投氮安全值为 42 0~ 450kghm- 2 较为适宜  相似文献   

12.
为了提高氮肥增产效益,减少对环境的污染,通过田间试验研究了施氮量对春玉米产量、氮肥效率及土壤矿质氮的影响。结果表明,施氮量较低时,春玉米籽粒产量随施氮量增加显著增加,当施氮量高于180 kg·hm-2时,产量保持不变或有减少趋势。氮肥农学利用率、氮素吸收效率、氮素偏生产力和氮收获指数均随着施氮量增加显著降低,氮肥表观利用率和氮肥生理利用率均先增加后降低。从苗期到收获期,施氮处理0~60 cm土层硝态氮含量呈现"上升—下降—上升—下降—稳定"的变化趋势,而60~120 cm土层硝态氮在春玉米生长后期有增加的趋势。随着土层加深,土壤硝态氮含量呈波浪式下降,施氮量240 kg·hm-2和300 kg·hm-2处理在60~100 cm土层硝态氮含量均显著高于其他处理。随着施氮量增加,0~120 cm土层硝态氮累积量显著增加,当施氮量超过240kg·hm-2时,土层中累积的硝态氮存在着较大的淋溶风险。综合考虑产量、氮肥效率和环境效应,179~209 kg N·hm-2是本试验条件下春玉米的合理施氮量。  相似文献   

13.
不同施氮情况下小麦玉米间作土壤硝态氮的动态变化   总被引:8,自引:2,他引:6  
本文主要研究了0、210、420和630kg/hm2(NO、N1、N2和N3)4种不同施氮量对小麦玉米间作土壤硝态氮(NO-3-N)含量动态变化的影响。结果表明,0~200cm土层硝态氮的含量整体表现为N3>N2>N1>N0。各生育时期低氮水平下0~60cm土层,中、高氮水平下的0~80cm土层土壤硝态氮含量变化显著。0~60cm土层土壤硝态氮累积量随作物生育时期的变化呈“双峰”曲线,峰值分别出现在小麦挑旗期和玉米大喇叭口期,而60~200cm土层土壤硝态氮累积量的变化呈“单峰”曲线,峰值出现在玉米大喇叭口期。N0处理硝态氮累积量各生育时期变化差异较小。小麦与玉米共生期内0~200cm土层硝态氮含量表现为玉米带>小麦带,差异最大的时期为小麦灌浆期和玉米大喇叭口期。土壤硝态氮向深层的运移量随施氮量增加而增加,与N0相比,施氮后100~200cm土层硝态氮累积量小麦带增加了1053~6253kg/hm2,玉米带增加了1791~7039kg/hm2。优化氮肥施用比例,适当降低小麦播前施氮量可减小土壤硝态氮深层淋溶的风险。  相似文献   

14.
氮肥减量与缓控肥配施对土壤供氮特征及玉米产量的影响   总被引:8,自引:2,他引:6  
以农民习惯施肥(单施普通尿素200kg/hm2)为对照,研究了氮肥减量10%(单施普通尿素180kg/hm2)及氮肥减量10%配施树脂包膜尿素、包膜缓释肥和有机肥对土壤供氮特征及玉米产量的影响。结果表明,氮肥减量10%单施普通尿素180kg/hm2处理较单施普通尿素200kg/hm2处理降低了拔节期、灌浆期和成熟期0—60cm土层土壤铵态氮和硝态氮含量;提高了氮收获指数、氮肥农学效率、氮肥生成效率及氮素吸收效率,但产量降低1.3%、氮肥利用率降低4.2%。氮肥减量10%配施树脂包膜尿素、包膜缓释肥、有机肥处理提高了拔节期、灌浆期、成熟期0—20cm土层土壤铵态氮含量,20—40cm、40—60cm土层土壤铵态氮含量较低;提高了灌浆期0—20cm土层土壤硝态氮含量;降低了成熟期0—60cm土层土壤硝态氮含量。氮肥减量10%配施处理较单施普通尿素200kg/hm2处理和氮肥减量10%单施普通尿素180kg/hm2处理氮肥利用率分别提高了9.12%~19.14%和13.32%~23.34%,产量分别提高了0.95%~6.89%和2.23%~8.25%,同时也提高了氮收获指数、氮肥农学效率、氮肥生成效率及氮素吸收效率,以氮肥减量10%配施包膜缓释肥处理效果最好,其氮肥表观损失量仅为1.18kg/hm2。  相似文献   

15.
为解决区域土壤质地类型针对性氮肥施用问题,在轻壤土和黏壤土上分别设置不施氮肥,氮肥基追比3∶7,4∶6,5∶5,6∶4和7∶3处理,研究小麦产量、水氮利用效率以及土壤含水量、贮水量、NH_4~+-N、NO_3~--N动态变化规律。结果表明:轻壤质土壤氮肥基追比4∶6的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 265.3 kg/hm~2,27.6 kg/(hm~2·mm),34.4 kg/kg。黏壤质土壤氮肥基追比5∶5的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 363.2 kg/hm~2,28.3 kg/(hm~2·mm),34.8 kg/kg。小麦不同生育期各土层含水量垂直分布变化较大,轻壤质土壤含水量在9.3%~26.2%,而黏壤质为9.7%~27.6%;小麦全生育期内土壤贮水量呈先升高后降低趋势,黏壤质土壤贮水量高于轻壤质。氮素追施量越多土壤表层NH_4~+-N与NO_3~--N含量越高,且随土层加深土壤NH_4~+-N与NO_3~--N含量降低,受降水影响轻壤质土壤NH_4~+-N与NO_3~--N更易于向土层深处淋溶,成熟期黏壤质各土层的NH_4~+-N和NO_3~--N含量均多于轻壤质。说明黏壤质土壤保水保氮肥能力强于轻壤质,氮肥基追比可以适当增加。  相似文献   

16.
小麦—玉米两熟为华北平原主要种植制度,以玉米季深松分层施肥和常规施肥定位试验为基础,研究小麦开花期土壤微生物量碳(SMBC)、微生物量氮(SMBN)及酶活性对玉米季不同施肥方式和小麦不同灌水处理的响应。以冬小麦开花期农田土壤为研究对象,采用裂区试验设计,玉米季常规施肥(F1)和深松分层施肥(F2)为主区,小麦季3个灌溉处理为副区,分别为春季不灌水(W0)、春1水(拔节期灌水75 mm,W1)、春2水(拔节期和开花期灌水150 mm,W2)。结果表明:(1)玉米季深松施肥有利于提高氮、磷、钾的供应,改善土壤肥力,对小麦开花期耕层土壤理化性状影响显著。0—20,20—40 cm土层,F2W2处理土壤含水量和硝态氮含量显著高于其他处理,含水量受深松施肥和灌水的共同影响,而且互作效应显著;硝态氮受水分处理影响显著大于深松施肥因素。(2)SMBC和SMBN同时受深松施肥和灌水处理的共同影响,小麦季灌水处理可显著提高0—20 cm土层SMBC和SMBN含量,土壤含水量具有极显著影响(p<0.05),贡献率为78.3%;20—40 cm土层,玉米季施肥方式和小麦季灌水处理对SMBC和SMBN含量均有显著影响,且二者交互作用对SMBN影响显著,土壤含水量贡献率为86.3%。0—20 cm F2W2处理SMBN含量为94.16 mg/kg,显著高于其他处理;20—40 cm F2W2处理SMBN和SMBC含量分别为57.57,243.77 mg/kg,显著高于其他处理;SMBC和SMBN与有机碳、速效钾和硝态氮含量呈显著正相关,与土壤含水量呈极显著正相关。(3)玉米季相同施肥条件下,0—20 cm各处理土壤蔗糖酶、过氧化氢酶活性均表现为W2>W1>W0,且差异显著;小麦季相同水分管理条件下,0—20 cm土层蔗糖酶、过氧化氢酶活性F2处理最高,显著高于F1;0—20 cm土层蔗糖酶、碱性磷酸酶和过氧化氢酶与速效钾和速效磷呈显著正相关,2个土层土壤蔗糖酶、脲酶、过氧化氢酶活性与土壤含水量呈显著或极显著正相关关系。(4)F2W2处理小麦产量最高,养分携出量较其他处理显著提高,小麦产量和养分携出量与土壤蔗糖酶、脲酶、过氧化氢酶活性和微生物量碳、氮含量均呈显著或极显著正相关。因此,小麦季灌溉拔节水和开花水结合玉米季分层深松施肥管理措施可有效促进土壤养分活化,提升土壤质量和保障土壤可持续生产。  相似文献   

17.
施氮水平对旱塬覆沙苹果园土壤酶活性及果实品质的影响   总被引:7,自引:4,他引:3  
研究土壤酶活性及果实品质在不同氮肥水平下的变化规律,探讨氮肥施用量对土壤酶活性与果实品质相关性的影响,为旱塬覆沙苹果园合理施氮、提高氮素利用率及降低土壤环境污染建立科学依据。通过田间试验,以‘长富2号’为试验材料,设置5个氮素水平(对照0、165、330、495和660kg/hm~2,分别简写为CK、N1、N2、N3和N4),并于2017年测定土壤全氮含量、土壤酶活性与果实品质。结果表明:土壤全氮随着施氮量增加而升高;0~20和 20~40 cm土层中脲酶和磷酸酶活性在N2处理下均达到最大值,而蔗糖酶活性则于N3处理下最高;40~60 cm土层中过氧化氢酶活性随氮肥增施呈上升趋势。在330~495 kg/hm~2施氮范围内,与对照相比,增施氮肥能够显著提高果实横径、可溶性固形物、可滴定酸、维生素C及总糖含量(P0.05)。随着施氮量增加,果实产量呈先降后升趋势。土壤过氧化氢酶(除 20~40 cm土层)、蔗糖酶活性与果实可溶性固形物含量具有极显著相关性(P0.01),与可滴定酸和 40~60 cm土层中维生素C含量具有显著相关性(P0.05)。综合分析认为,330~495kg/hm~2为旱塬覆沙苹果园合理施氮范围,对提高土壤酶活性及氮肥利用率效果显著,并有利于改善果实品质。  相似文献   

18.
水氮互作对小麦土壤硝态氮运移及水、氮利用效率的影响   总被引:3,自引:1,他引:2  
为给强筋小麦(Triticum aeativum L.)高产优质栽培的水、氮合理运筹提供理论依据,在高产地力条件下,选用强筋小麦品种济麦20,设置不施氮(N0)、施氮180 kg/hm2 (N1)、240 kg/hm2 (N2)3个施氮水平,每个施氮水平下设置不灌水(W0)、底墒水+拔节水+开花水(W1)、底墒水+冬水+拔节水+开花水(W2)、底墒水+冬水+拔节水+开花水+灌浆水(W3)4个灌水处理,每次灌水量均为60 mm,研究了水氮互作对麦田耗水量、土壤硝态氮运移、氮素利用效率和水分利用效率的影响。结果表明,(1)增加施氮量,开花期和成熟期0—140 cm各土层的土壤硝态氮含量显著升高;增加灌水时期,土壤硝态氮向深层的运移加剧,成熟期0—80 cm各土层的土壤硝态氮含量降低,120—140 cm土层的土壤硝态氮含量升高。N1W1处理在开花期0—60 cm土层的土壤硝态氮含量较高,成熟期土壤硝态氮向100—140 cm土层运移少,有利于植株对氮素的吸收。(2)随施氮量的增加,子粒产量先升高后降低,以N1最高。N1水平下,W1处理获得了较高的子粒产量、子粒氮素积累量、氮素利用效率、氮肥农学利用率和氮肥偏生产力;在此基础上增加冬水(W2),上述指标无显著变化;再增加灌浆水(W3),上述指标显著降低。(3)施氮提高了小麦对土壤水的利用能力,随施氮量增加,土壤供水量及其占总耗水量的比例显著升高。N1水平下,W1处理获得了最高的水分利用效率;再增加灌水时期,水分利用效率显著降低,开花至成熟阶段的耗水模系数显著升高,灌水量占总耗水量的比例升高,降水量和土壤供水量占总耗水量的比例降低。本试验条件下,施氮为180 kg/hm2,灌底墒水+拔节水+开花水3水的N1W1处理,是兼顾高产、高效的水氮运筹模式。  相似文献   

19.
华北平原春玉米季土壤硝态氮动态及氮素矿化的特征   总被引:4,自引:0,他引:4  
为进一步明确推荐施氮的优势所在,并为春玉米制定合理的施氮策略,本文在高肥力土壤条件下,通过设计不同氮肥管理模式.研究了春玉米季0—150 cm土体土壤NO_3~-—N动态和氮素矿化的特征。结果表明,经验施氮0—90 cm土层NO_3~-—N含量呈单峰曲线变化,峰值一般在400 kg/hm~2以上,90—150 cm土层则富积了大量的NO_3~-—N,潜在淋洗量很大。不施氮条件下,土壤表现出较强的净矿化势,并且净矿化速率和玉米生长速率有较好的协同性,二者同在大喇叭口至吐丝期达到最大值,但土壤供氮能力逐年下降。推荐施氮使得0—90 cm土层NO_3~-—N总体保持在100~200 kg/hm~2范围内,既确保作物的吸收又减少了氮素淋洗损失。研究表明,三年来推荐施氮共节省氮肥475 kg/hm~2,氮肥利用率提高了14%。  相似文献   

20.
以宁麦9号为材料,研究施氮量及氮肥基追比例对稻茬小麦土壤硝态氮含量、根系生长、植株氮素积累量、产量和氮素利用效率的影响。结果表明,拔节前0-60cm土层硝态氮含量随基施氮量的增加而显著增加,随生育进程的推进各处理硝态氮显著向下层土壤淋洗;拔节期追施氮肥显著提高了孕穗期0-40cm土层硝态氮含量,且随追施氮量的增加而显著增加,N300和N3/7处理硝态氮显著向40-60cm土层淋洗。根系主要生长于0-20cm土层,拔节前各土层根长密度均随基施氮量的增加而增加,拔节后则随施氮量增加和适当的追肥比例而增加。各施氮处理均以拔节至开花期为小麦氮素积累高峰期。适宜增加施氮量并适当提高追肥比例,有利于提高产量、植株氮素积累量和氮素利用效率。因此,在小麦生产中,适当降低施氮量并提高拔节期追肥比例有利于促进小麦根系生长和植株氮素积累,进而提高小麦产量并减少硝态氮淋洗损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号