首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
硝酸盐反射仪和SPAD法对玉米氮素营养诊断的比较   总被引:1,自引:0,他引:1  
精准的营养诊断是了解作物氮素营养及推荐施肥的基础。本文在田间滴灌条件下利用SPAD叶绿素仪(SPAD-502 Plus)和硝酸盐反射仪(RQ flex10)两种诊断方法对玉米关键生育时期的氮素营养诊断进行研究,旨在筛选出适宜的诊断方法,并依据诊断值建立滴灌玉米不同生育时期的施肥模型。试验设置0 kg(N)·hm~(-2)(N0)、225 kg(N)·hm~(-2)(N225)、330 kg(N)·hm~(-2)(N330)、435 kg(N)·hm~(-2)(N435)和540 kg(N)·hm~(-2)(N540)5个施氮水平,在不同生育时期测定了玉米叶片SPAD值和叶鞘NO_3~-含量,并分别与施氮量、植株全氮含量、产量进行方程拟合,比较两种诊断方法对玉米氮素营养的响应。研究结果表明:1)玉米叶片SPAD值和叶鞘NO_3~-含量均随施氮量的增加而显著升高,且在拔节期对施氮量的响应最敏感。叶鞘NO_3~-含量对施氮量变化的响应较SPAD值大,其与施氮量及玉米产量的拟合度均高于SPAD值,说明硝酸盐反射仪法对滴灌玉米氮素丰缺的反应更灵敏。2)玉米全氮含量与叶片SPAD值呈显著线性关系,而与叶鞘NO_3~-含量则以线性加平台表示。当叶鞘NO_3~-含量小于186 mg·L~(-1)时,植株全氮与NO_3~-间呈显著线性相关;当叶鞘NO_3~-含量大于186 mg·L~(-1)时,植株全氮随NO_3~-含量增加趋于不变。3)本农作区滴灌玉米最佳经济施氮量为402.5 kg·hm~(-2),对应的玉米产量为17 049 kg·hm~(-2)。玉米拔节期、抽雄吐丝期和灌浆期的临界叶鞘NO_3~-含量分别为729.3 mg·L~(-1)、536 mg·L~(-1)和81.2 mg·L~(-1)。SPAD叶绿素仪和硝酸盐反射仪均可对滴灌玉米进行氮素营养诊断,但硝酸盐速测值能更敏感地反映氮素丰缺状况,基于硝酸盐反射法进行作物氮素营养诊断及推荐施肥具有较好的准确性与适用性。  相似文献   

2.
中国亚热带人工林处于全球氮沉降高值区,土壤氮素相对富集,土壤氧化亚氮(N_2O)产生与排放对外源性氮素输入响应敏感。然而,现有氮沉降模拟控制实验多采用单一氮肥类型,没有原位区分氧化态氮与还原态氮素影响的差异。以千烟洲亚热带湿地松林为研究对象,增氮控制实验采用随机区组设计,包括2种形态(NO_3~-、NH_4~+)和3个施氮水平(0、40、120 kg hm~(-2) a~(-1))。利用静态箱—气相色谱法高频(8次月~(-1))测定土壤N_2O净交换通量以及温度、水分、溶解性氮含量等相关环境变量,分析土壤N_2O通量对外源性氮素输入的响应特征及主控因子。结果表明:施氮不影响亚热带人工林土壤温度和水分,显著增加了土壤NO_3~--N、NH_4~+-N和总溶解性氮(TDN)的含量,对溶解性有机氮(DON)含量无显著影响。施氮显著促进亚热带人工林土壤N_2O排放,增幅为378%~847%,施加NH4Cl的促进效应显著高于Na NO_3。土壤N_2O通量与10 cm土壤温度、10 cm土壤体积含水量呈正相关,土壤N_2O通量的变化量与土壤无机氮含量的变化量呈正相关。上述研究结果表明,虽然水热因子驱动着亚热带人工林土壤N_2O的排放,但是氮素富集条件下土壤N_2O的增加主要由底物可利用性的变化所致,并且还原态NH_4~+的促进效应显著高于氧化态NO_3~-。  相似文献   

3.
为研究氮沉降对一年生香椿(Toonasinensis)幼苗夏季生长以及光合特性的影响,通过在夏季模拟氮沉降控制试验,以尿素为氮源供体,设置0kg(N)×hm~(-2)×a~(-1)(CK)、20kg(N)×hm~(-2)×a~(-1)、40kg(N)×hm~(-2)×a~(-1)、80kg(N)×hm~(-2)×a~(-1)、120 kg(N)×hm~(-2)×a~(-1)、180 kg(N)×hm~(-2)×a~(-1)不同氮添加水平以模拟氮沉降,对香椿幼苗地径、苗高、生物量及其分配和光合作用等进行研究。结果表明:1)不同氮添加量均促进了香椿幼苗地径、苗高和生物量的增加,地径、苗高和生物量均以氮添加水平180kg(N)×hm~(-2)×a~(-1)下最高,分别较CK高42.5%、64.4%和304.9%,且生物量向根、叶分配较多; 2)香椿幼苗叶片相对叶绿素含量(SPAD)随氮添加水平的增加而增加,在180 kg(N)×hm~(-2)×a~(-1)下最高,较CK增加73.9%;3)香椿幼苗表观量子效率(AQY)、最大净光合速率(Pnmax)、光饱和点(LSP)、光补偿点(LCP)以及暗呼吸速率(Rd)随氮添加水平的增加均呈现先升高后降低的趋势,其中LCP以80 kg(N)×hm~(-2)×a~(-1)下最高, AQY、Pnmax、LSP和Rd均以120kg(N)×hm~(-2)×a~(-1)下最高。结果表明,适量氮沉降能够促进香椿幼苗生长和光合能力的提高,但更高水平的氮沉降可能对香椿幼苗产生一定抑制作用。  相似文献   

4.
2008年,对陕西省4个不同生态区5个监测点的干湿沉降输氮量进行为期1年的观测研究,旨在对不同生态区大气氮沉降量进行初步估算。结果表明,2008年各生态区总无机氮(TIN)沉降量在8.25-16.12 kg·hm-2之间,其中以地处长城沿线风沙草原生态区的榆林地区最小,渭河谷地农业生态区的杨凌地区最大。榆林、洛川、西安、杨凌以及安康地区NH+4-N沉降量分别为3.10、 3.66、 8.60、 9.14和9.96 kg·hm-2,NO-3-N沉降量分别为5.15、7.54、6.29、6.98和5.66 kg·hm-2 ,NH+4-N沉降量的不同是造成TIN沉降量之间差异的主要原因。各生态区湿沉降输氮量为6.57-14.43 kg·hm-2,干沉降输氮量为1.19-2.74 kg·hm-2,均显示出一定的时间变异性。受降雨量影响,湿沉降量在降雨量大的夏秋季较高,降雨量小的冬春季较低;干沉降量则与之相反,可能是由于雨水的冲刷作用和冬春季节扬尘天气较多引起的。  相似文献   

5.
大气氮素湿沉降与氮的排放紧密相关,通过对已知的氮素排放数据与收集的氮素湿沉降实测数据对应分析发现,不同地区氮素的排放与湿沉降之间存在稳定的比值关系。根据这些比值关系,估算了1980—2007年中国大陆氮素湿沉降量,并运用GIS技术进行了大气氮素湿沉降强度和时空分布。结果表明,我国大陆区域氮素湿沉降呈明显的增长趋势,沉降总量由1980年的4.96Tg增长到2007年的11.80 Tg,单位面积通量分别为516 kg N.km-2.a-1和1 128 kg N.km-2.a-1。氮素湿沉降的空间分布不均,东部、东南沿海地区和中部地区沉降量较高,广大西部地区较低。化学氮肥的施用、燃料的使用和禽畜养殖规模扩大是导致氮湿沉降量增加的主要原因。  相似文献   

6.
闽西北农田生态系统中大气氮湿沉降研究   总被引:8,自引:0,他引:8  
在福建省三明市将乐县连续3年定位收集湿沉降,研究闽西北地区农田生态系统大气氮素湿沉降的浓度、沉降量以及时间变化规律。结果表明:降水中TN、TIN、DON、NH4+-N和NO3--N的平均浓度分别为1.22,0.83,0.38,0.53,0.30mg/L,无机氮与有机氮的比例达到2.18,且在每次降雨中总氮的浓度均超过水体富营养化阈值(0.2mg/L)。该地区湿沉降氮输入量有明显的季节性变化,春、夏季高,秋、冬季低。在湿沉降输入氮中NH4+-N、NO3--N和DON占总氮的比例分别为43.77%,24.78%和31.45%,湿沉降以无机氮(TIN)为主,平均年无机氮(TIN)沉降量为8.71kg/hm2,占总氮(TN)沉降量的68.55%。总氮(TN)年输入量为4.17~18.00kg/hm2,平均值为12.71kg/hm2。大气中氮素湿沉降对生态环境有一定的风险。  相似文献   

7.
地下水位波动对不同施氮量农田土壤硝态氮运移影响   总被引:1,自引:1,他引:0  
明确地下水位波动对农田土壤剖面和地下水NO_3~--N运移的影响,可为减少土壤氮素淋失、降低地下水硝酸盐污染风险提供依据。本研究采用大型土柱温室种植甘蓝,研究2种水位波动(水位不变、水位每隔10 d波动20 cm)和3种施氮量[0 kg(N)·hm~(-2)、225 kg(N)·hm~(-2)、450 kg(N)·hm~(-2)]对土壤含水量、土壤溶液NO_3~--N浓度、地下水NO_3~--N浓度和作物产量的影响。结果表明,水位波动和施氮肥对NO_3~--N运移的影响与土壤剖面深度有关。0~20cm包气带土壤NO_3~--N含量受施氮量影响,过量施氮肥[450kg(N)·hm~(-2)]导致该剖面NO_3~--N累积。20~60cm水位波动带土壤NO_3~--N含量受施氮量和水位波动的共同作用:施氮量增加提高NO_3~--N含量;水位波动降低剖面土壤NO_3~--N含量,水位上升和下降均促进土壤NO_3~--N随着水流运动向下层迁移;剖面土壤硝态氮含量高,增加NO_3~--N进入地下水的风险。60~80 cm淹水区剖面土壤NO_3~--N含量较低。作物产量受水位波动影响不显著。在地下水位埋深较浅的农业区进行氮素污染防控时,不可忽视水位波动对NO_3~--N运移的影响。  相似文献   

8.
为了研究氮沉降对次生林土壤碳氮组分和酶活性的影响,以华西雨屏区湿性常绿阔叶次生林为对象,从2014年1月起进行野外定位模拟氮沉降试验,分别设置对照(CK,+0 g/(m^2·a))、低氮(LN,+5 g/(m^2·a))和高氮(HN,+15 g/(m^2·a))3个氮添加水平。在氮沉降进行27个月后,按照腐殖质层和淋溶层表层进行取样,测定不同土层土壤总有机碳(TOC)、可浸提溶解性有机碳(EDOC)、易氧化碳(ROC)、全氮(TN)、硝态氮(NO_3^-—N)和铵态氮(NH_4^+—N)含量以及蔗糖酶、脲酶、酸性磷酸酶和多酚氧化酶活性。结果表明:模拟氮沉降显著增加该次生林腐殖质层土壤的TOC和NH_4^+—N含量,显著增加腐殖质层和淋溶层表层土壤的NO_3^-—N含量,腐殖质层土壤C/N显著升高。淋溶层表层土壤TOC、NH_4^+—N、C/N以及2层土壤的EDOC、ROC、TN和NH_4^+—N/NO_3^-—N均无显著影响。2层土壤的多酚氧化酶活性均随着氮添加量的升高而降低,其中淋溶层表层达到显著差异。模拟氮沉降对蔗糖酶、脲酶和酸性磷酸酶活性均无显著影响。腐殖质层中,NH_4^+—N和NO_3^-—N含量与TOC含量存在极显著正相关关系。2层土壤的多酚氧化酶活性均与NO_3^-—N含量呈极显著负相关。结果说明,模拟氮沉降使该次生林中原本较高的腐殖质层土壤TOC含量进一步显著增加,并且促进土壤无机氮的积累,而模拟氮沉降对多酚氧化酶的抑制作用更加有利于土壤有机质的积累。  相似文献   

9.
为提高辽西地区花生产量和水氮利用率,本文以‘白沙1016’为对象,采取裂区试验,主区为雨养(W0)和测墒补灌(W1)两种灌溉模式,子区为0 kg·hm~(-2)(N0)、40 kg·hm~(-2)(N1)、60 kg·hm~(-2)(N2)和80 kg·hm~(-2)(N3)4个施氮水平,研究施氮对测墒补灌条件下花生干物质积累和氮素积累及分配的影响。试验结果表明:在雨养和测墒补灌条件下,花生成熟期的单株干物质量分别为64.66~74.92 g和71.65~92.81 g,以W1N3处理最高,W0N0最低,且随施氮量呈现二次曲线变化趋势。花生植株氮积累量随施氮量变化趋势与干物质量一致,W1N2较其他处理显著提高了氮素积累量、产量和水分利用效率。测墒补灌优化了花生植株中氮素的分配,延长了叶片氮素积累时长,同时提高了叶片氮素向荚果的转移量,继而相对雨养处理显著增加了花生荚果氮积累量所占植株氮积累总量的比重(氮收获系数)2.13%、氮肥农学利用率78.57%、氮肥表观回收率25.90%。花生收获后,土壤硝态氮主要分布在0~40 cm土层内,占0~60 cm土层的77.75%,且累积量随着施氮量的增高而增加,但补灌会使土壤硝态氮下移造成硝态氮淋失。因此,综合考虑水氮利用效率,在辽西半干旱地区推荐W1N2为适宜花生生产水氮管理,其产量、水分利用效率和灌溉水利用效率最高,分别为6 485.03 kg·hm~(-2)、2.02 kg·m~(-3)和10.21kg·m~(-3)。  相似文献   

10.
[目的]为了提高氮素的利用效率,减少NO_3~-—N淋溶污染,本试验研究了硝化抑制剂双氰胺(DCD)对碱性土壤中氮素转化的影响,为氮素的合理高效利用,增加作物产量提供参考。[方法]采用实验室人工气候箱培养法,研究双氰胺在15,25和35℃不同温度下对山西省晋城市菜园土(碱性)的pH值、氨挥发量及NH_4~+—N和NO_3~-—N转化的影响。[结果]在碱性土壤中施加双氰胺后,其pH值高于对照,且pH值随土壤温度的升高而升高;同时碱性土壤中氨挥发量也随温度升高而增大,每升高10℃,氮素以氨气形式损失的增加率约为6.90%;而土壤NO_3~-—N量却随温度的升高有所下降,其变化趋势与土壤NH_4~+—N量变化相反,此外温度的升高可导致NH_4~+—N含量峰值的出现时间提前,每增加10℃提前约为1周左右。双氰胺的施加可减少了NH_4~+—N转化为NO_3~-—N的量。[结论]双氰胺的施加可减少碱性土壤中氮素转化为NO_3~-—N所带来的淋溶污染问题,且随温度的升高pH值、氨挥发量和NH_4~+—N量增加。  相似文献   

11.
上海地区氮素湿沉降及其对农业生态系统的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
试验研究上海地区N素湿沉降及其对农业生态系统的影响结果表明,上海地区湿沉降中N营养盐含量较高,其中NO3-为2.587mg/L,NH4 达2.155mg/L,TIN的含量均在4.000mg/L以上。湿沉降输入到上海地区农业生态系统N营养盐的年通量较高,其中NH4 平均为26.580kg/hm2,1999年达到38.930kg/hm2;NO3-平均为31.545kg/hm2;TIN平均为58.123kg/hm2,相当于124.549kg/hm2尿素或327.980kg/hm2碳酸氢铵,1999年TIN输入量为77.750kg/hm2,相当于166.607kg/hm2尿素或438.732kg/hm2碳酸氢铵,占1998年全国化肥(N)平均施用量的35%。湿沉降中N的输入对农业生产有重要影响。  相似文献   

12.
为解决区域土壤质地类型针对性氮肥施用问题,在轻壤土和黏壤土上分别设置不施氮肥,氮肥基追比3∶7,4∶6,5∶5,6∶4和7∶3处理,研究小麦产量、水氮利用效率以及土壤含水量、贮水量、NH_4~+-N、NO_3~--N动态变化规律。结果表明:轻壤质土壤氮肥基追比4∶6的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 265.3 kg/hm~2,27.6 kg/(hm~2·mm),34.4 kg/kg。黏壤质土壤氮肥基追比5∶5的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 363.2 kg/hm~2,28.3 kg/(hm~2·mm),34.8 kg/kg。小麦不同生育期各土层含水量垂直分布变化较大,轻壤质土壤含水量在9.3%~26.2%,而黏壤质为9.7%~27.6%;小麦全生育期内土壤贮水量呈先升高后降低趋势,黏壤质土壤贮水量高于轻壤质。氮素追施量越多土壤表层NH_4~+-N与NO_3~--N含量越高,且随土层加深土壤NH_4~+-N与NO_3~--N含量降低,受降水影响轻壤质土壤NH_4~+-N与NO_3~--N更易于向土层深处淋溶,成熟期黏壤质各土层的NH_4~+-N和NO_3~--N含量均多于轻壤质。说明黏壤质土壤保水保氮肥能力强于轻壤质,氮肥基追比可以适当增加。  相似文献   

13.
水蚀条件下硝酸铵施用对黄绵土氮素流失的影响   总被引:7,自引:2,他引:5  
研究结果表明不同坡度谷子地,高N处理小区径流中铵态氮、硝态氮和有效氮浓度平均为1.06、0.76和1.82mg/kg,低N分别为0.64、1.29和1.93mg/kg;高氮处理土壤铵态氮、硝态氮和有效氮平均流失量分别达到17.90、12.93和30.84kg/(km2·a),低N流失量为11.90、23.86和35.77kg/(km2·a)。高氮处理小区泥沙中有机质和全氮浓度平均为5.21和0.536g/kg,而低氮处理分别为4.94和0.481g/kg;高氮和低氮处理土壤有机质流失量分别为5702和5743kg/(km2·a),土壤全氮流失量为498和559kg/(km2·a)  相似文献   

14.
华北山前平原农田土壤硝态氮淋失与调控研究   总被引:11,自引:5,他引:6  
本文依托中国科学院栾城农业生态系统试验站小麦-玉米一年两熟长期定位试验, 应用土钻取土和土壤溶液取样器取水的方法, 研究了不同农田管理措施下土壤硝态氮的累积变化, 计算了不同氮肥处理通过根系吸收层的硝态氮淋失通量。结果表明, 小麦-玉米生长季土壤硝态氮累积量和淋失量随着施氮量的增加显著增加, 相同氮肥水平下增施磷、钾肥增加了作物的收获氮量, 施磷肥增加的作物收获氮量最高可达123kg·hm-2·a-1, 施钾肥增加的作物收获氮量最高为31 kg·hm-2·a-1。不同灌溉水平下0~400 cm 土体累积硝态氮随着灌溉量的增加而降低, 控制灌溉(小麦季不灌水, 玉米季灌溉1 水)、非充分灌溉(小麦季灌溉2~3 水, 玉米季按需灌溉)、充分灌溉(小麦季灌溉4~5 水, 玉米季按需灌溉)各处理剖面累积硝态氮量分别为1 698 kg·hm-2、1148 kg·hm-2 和961 kg·hm-2。与非充分灌溉和充分灌溉处理相比, 控制灌溉在100~200 cm 土层硝态氮累积量显著高于其他层次, 2003~2005 年间控制灌溉剖面增加的硝态氮量占施肥总量的23%; 非充分灌溉处理剖面增加的硝态氮量占施肥总量的22%; 充分灌溉处理剖面增加的硝态氮量占施肥总量的47%。免耕措施降低了作物产量, 影响土壤水的运移, 增加了硝态氮的淋失风险。根据作物所需降低氮素投入(N 200 kg·hm-2·a-1), 增施磷、钾肥, 控制灌溉量是减少华北山前平原地区硝态氮淋失, 保护地下水的有效措施。  相似文献   

15.
在红壤自然状况下,模拟了施肥沟,对红壤不同污泥施肥处理的N素释放特性进行了研究。试验结果表明,干污泥配比在10%~20%时,碱解氮、铵态氮和硝态氮累计释放量分别为:25.71%~33.48%,9.57%~14.85%和4.08%~7.65%。堆肥污泥配比在20%~33%时,其累计释放量分别为13.55%~15.65%,2.03%~4.23%和3.11%~5.37%。干污泥处理的释放量大于堆肥污泥处理的释放量,释放过程变化较堆肥污泥剧烈,铵态氮和硝态氮均有明显峰值,铵态氮最大含量532.98±10 mg/kg,释放量最大达10.95%;硝态氮含量最大为149.2±14 mg/kg,释放量最大时为3.32%。无论是从氮的肥效角度,还是氮释放的环境风险角度考虑,污泥堆肥处理后施肥方式均优于干污泥处理施肥方式。  相似文献   

16.
Identifying the nitrogen (N) fate is complicated and a great challenge in karst watersheds because of the co-existence of natural pools and anthropogenic sources. The objective of the study was to use stable isotopic composition of dual-isotope (δ15NNitrate and δ18ONitrate) and LOADEST model approaches to trace N sources, pathways in karst watershed. The study was conducted in the Houzhai watershed, which is a typical agricultural karst watershed from July 2016 to August 2018, to reveal the N fate and the coupled carbon(C)–N processes occurring in the riverine-watershed with agricultural activities. We found that the wet deposition of total nitrogen (TN) flux was 33.50 kg hm−2·a−1 and dissolved nitrogen (DN) flux was 21.66 kg hm−2·a−1. The DN runoff loss was 2.10 × 105 kg·a−1 and the loss of DN during the wet season accounted for 95.4% over a year. In the wet season, NO3-N daily efflux was 977.62 ± 516.66 kg ha−1·day−1and 248.77 ± 57.83 kg ha−1·day−1 in the dry season. The NH4+-N efflux was 29.17 ± 10.50 kg ha−1·day−1 and 4.42 ± 3.07 kg ha−1·day−1 in the wet and dry seasons, respectively. The main form output load of N was NO3-N which was more than 30 times as much as NH4+-N output loss. The NO3-N caused by rainfall contributed 11.82%–53.61% to the export load. Nitrate from soil contributed over 94% of the N to Houzhai river caused by N leaching. In addition, manure and farmland soil were the main sources of groundwater in the Houzhai watersheds, the contribution rates were 25.9% and 22.5%. The chemical N fertilizers affected carbonate weathering strongly, and the HCO3 flux caused by nitrification due to N fertilizers application in soil accounted for 23.5% of the entire watershed. This study suggested that carbonate weathering may be influenced by nitrogen nitrification in the karst watershed.  相似文献   

17.
华北山前平原农田生态系统氮通量与调控   总被引:4,自引:2,他引:2  
针对华北太行山前平原冬小麦-夏玉米轮作农田, 研究农田常规施肥[400 kg(N)·hm-2·a-1]条件下作物氮素吸收与损失通量过程, 并根据各氮素输出通量特征开展管理调控。研究结果表明, 全年小麦-玉米轮作农田系统氮输入总量为561~580 kg(N)·hm-2, 输出量468~494 kg(N)·hm-2, 两季作物总盈余86~93 kg(N)·hm-2, 其中有机氮为24~36 kg·hm-2。氨挥发和NO3--N 淋溶损失是该区域农田氮素损失的主要途径, 是氮肥利用率低的重要原因。平均每年因氨挥发而造成的肥料氮损失量为60 kg(N)·hm-2, NO3--N 淋溶损失量为47~84kg(N)·hm-2, 两者占施肥总量的30%。每年因硝化-反硝化过程造成的肥料损失很小, 仅为5.0~8.7 kg(N)·hm-2。通过施肥后适时灌水、合理调控灌水时间与用量, 以及利用秸秆还田与肥料混合施用等管理措施可改善氮素的迁移和转化规律, 有效减少氨挥发和NO3--N 淋溶损失, 并结合缓/控释肥与精准施肥技术, 充分利用土壤本身矿质氮素, 可有效提高养分利用效率和作物产量, 改善农田生态环境与促进农业持续和谐发展。  相似文献   

18.
施用磷肥对土壤NO3——N累积的影响   总被引:47,自引:9,他引:38  
在黄土高原南部的国家黄土肥力和肥料效益监测基地进行的长期定位试验结果表明 ,在小麦 玉米轮作中 ,当年施氮量为N 352kg/hm2 时 ,单施氮肥或氮钾配合的 0~4m土壤剖面的NO3--N累积量达 1000kg/hm2 以上 ,其中约 50%~60%的NO3--N分布在 2~ 4m以下的土层中 ,而氮磷配合的 0~ 4m土壤剖面的NO3--N累积量仅为 220kg/hm2,且 80 %的NO3--N分布在 0~2m的土层中 ,增施磷肥由于增加了氮的吸收和对水分的利用而有效地降低了土壤中NO3--N的累积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号