首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
河北山前平原夏玉米高产区施肥不合理现象普遍存在,农业面源污染严重。研究华北山前平原水肥一体化条件下夏玉米适宜的氮肥运筹,可为该区氮素优化施用技术及提高氮肥利用效率提供依据。本研究以‘郑单958’玉米品种为材料,于2014—2015年2个玉米生长季,在滴灌条件下设置4个施氮水平(N0:不施氮;N1:120 kg·hm~(-2);N2:240 kg·hm~(-2);N3:360 kg·hm~(-2)),研究滴灌水肥一体化下施氮量对玉米氮素吸收利用和土壤硝态氮含量的影响。结果表明:N0处理的玉米干物质重及产量较其他处理显著降低,N1、N2和N3处理间无显著差异;N1处理的玉米氮含量和氮累积量较N0处理显著增加,施氮量在N1~N3范围内,不同年份间玉米植株氮含量和氮累积量存在一定差异,总体表现为随施氮量的增加而上升的趋势,但随施氮量的增加,植株氮含量和氮累积量上升幅度逐渐降低。N2处理的氮肥收获指数最高。随施氮量增加,氮肥当季回收利用率、氮肥农学效率、氮肥生产效率和氮肥利用效率显著降低;2014年,在0~100 cm土层范围内,4种施氮处理的土壤硝态氮含量均表现为随土层加深逐渐降低;2015年N2和N3处理的土壤硝态氮在80~100 cm土层达到累积峰,经过2年种植后,年施氮量超过240 kg·hm~(-2)的处理,土壤硝态氮淋洗加剧。利用一元二次方程拟合产量与施氮量之间的关系,明确了玉米最高产量的施氮量为199~209 kg·hm~(-2),经济施氮量为174~187 kg·hm~(-2)。综合考虑经济效益和生态效益,该条件下夏玉米滴灌水肥一体化的适宜施氮量为174~187 kg·hm~(-2)。  相似文献   

2.
为解决吉林省半干旱区滴灌施肥条件下氮肥合理施用问题,通过2年(2015—2016年)田间试验,研究了覆膜滴灌条件下施氮量(0,70,140,210,280,350kg/hm~2)对春玉米产量、氮素吸收利用、土壤剖面无机氮含量变化及氮素平衡的影响。结果表明:施氮量在70~210kg/hm~2范围内玉米产量随施氮量的增加显著增加,当施氮量超过210kg/hm~2后,处理间产量无显著差异;将玉米产量(y)与施氮量(x)拟合,得出最佳施氮量分别为195.1,201.0kg/hm~2。施氮显著提高了玉米各生育时期氮积累量,其中灌浆期和成熟期氮积累量以施氮量210kg/hm~2处理最高。氮素当季回收率、农学利用率和偏生产力均随施氮量的增加而下降。玉米成熟期0-200cm剖面土壤硝态氮和铵态氮含量随土层深度增加呈逐渐下降的趋势;施氮提高了0-200cm土壤硝态氮和铵态氮含量,其中施氮量280,350kg/hm~2处理40-200cm土层硝态氮含量显著高于其他施氮处理。玉米吸氮量、土壤无机氮残留量和氮表观损失量与施氮量呈极显著的正相关;玉米吸氮量、土壤无机氮残留量和氮表观损失量分别占增加纯氮的21.6%~23.3%,33.0%~37.4%,41.0%~43.7%。综上所述,在本试验条件下,综合产量、氮素吸收利用、土壤剖面无机氮含量变化及氮素平衡等因素,在吉林省半干旱区滴灌施肥适宜施氮量应控制在195~210kg/hm~2。  相似文献   

3.
施氮对小麦产量和氮素径流损失及氮肥投入阈值的研究   总被引:3,自引:0,他引:3  
为明确巢湖流域小麦季氮肥投入阈值,在连续3年田间试验条件下,研究了(2012—2014年)不同氮肥水平下(N0、N1、N2、N3、N4、N5分别为0,157.5,210.0,262.5,310.0,420.0kg/hm~2)小麦产量、植株氮素积累量、氮肥利用率、土壤无机氮残留量(0—20cm)及氮素径流流失;同时,利用回归方程模型对其间的相关关系进行拟合。结果表明:(1)与不施氮肥相比,施用氮肥可不同程度提高小麦产量,其中以N3处理增加的比例最大,为64.8%。利用二次函数分析,当施用氮肥超过290.9kg/hm~2时,小麦产量下降。(2)植株氮素累积量和氮肥利用率随施氮量的增加均呈先上升后下降的趋势,当实际施氮量为296.6kg/hm~2时,小麦地上部植株氮素积累量最高;当施氮量为158.5kg/hm~2时,氮肥利用率最高。(3)随着施氮量的增加,土壤中无机氮的残留量(0—20cm)和氮素的径流损失逐渐升高,但是在310.0kg/hm~2之前累积量无显著变化,当施氮量达到420.0kg/hm~2时,土壤中无机氮的残留量及氮素的径流流失变化明显,累积量平均达67.0kg/hm~2,流失量平均达8.3kg/hm~2。因此,施氮量过高时,会增加土壤无机氮残留及氮素径流损失的风险,对环境造成污染。结合巢湖地区土壤肥力条件,综合考虑试验施肥处理、施氮量对小麦产量、植株氮素积累量、氮肥利用率、土壤无机氮残留量(0—20cm)及氮素径流流失因素,提出适宜巢湖地区的氮肥投入阈值为157.5~262.5kg/hm~2。  相似文献   

4.
农田硝态氮淋溶规律对不同水氮运筹模式的响应   总被引:4,自引:1,他引:3  
为探明不同水氮运筹对淋溶水中NO_3~--N时空分布特征以及施氮量和灌水定额对NO_3~--N淋失量的影响,进而制定安全有效的水氮运筹模式。试验采用裂区设计,主区为灌水定额,设置3个水平,分别为525(W1),750(W2),975(W3)m~3/hm~2。副区为施氮量,设置5个水平,分别为0(N0),80(N1),160(N2),240(N3),320(N4)kg/hm~2。每个灌水定额下有5种施氮量处理,共15个处理。并于2014—2015年连续2年进行田间试验。采用多孔PVC法和土钻法采集水样和土样,测定淋溶水中NO_3~--N浓度并计算NO_3~--N淋失量。结果表明,0—40cm埋深内,对比第1次灌水前后NO_3~--N浓度发现,随着施氮量的增加,W1水平下NO_3~--N浓度2年的平均增幅远低于W2和W3水平下NO_3~--N浓度2年的平均增幅。随着灌水定额的增加,N1、N2水平下的NO_3~--N浓度平均增幅远低于N3、N4水平下的NO_3~--N浓度平均增幅。NO_3~--N浓度平均增幅最大的为52.5%的W3N3。NO_3~--N浓度平均值最高的为8.29mg/L的W3N4。与0—40cm埋深内的各处理相比,40—80cm埋深的各处理NO_3~--N浓度整体下降,但整个生育期内淋溶水中NO_3~--N浓度的变化趋势与0—40cm埋深内相一致。80—120cm埋深内,施氮量、灌水定额以及两者的交互作用对NO_3~--N淋失量的影响呈极显著。当灌水定额一定时,2014年、2015年2年的NO_3~--N淋失量随着施氮量增加而递增,淋失率随着施氮量的增加而减少;当施氮量一定时,NO_3~--N淋失量及淋失率均随着灌水定额的增加而递增。鉴于根层内需要充足的NO_3~--N以被作物吸收,并保证NO_3~--N淋失量对地下水的污染在可控安全范围内,故推荐W2N3为适用于当地的水氮运筹模式。  相似文献   

5.
为解决区域土壤质地类型针对性氮肥施用问题,在轻壤土和黏壤土上分别设置不施氮肥,氮肥基追比3∶7,4∶6,5∶5,6∶4和7∶3处理,研究小麦产量、水氮利用效率以及土壤含水量、贮水量、NH_4~+-N、NO_3~--N动态变化规律。结果表明:轻壤质土壤氮肥基追比4∶6的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 265.3 kg/hm~2,27.6 kg/(hm~2·mm),34.4 kg/kg。黏壤质土壤氮肥基追比5∶5的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 363.2 kg/hm~2,28.3 kg/(hm~2·mm),34.8 kg/kg。小麦不同生育期各土层含水量垂直分布变化较大,轻壤质土壤含水量在9.3%~26.2%,而黏壤质为9.7%~27.6%;小麦全生育期内土壤贮水量呈先升高后降低趋势,黏壤质土壤贮水量高于轻壤质。氮素追施量越多土壤表层NH_4~+-N与NO_3~--N含量越高,且随土层加深土壤NH_4~+-N与NO_3~--N含量降低,受降水影响轻壤质土壤NH_4~+-N与NO_3~--N更易于向土层深处淋溶,成熟期黏壤质各土层的NH_4~+-N和NO_3~--N含量均多于轻壤质。说明黏壤质土壤保水保氮肥能力强于轻壤质,氮肥基追比可以适当增加。  相似文献   

6.
华北平原春玉米季土壤硝态氮动态及氮素矿化的特征   总被引:4,自引:0,他引:4  
为进一步明确推荐施氮的优势所在,并为春玉米制定合理的施氮策略,本文在高肥力土壤条件下,通过设计不同氮肥管理模式.研究了春玉米季0—150 cm土体土壤NO_3~-—N动态和氮素矿化的特征。结果表明,经验施氮0—90 cm土层NO_3~-—N含量呈单峰曲线变化,峰值一般在400 kg/hm~2以上,90—150 cm土层则富积了大量的NO_3~-—N,潜在淋洗量很大。不施氮条件下,土壤表现出较强的净矿化势,并且净矿化速率和玉米生长速率有较好的协同性,二者同在大喇叭口至吐丝期达到最大值,但土壤供氮能力逐年下降。推荐施氮使得0—90 cm土层NO_3~-—N总体保持在100~200 kg/hm~2范围内,既确保作物的吸收又减少了氮素淋洗损失。研究表明,三年来推荐施氮共节省氮肥475 kg/hm~2,氮肥利用率提高了14%。  相似文献   

7.
通过3年田间试验,探索贵州黄壤坡耕地玉米-小麦间套作体系作物增产、环境友好的适宜氮肥施用量。本研究设置6个小麦氮肥用量(N 0、90、120、150、180和240 kg/hm~2)和6个玉米氮肥用量(N 0、146、195、244、293和390 kg/hm~2),分别用N0、N1、N2、N3、N4、N5表示。结果表明:玉米在0~146.25 kg/hm~2的施氮量下,籽粒产量随着施氮量提高而增加,超过146.25 kg/hm~2施氮量,籽粒产量呈下降的趋势;玉米在0~243.25kg/hm~2的施氮量下,植株氮素累积量随着施氮量提高而增加,超过243.25 kg/hm~2的施氮量,植株氮素累积量呈下降的趋势。小麦在0~150 kg/hm~2的施氮量下,籽粒产量和植株氮素累积量随着施氮量提高而增加,超过150kg/hm~2施氮量,籽粒产量和植株氮素累积量呈下降的趋势。玉米-小麦间套作在0~236.25 kg/hm~2的施氮量下,籽粒产量随着施氮量提高而增加,超过236.25 kg/hm~2施氮量,籽粒产量呈下降的趋势;玉米-小麦间套作在0~315 kg/hm~2的施氮量下,植株氮素累积量随着施氮量提高而增加,超过315 kg/hm~2施氮量,植株氮素累积量呈下降的趋势。3年试验周期内氮素利用率较低,不超过25%;土壤中残留无机氮随着施肥量的增加而增加,并以NO3--N为主,100 cm土体累积的NO3--N与周年施氮量呈正相关(R2=0.746 3)。N0、N1、N2、N3、N4、N5处理的0~100 cm土体累积无机氮分别为275.5、301.5、292.1、366.5、431.2、616.9 kg/hm~2,N0、N1、N2、N3、N4、N5处理的耕层土壤无机氮占100 cm土体内土壤无机氮的比例分别为18.1%、19.0%、27.3%、26.2%、33.9%、22.1%。耕层无机氮表聚效应较弱,而土体累积无机氮含量较高。当每年施氮量为225.6~264.6 kg/hm~2时,籽粒产量为3 784.8~3 888.2 kg/hm~2,NO3--N积累量在217.5~228.9 kg/hm~2,增施氮肥,有利于籽粒增产,土壤NO3--N积累量平均增速为0.29 kg/kg,是贵州黄壤坡耕地麦-玉间套作体系氮肥适宜施用量,更有利于黄壤区农业的可持续发展。  相似文献   

8.
通过田间裂区试验研究了不同施氮量(N 0、150、210和270 kg/hm2)和灌水量(900、1200、和1500 m3/hm2)对夏玉米土壤硝态氮分布累积、氮素平衡以及氮肥利用率的影响。结果表明,夏玉米收获期各处理土壤硝态氮在表层(0—20 cm)含量最高,在0—200 cm剖面均呈现先减少后增加再减少的变化趋势;土壤剖面NO3--N累积量随施氮量的增加而增加,且施氮处理硝态氮积累量显著高于不施氮处理。作物吸氮量、氮素表观损失量均与施氮量和总氮输入量呈显著相关,氮素输入量每增加1 kg,作物吸氮量仅增加0.301 kg,而表观损失量增加0.546 kg,是作物吸氮量的1.8倍左右。随施氮量的增加土壤剖面中NO3--N的损失量逐渐减少。夏玉米子粒吸氮量和收获指数随施氮量的增加有增加的趋势;氮肥回收效率和氮肥农学效率均以处理W1500N150最高,分别为46.15%和12.98kg/kg;氮肥生理效率以处理W1200N150最大,为34.49 kg/kg。本试验条件下,以水氮处理W1500N150的土壤硝态氮残留量、表观损失量较低,夏玉米氮肥回收效率和农学效率较高。  相似文献   

9.
为提高辽西地区花生产量和水氮利用率,本文以‘白沙1016’为对象,采取裂区试验,主区为雨养(W0)和测墒补灌(W1)两种灌溉模式,子区为0 kg·hm~(-2)(N0)、40 kg·hm~(-2)(N1)、60 kg·hm~(-2)(N2)和80 kg·hm~(-2)(N3)4个施氮水平,研究施氮对测墒补灌条件下花生干物质积累和氮素积累及分配的影响。试验结果表明:在雨养和测墒补灌条件下,花生成熟期的单株干物质量分别为64.66~74.92 g和71.65~92.81 g,以W1N3处理最高,W0N0最低,且随施氮量呈现二次曲线变化趋势。花生植株氮积累量随施氮量变化趋势与干物质量一致,W1N2较其他处理显著提高了氮素积累量、产量和水分利用效率。测墒补灌优化了花生植株中氮素的分配,延长了叶片氮素积累时长,同时提高了叶片氮素向荚果的转移量,继而相对雨养处理显著增加了花生荚果氮积累量所占植株氮积累总量的比重(氮收获系数)2.13%、氮肥农学利用率78.57%、氮肥表观回收率25.90%。花生收获后,土壤硝态氮主要分布在0~40 cm土层内,占0~60 cm土层的77.75%,且累积量随着施氮量的增高而增加,但补灌会使土壤硝态氮下移造成硝态氮淋失。因此,综合考虑水氮利用效率,在辽西半干旱地区推荐W1N2为适宜花生生产水氮管理,其产量、水分利用效率和灌溉水利用效率最高,分别为6 485.03 kg·hm~(-2)、2.02 kg·m~(-3)和10.21kg·m~(-3)。  相似文献   

10.
土壤残留氮是不容忽视的土壤氮素资源.通过田间小区试验研究了土壤高残留氮下不同施氮量(0、80、160、240和320 kg/hm2)对夏玉米土壤硝态氮积累、氮素平衡、氮素利用及产量的影响,分析了夏玉米的经济效益.结果表明,土壤剖面硝态氮积累量随施氮量的增加而增加,且施氮处理硝态氮积累量显著高于不施氮处理;各施氮处理土壤硝态氮在0-60 cm土层含量最高,在0--180 cm剖面呈先减少后增加的变化趋势.不施氮处理夏玉米收获后土壤无机氮残留量高达378 kg/hm2,随施氮量的增加,无机氮残留和氮表观损失显著增加.作物吸氮量、氮表观损失量与总氮输入量呈显著正相关,总氮输入量每增加l kg作物吸氮量增加0.156 kg,而表观损失量增加0.369 kg,是作物吸氮量的2.4倍.高残留氮土壤应严格控制氮肥用量,以免造成氮素资源的大量浪费.夏玉米籽粒吸氮量随施氮量的增加呈增加的趋势,氮收获指数呈降低的趋势.氮肥农学效率、氮肥生理利用率、氮肥利用率和氮素利用率在施氮量80 kg/hm2时最高,随施氮量的增加降低;增施氮肥能降低高残留氮土壤中氮肥的增产效果和利用率.综合考虑产量、氮素利用和环境效应,N 80 kg/hm2是氮素高残留土壤上玉米的合理施氮量.  相似文献   

11.
淮河流域农业生态系统中地下水体氮源追溯   总被引:1,自引:0,他引:1  
淮河流域地下水体中的氮污染问题一直以来备受关注。为了从源头追溯氮污染物的来源,本文通过清单法收集淮河流域2002—2017年期间35个地级市的农业统计资料,首先构建基于化肥施用氮、人畜粪便返田氮、生物固氮、大气沉降氮、种子带入氮、秸秆带入氮为输入项和作物收获氮、反硝化脱氮、氨挥发脱氮为输出项的氮平衡模型,估算进入淮河流域农业生态系统内的氮盈余量和强度;然后利用氮盈余量与淋滤系数构建氮淋滤模型定量估算氮淋滤到地下水体中的量。研究发现:2002—2017年间淮河流域农业生态系统中氮年均输入量为1 005.01万t·a-1,化肥施用氮是最大的氮输入源,占总输入量的52.76%;淮河流域农业生态系统中氮年均输出量为706.43万t·a-1,作物收获氮在氮输出中所占的比例最大,达87.29%。随着时间的增加,氮盈余量和强度逐步降低。本次从地级市角度计算的氮源强度和其时间变化规律与以往从流域角度计算的氮源强度和其时间变化规律相差不大,保证了结果的准确性。从地区上分析,河南省各地级市的氮源强度最高,山东省和安徽省各地级市的最低。2002—2017年间,淮河流域农业区氮盈余量淋滤进入地下水中的氮污染物总量为26.22万~41.71万t·a-1,淋滤进入到地下水体中的氮污染物平均量为31.41万t·a-1,其中2006年最高。较大的氮淋滤值对水体环境造成了较大的污染负荷。采用SPSS 21.0中用F统计量和皮尔森相关系数(ρ)对地下水中的实际氮污染物浓度与估算值间的氮污染物量进行相关性检验,最终通过显著性检验且相关系数达到0.517,证实了本次模型选择的准确性。本文研究表示,2002—2017年淮河流域农业生态系统中地下水体中氮的来源主要为化肥输入,最主要的输出途径为作物收获,污染最严重年份为2006年,为解决农业面源污染问题提供了重要的前期资料,对地下水中氮污染的防控具有重要的现实意义。  相似文献   

12.
高产农田土壤硝态氮淋失与地下水污染动态研究   总被引:25,自引:5,他引:25       下载免费PDF全文
对桓台县区域农田监测研究表明,水肥管理不同的2个监测区域郭家区、李家区高产农田土体内NO_3~--N淋失迁移动态有差异,地下水污染亦不同。春天始土体内NO_3~--N含量趋于持续降低,浅层地下水NO_3~--N含量则持续升高,雨季后地下水中NO_3~--N含量尤剧烈升高,并达年内最高值,表现出农田N肥对地下水的直接污染,这可能与李家区灌溉次数多、土壤质地较轻和地下水位较浅有关。  相似文献   

13.
通过再生水灌溉田间试验,探讨了不同潜水埋深条件下(2 m、3 m、4 m),再生水灌溉对土壤中NO3--N、NH4 -N及地下水中NO3--N的影响。试验结果表明:再生水灌溉后,土壤中NO3--N含量均显著增加;不同潜水埋深再生水灌溉对土壤中NH4 -N含量影响不明显。灌水水平为900 m3·hm-2,不同潜水埋深(2 m、3 m、4 m)地下水NO3--N浓度分别增加34.67%、24.94%、20.88%,灌水水平为1 200 m3·hm-2不同潜水埋深地下水NO3--N浓度分别增加58.42%、38.98%、27.21%,潜水埋深越深地下水硝态氮浓度增加越小。表明潜水埋深越浅因淋溶和硝化作用产生的NO3--N造成浅层地下水污染的风险越大。  相似文献   

14.
太湖地区农田水环境中氮和磷时空变异的研究   总被引:3,自引:0,他引:3  
试验研究了太湖地区农田水环境中N和P的动态变化结果表明:太湖地区农田水环境均受到不同程度的N、P污染,且3~7月间呈加重趋势;目前地表水特别是太湖水中N、P含量已远远超过富营养化的极限值,富营养化程度十分严重;地下水中总P和NO3--N含量变化明显,NH4 -N已劣于V类地下水质量标准,基本不适合饮用;浅层地下水中的NH4 -N含量与土壤黏粒含量呈负相关关系,深层地下水(井水)中NO3--N含量与pH值呈正相关关系。该研究可为太湖地区水环境保护和农业面源污染治理提供参考依据。  相似文献   

15.
地下水作用条件下土壤积盐规律研究   总被引:28,自引:3,他引:28       下载免费PDF全文
用粉砂壤土土柱进行了为期一年的室内模拟试验 ,对不同地下水埋深及其矿化度作用条件下 0~ 40cm深度土壤的盐分运动规律进行了深入研究。地下水埋深 85cm、1 0 5cm情况下 ,0~ 40cm深度土壤电导率与地下水矿化度呈良好正相关关系。地下水埋深 1 5 5cm、试验设定条件下 ,各土柱 0~ 40cm深度土壤积盐强度都较小 ,并且相互之间差异不明显。获得了各土柱 0~ 40cm深度土壤电导率关于地下水埋深、地下水矿化度的统计模型。对土壤电导率动态规律进行了深入分析 ,并建立了地下水明显影响到该深度土壤后土壤电导率动态模型。  相似文献   

16.
浅谈北京地区湿地修复与地下水资源的关系   总被引:1,自引:0,他引:1  
北京曾是湿地极为发育的“水乡”,但由于人类工程活动的影响,过量开采地下水,自然湿地已大幅减少,并呈濒危趋势。通过对北京地区湿地发展历史的研究,总结和分析了其演变规律,根据北京地区湿地分布现状,结合区域地下水动态变化监测资料,研究了地下水位与湿地发展之间的关系,并探讨了当前北京湿地修复工作的目标、方法。  相似文献   

17.
为了研究新疆喀什地下水浅埋区弃荒地表层土壤积盐与地下水的定量关系,对试验区自然状况下的土壤含水量、表层土壤含盐量、地下水埋深、地下水矿化度和潜水蒸发量进行了原位监测,模拟了潜水蒸发量与地下水埋深的关系,定量分析了弃荒地自然条件下地下水埋深、地下水矿化度对土壤表层盐分的影响,建立了表层土壤含盐量与地下水埋深、地下水矿化度的经验模型。结果表明:在5~50 cm土层,土壤质量含水率随土层深度增加而增大;地下水埋深、地下水矿化度对表层土壤盐分有显著的影响,当地下水埋深为定值时,表层土壤含盐量与地下水矿化度呈线性正相关;当地下水矿化度为定值时,表层土壤含盐量与地下水埋深呈线性负相关;土壤盐分表聚现象明显,不同地下水埋深条件下表层土壤含盐量随累计潜水蒸发量的增加而增大,表层土壤积盐速率随地下水埋深的增大而减小,地下水埋深为25 cm条件下表层土壤积盐速率约是地下水埋深为50 cm的表层土壤积盐速率的2倍多。  相似文献   

18.
北京市地下水超采现象严重,由此引发了包括地面沉降等相关环境问题,严重制约了北京市的经济社会发展。本文采用地下水可利用量和用水效率定义了地下水承载力,并结合地下水开采程度(RG)和经济发展程度的投影图(RQ)对北京市2001-2015年的地下水资源承载力进行了评价。结果表明:北京市地下水的供水量高于地表水的供水量,地表水和地下水供水量波动幅度较小;北京市农业用水效率和工业用水效率逐年升高,其他行业用水效率除在2014年和2015年出现小幅度降低外,其他年份均处于升高趋势,折算后的综合用水效率也从2001年的97元·m-3增长到2015年的620元·m-3;北京市地下水实际承载的GDP从2001年的2 636亿元增长到2014年的11 469亿元,2015年又减少到11 284亿元。以2010年为界限北京市地下水开采程度(RG)和经济发展程度(RQ)投影点分别位于Ⅰ区和Ⅱ区内,表明北京市地下水承载力2010年以前处于相对荷载过重的状态,2010年以后荷载状态有所缓解。虽然北京市实际承载的GDP低于理论承载的GDP,但是北京市地下水承载力仍然面临着严峻的挑战,逐步提高地表水使用量和提高用水效率是有效缓解北京市地下水超采的有力举措。  相似文献   

19.
地下水作用条件下粉砂壤土盐分动态研究   总被引:7,自引:0,他引:7       下载免费PDF全文
用粉砂壤土土柱进行了室内模拟试验,研究不同地下水埋深及其矿化度作用条件下非饱和粉砂壤土的盐分动态规律。在相同地下水埋深情况下,处于盐分动态平衡状态时的各模拟土柱相同层次土壤溶液浓度,与地下水矿化度呈良好正相关关系。在相同地下水矿化度条件下,土体积盐速率与地下水埋深呈负相关关系,但是各土柱相同埋深土体达到盐分动态平衡状态时的土壤溶液浓度差别不明显。对地下水埋深及地下水矿化度对耕作层土壤溶液浓度的综合作用效果进行了深入分析,建立了各积盐阶段耕作层土壤溶液浓度的增高值关于此二因素的数理统计模型。  相似文献   

20.
大沽河流域土壤水-地下水流耦合模拟及补给量估算   总被引:1,自引:0,他引:1  
青岛大沽河流域的含水层主要分布在大沽河中下游沿线的狭长地带内,构成了地下水库,是青岛市主要的水源地之一。由于大沽河流域地下水超采严重,为加强该地区地下水资源的综合管理,亟需准确计算地下水补给量。土壤水和地下水耦合模拟研究是准确计算地下水补给量的重要保障。本文以HYDRUS package for MODFLOW软件的原理为基础,结合GIS技术,建立了流域尺度(4 781 km~2)土壤水-地下水流耦合模型;在综合考虑研究区大气降水、蒸发、植物吸水、土壤质地、含水层分布、土壤水和地下水相关参数、地下水开采量、土壤水分含量及地下水埋深等资料情况下,利用本模型对大沽河流域土壤水和地下水流的运动过程进行模拟。经过模型校正和实例验证表明:耦合模拟所得的土壤剖面含水量和地下水位与实测数据的拟合结果较好,土壤水-地下水流耦合模型能够较好地模拟大沽河流域土壤水和地下水的时空变化;通过模拟计算,2013年夏玉米生长期内大沽河流域地下水补给量为3.15×10~9 m~3,2012年6月16日至2013年6月16日期间内地下水的补给量为4.77×10~9 m~3,计算所得的地下水的垂向入渗补给量具有较高的可信度和准确度,可以为制定合理的流域水资源优化配置方案提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号