首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
大气边界层内的水热通量在气候系统中起着十分重要的作用。基于大孔径闪烁仪(LAS)科尔沁沙地梯级生态带水热通量2017年3—12月数据,探讨了水热通量与主要环境因子间的关系。结果表明:(1)水热通量日变化特征明显。晴天时显热通量曲线呈单峰状,潜热通量曲线在生长季呈双峰状,非生长季呈单峰状;阴天时显热通量和潜热通量无显著变化规律;土壤热通量曲线在整个研究时段较净辐射曲线表现为稳定的滞后性。(2)水热通量季节性变化显著。通量各月变化曲线峰值出现时间先后移再前移,符合季节变化规律;显热通量在非生长季占净辐射比例较大,生长季时占比降低;潜热通量在整个研究时段占净辐射比例最大,是近地面能量消耗主要形式。(3)太阳净辐射、空气温度、空气相对湿度等气象因子与水热通量的相关性显著;表层10 cm土层土壤与水热通量相关性最好,土壤温度、土壤含水率与水热通量相关性显著,土壤电导率与水热通量相关性不明显。  相似文献   

2.
对祁连山海北地区矮嵩草(Kobresia humilis)草甸和金露梅(Potentilla fruticosa)灌丛草甸两种植被类型土壤热通量观测和比较分析发现:晴天两种植被类型区土壤热通量日变化均表现为单峰型,夜间低午后高;阴雨天土壤热通量变化复杂,随降水或云层厚薄波动剧烈。金露梅灌丛草甸土壤热通量的日变化较矮嵩草草甸更为平稳。两种草甸土壤热通量的月际变化同样表现为单峰型,12月最低(矮嵩草草甸和金露梅灌丛草甸分别为-40.27MJ/m2和-16.85MJ/m2)、6月最高(矮嵩草草甸和金露梅灌丛草甸分别为20.47MJ/m2和18.98MJ/m2)。矮嵩草草甸与金露梅灌丛草甸土壤热通量的年总量差异明显,分别为-24.72MJ/m2和48.10MJ/m2。表现出前者由土壤深层向地表散热,而后者由地表向土壤深层输送热量。两种植被类型区不同时间尺度上的土壤热通量与冠层净辐射均有显著的线性相关关系。由于冠层厚度的影响,金露梅灌丛草甸土壤热通量所占净辐射的比例较小,同步性较差,反馈延时约2.5h,而矮嵩草草甸的土壤热通量与净辐射的相关性更加密切。  相似文献   

3.
若尔盖高原高寒草甸生态系统是青藏高原能量和水分循环的重要组成部分,但该地区地面水热通量观测数据非常缺乏。本研究基于涡动相关法,于2013年11月1日−2014年10月31日,利用三维超声风温仪和红外开路二氧化碳/水汽分析仪在若尔盖高原一典型高寒草甸开展周年通量观测,以揭示其地表能量交换和蒸散特征及影响因素。结果表明:高寒草甸地表能量通量各组分呈显著的日变化和季节变化特征,净辐射通量、感热通量、潜热通量和土壤热通量的年均值分别为94.5、21.0、51.8和1.2Wm−2。非生长季感热稍占优势,生长季潜热占绝对主导地位,波文比全年平均值为0.70,能量平衡闭合率年平均值为0.77。辐射是感热通量的主要气象影响因子,潜热通量则受温度、辐射和饱和水汽压差共同影响。日蒸散量变化范围为0.12~5.09mmd−1,全年平均值为1.82mmd−1。非生长季蒸散主要受土壤表面导度因子控制,生长季则由辐射主导,土壤和植被表面导度因子为次要影响因素。在季节尺度上,蒸散的变化取决于降水分布,全年降水和蒸散量分别为682.7mm和673.6mm,其中生长季分别占全年总量的84%和82%。6−7月降水匮乏抑制了蒸散,此时土壤储水成为蒸散的主要水源,从全年看,降水基本都以蒸散的方式返回大气。与青藏高原上同类观测研究相比,地表能量通量和蒸散都有相似的季节变化趋势,但观测到的年平均波文比和年蒸散量最大,气温、降水、地表植被等因素的共同作用导致这一结果。研究数据可作为地面验证资料,用于若尔盖地区陆面模式参数化方案的优化和卫星遥感反演资料的校验。  相似文献   

4.
利用三江源地区2018年1-12月涡动相关系统的观测数据,分析该地区冻土/非冻土期内各能量分项支出分配特征和能量平衡闭合率及其影响因子,以揭示其能量平衡特征。结果表明:显热通量、潜热通量、土壤热通量变化趋势与净辐射相似,且在年尺度、日尺度上具有典型的单峰型变化,但潜热通量、土壤热通量的峰值出现时间具有滞后性。非冻土期内,显热、潜热支出以及土壤吸收的热量占总能量的比例分别为0.38、0.37、0.10;而在冻土期内,上述各能量的支出比分别为0.54、0.19、-0.01。全年能量平衡闭合率为0.69,能量平衡闭合率在冻土期和非冻土期内分别为0.63、0.74。三江源地区冻土期内显热支出为主要能量消耗方式,且在该时段内影响能量平衡闭合率的因素主要是湍流动力因子;非冻土期的能量消耗方式为潜热和显热,热力和动力因子均对能量平衡闭合率产生影响。  相似文献   

5.
冬小麦冠层温度及其影响因素探析   总被引:12,自引:0,他引:12  
采用涡度相关法测定冬小麦农田潜热通量和显热通量 ,研究农田热量平衡各分量及风速对冠层温度和冠层 大气温差的影响结果表明 ,净辐射通量是影响冠层温度高低的主要能量因子 ,二者呈极显著线性相关关系 (α =0 .0 1) ,潜热通量、显热通量和土壤热通量对冠层温度的影响与天气状况有关 ,风速变化对冠层温度的影响作用不显著 ,而与冠层 大气温差间有较好的负相关关系  相似文献   

6.
土壤表层水汽传输阻抗是估算区域蒸散的关键参数之一,但其与土壤水热参数的数量关系的研究在高寒系统中十分薄弱。利用涡度相关系统观测的2014/2015年度高寒草甸非植被生长季(11月-翌年4月)的土壤蒸发数据,基于Penman-Monteith方程反推得出非生长季土壤表层阻抗的昼(9:00-18:00)变化特征,并研究其与土壤5cm温度和土壤5cm含水量的关系。结果表明,非生长季土壤表层阻抗表现出单峰型日变化特征,其最大值一般出现在15:00前后。逐时土壤表层阻抗与土壤5cm温度呈极显著幂函数阈值关系(R2=0.38,P0.01,N=115),即土壤温度为–4.25℃时土壤表层阻抗最大;与土壤5cm含水量呈极显著指数负相关(R2=0.12,P0.01,N=115)。非生长季逐日土壤表层阻抗的变化无明显季节规律,与土壤5cm温度(R2=0.69,P0.01,N=10)和土壤5cm含水量(R2=0.27,P0.01,N=10)均表现为极显著指数负相关。相关分析表明,非生长季土壤蒸发主要受太阳总辐射(R20.50,P0.01)的控制。研究结果表明土壤温度而非土壤含水量主导着高寒草甸非生长季土壤表层阻抗的变化。  相似文献   

7.
缪利  陆晴      刘根林  危小建   《水土保持研究》2023,30(1):97-105
研究青藏高原不同植被类型NDVI时空变化特征,探讨不同植被类型NDVI对气候因子的响应机制,为青藏高原生态保护提供科学依据。基于1999—2019年的SPOT/VEG NDVI数据、植被类型和气象数据,采用线性趋势分析、Pearson相关分析及偏相关分析方法,对1999—2019年青藏高原不同植被类型NDVI时空变化特征进行了分析,并探讨了不同植被类型NDVI变化对气候因子的响应。结果表明:(1)青藏高原整体植被生长状况良好,青藏高原各植被类型生长季平均NDVI均值从高到低依次为森林(0.6)、灌丛(0.48)、草甸(0.37)、草原(0.16)、高山植被(0.13)。(2)除高山植被有轻微退化趋势外,其他植被类型均有显著改善,改善面积占比依次为灌丛58.46%(p<0.05)、森林52.78%(p<0.05)、草甸51.60%(p<0.05)、草原32.65%(p<0.05)。(3)气候因子对植被NDVI的影响具有明显的地域差异性,平均气温对青藏高原植被生长季NDVI变化的影响更为显著,且影响范围更为广阔;而降水主要影响青藏高原北部地区的草原、草甸等植被的ND...  相似文献   

8.
基于涡度相关技术,研究了2015年青海湖2种高寒嵩草湿草甸湿地生态系统水热通量的特征。结果表明:(1)2015年青海湖高寒藏嵩草和小嵩草湿草甸湿地生态系统日平均水汽通量分别为1.74,0.99mm,年水汽通量分别为633.3,362.1mm。(2)青海湖2种高寒嵩草湿草甸湿地生态系统感热、潜热和净辐射日变化均呈单峰曲线,感热和潜热月平均日变化最大值出现的时间均晚于净辐射。藏嵩草湿草甸湿地生态系统感热月均日变化最大值最大为179.06W/m~2,最小为46.02W/m~2;潜热最大为312.55W/m~2,最小为30.58 W/m~2;小嵩草湿草甸湿地生态系统感热月均日变化最大值最大为161.86 W/m~2,最小为31.60 W/m~2;潜热最大为215.44 W/m~2;最小为14.08 W/m~2。(3)通过波文比分析发现,2种高寒嵩草湿草甸湿地生态系统生长季能量分配以潜热为主,非生长季小嵩草湿草甸湿地生态系统能量分配以感热为主,藏嵩草湿草甸湿地生态系统则较为复杂。藏嵩草湿草甸湿地生态系统全年能量平衡率为0.82,小嵩草湿草甸湿地生态系统为0.89,增加土壤热通量项能改善能量平衡状况。  相似文献   

9.
三江平原稻田能量通量研究   总被引:2,自引:1,他引:1  
基于三江平原稻田2005~2007年5~10月涡度相关通量观测数据, 分析了该区稻田能量通量的日变化、季节变化和能量分配特征以及能量平衡状况。结果表明: 三江平原稻田净辐射和潜热通量日变化均表现为明显的单峰特征, 感热通量日变化在水稻发育进入成熟期后才较明显, 而土壤热通量在水稻整个发育期内日变化特征都不明显。稻田净辐射季节变化特征显著, 6月下旬至7月上旬达到最大值18~20 MJ·m-2·d-1。潜热通量季节变化与净辐射同步, 最大值为13~19 MJ·m-2·d-1。相比之下感热通量较小, 观测期间变化于-3.90~ 3.94 MJ·m-2·d-1, 且没有明显的季节变化。5~10月土壤热通量呈下降趋势, 变化于-2.67~3.62 MJ·m-2·d-1。三江平原地区稻田能量分配特征明显, 潜热通量占净辐射的比例(LE/Rn) 5~10月平均值为0.67, 表明净辐射大部分以潜热通量形式所消耗, 但生长旺季LE/Rn略大于生长季初期和末期。感热通量占净辐射的比例(Hs/Rn)的季节变化特征与LE/Rn比值相反, 观测期间平均值为0.10。这导致波文比在水稻生长旺季较小而在初期和末期较大。5~10月土壤热通量占净辐射的比例(G/Rn)呈逐渐下降趋势, 其月平均值由5月的0.14下降到10月的-0.08。线性回归法和能量平衡比率均表明三江平原稻田能量明显不闭合, 2005、2006年5~10月能量不闭合度分别为22%和16%, 而2007年能量“过闭合”, 能量平衡比率平均值为1.07。  相似文献   

10.
地球边界层热量来源是地表吸收太阳短波辐射后再以长波辐射形式加热的结果,而边界层生物活动与近地表热量息息相关,讨论长波辐射的变化特征对生态系统的物质流动及能量交换具有重要意义。以2003年对高寒矮嵩草草甸、金露梅灌丛两种植被类型观测的资料,比较分析了两种植被类型地面长波辐射(ULR)、大气逆辐射(DLR)以及地面有效长波辐射(ELR)的变化特征。结果表明,高寒矮嵩草草甸、金露梅灌丛ULR、DLR以及ELR均具有明显的日、月变化。其中矮嵩草草甸、金露梅灌丛的ULR月平均日变化在北京时间14∶00最高,凌晨最低;DLR在16∶00-18∶00最高,凌晨最低;ELR在8∶00最低,14∶00最高。月变化中,两种植被类型区ULR、DLR的最低值出现在1-2月,较高值出现在7-9月,而ELR变化趋势比较复杂。总体而言,金露梅灌丛的DLR、ULR变化值明显比矮嵩草草甸的高。  相似文献   

11.
欧阳习军      董晓华      魏榕      龚成麒      吴寒雨     《水土保持研究》2023,30(2):220-229
为了探究青藏高原植被覆盖时空演变特征及其驱动因子,对青藏高原的生态环境保护提供科学依据,基于1982—2015年青藏高原内部及其周边139个气象站点的气象数据和同期的GIMMS NDVI数据,研究了青藏高原生长季植被NDVI的时空变化特征及其与气候因子的响应关系。结果表明:(1)在研究期内,青藏高原生长季NDVI总体呈上升趋势,不同干湿地区生长季NDVI变化趋势有所差异,湿润地区植被退化面积占比相对较大,干旱地区植被改善面积占比相对较大。(2)研究区植被未来总体向改善方向发展,植被未来趋向改善面积占62.25%,趋向退化面积占37.58%。(3)研究区植被对各气候因子的响应存在一定的滞后性,草原、草甸、高山植被和灌丛4种主要植被对气温和相对湿度主要当月响应,对降水主要当月或滞后1个月响应,对日照时数主要滞后3个月响应。(4)气温、降水、相对湿度及日照时数4个气候因子对青藏高原植被NDVI变化的相对贡献率分别为37.19%,27.53%,20.30%和14.97%,其中,气温和降水是湿润/半湿润地区、半湿润地区、大部分半干旱地区及干旱地区植被NDVI变化的主要气候驱动因子,日照时数和相对...  相似文献   

12.
一个新的植被参数化方案研究   总被引:2,自引:0,他引:2  
为定量描述土壤-植被-大气连续体的热量及水分交换,建立了以有效比湿等为基础且具普适性的植被参数化方案--1种等温大叶模式。利用拉萨、狮泉河和南京3个试验站的气象观测资料验证并由此计算的感热通量和潜热通量以及净辐射量、土壤温度等观测结果进行比分析表明,该植被参数化方案成功地反映了下垫面的水、热传输特征。  相似文献   

13.
为定量描述土壤-植被-大气连续体的热量及水分交换,建立了以有效比湿等为基础且具普适性的植被参数化方案——1种等温大叶模式。利用拉萨、狮泉河和南京3个试验站的气象观测资料验证并由此计算的感热通量和潜热通量以及净辐射量、土壤温度等观测结果进行对比分析表明,该植被参数化方案成功地反映了下垫面的水、热传输特征。  相似文献   

14.
东祁连山不同高寒灌丛草地土壤抗蚀性研究   总被引:6,自引:5,他引:1  
为探讨祁连山东段不同高寒灌丛草地的土壤抗蚀性特征,采用野外调查和室内试验的方式,对东祁连山金露梅、柳、杜鹃3类高寒灌丛草地的土壤抗蚀性特征及其影响因素进行了研究。结果表明:不同灌丛草地土壤水稳性团聚体主要以0.5mm的大粒径水稳性团聚体为主,土壤团聚结构破坏率表现为:柳灌丛草地杜鹃灌丛草地金露梅灌丛草地;土壤水稳性指数依次为:杜鹃灌丛草地(97.1%)柳灌丛草地(96.9%)金露梅灌丛草地(95.8%);土壤抗蚀指数表现为:杜鹃灌丛草地最大(95.0%),金露梅灌丛草地最小(92.9%)。总体上,杜鹃灌丛草地的土壤抗蚀性最强,金露梅灌丛草地的土壤抗蚀性最差。通过灰色关联度法,对0.5mm的机械团聚体含量、0.25mm的机械团聚体含量、0.25mm的水稳性团聚体含量、0.5mm的水稳性团聚体含量、土壤结构破坏率、水稳性团聚体平均质量直径、有机质、土壤崩解率、土壤水稳性指数、土壤抗蚀指数10个土壤抗蚀性指标进行评价分析认为,影响高寒灌丛草地土壤抗蚀性最主要的因素是水稳性指数、0.25mm水稳团聚体和水稳性团聚体平均质量直径。  相似文献   

15.
漓江上游山区复杂地形水热通量的时空变化规律   总被引:1,自引:1,他引:0  
为了估算漓江上游农林经济的发展对决定地表微气候环境的水热通量的影响,计算山区复杂地形影响下的地表太阳辐射以改进SEBAL模型,提出归一化水热通量使不同时相具有可比性,对漓江上游1989-2006年5景TM/ETM卫星图像利用改进模型反演水热通量。结果表明,在空间上随植被覆盖度的增加,显热通量降低而潜热通量增加,植被覆盖度在0.2~0.7时的影响非常显著。1989-2000年植被覆盖度均值明显降低,而2000-2006年逐渐上升,导致波文比(显热与潜热比)均值明显升高然后逐渐降低,归一化潜热数值较高的像元比例减少然后增加,归一化显热数值较高的像元比例增加然后减少。尽管在2006年植被覆盖度均值接近于1989年,但波文比均值仍明显高于1989年。研究区经济林、旱地农作物面积的增加,阔叶林面积减少,水源林的减少与退化,导致了显热与潜热比平均值的升高。  相似文献   

16.
全球气候变化背景下,青藏高原高寒草甸灌丛化已经成为青藏高原植被景观的主要变化趋势。为了更好地认识和理解灌丛化与高寒草甸生态系统的关系,以青藏高原东缘川西锦鸡儿(Caragana Erinacea Kom)和金露梅(Potentilla Fruticosa)灌丛化高寒草甸为对象,采用环刀浸泡法和双环入渗法研究了其在未灌丛化、轻度灌丛化、中度灌丛化和重度灌丛化阶段土壤持水和入渗能力特征。结果表明:(1)2种灌丛化草甸土壤容重在中度灌丛化阶段最低,总孔隙度在中度灌丛化阶段最高。(2)随着灌丛化程度的增加,2种灌丛化草甸土壤含水量呈增加趋势,表现为在重度灌丛化阶段最高;土壤毛管持水量、田间持水量和最大持水量呈抛物线变化趋势,在中度灌丛化阶段最大。(3)2种灌丛化草甸土壤的初渗率、稳渗率和入渗速度随灌丛化程度的增加总体表现为增加趋势,其中在中度和重度灌丛化阶段显著高于未灌丛化阶段。(4)相关性分析表明,灌丛化草甸土壤的入渗指标与土壤含水量、非毛管孔隙度有显著相关关系。因此,高寒草甸灌丛化过程中,土壤水力性质的改变通常发生在中度和重度灌丛化阶段。  相似文献   

17.
冷型小麦灌浆期农田热量分配状况初探   总被引:10,自引:3,他引:10  
根据农田小气候观测资料分析冷型小麦“陕229”和暖型小麦“9430”农田热量分配差异及成因结果表明,灌浆型小麦“陕229”比“9430”品种株间0.2m-2/3株高和2/3株高-冠顶的潜热通量分别偏高17.35-67.40W/m^2和45.39-153.38W/m^2,湍流热通量分别偏低33.67-84.24W/m^2和21.24-142.99W/m^2,通过地面的土壤热通量偏低10.80-13.24W/m^2。不同温度型小麦农田热量分配的差异是由其生物学特性的差异所致,且是导致冷型小麦农田生态环境较冷湿的主要原因。  相似文献   

18.
西南喀斯特地区典型土壤碳通量原位监测的研究   总被引:1,自引:0,他引:1  
为了研究西南喀斯特地区典型土壤碳通量特征,以不同植被类型和不同土石界面为研究对象,原位测定3种土壤(红壤、棕色石灰土和黑色石灰土)2个界面(土面、土石面)的乔木林地和灌丛的土壤碳通量,并用土壤碳通量的日变化和季变化指示土壤有机碳转化过程.结果表明,在雨季各土壤碳通量均高于旱季.棕色石灰土在2种植被类型条件下均没有红壤土壤碳通量稳定,受湿度影响大于红壤.黑色石灰土中,灌丛的土石面土壤碳通量与土面差异小于乔木林地,乔木林地中土面土壤碳通量显著大于土石面,土面在7月出现最高值(3.0μmol m2/s),土石面在6月出现最高值(1.5μmol m2/s);灌丛土面土壤碳通量最高值出现在7月(3.0μmol m2/s),土石面6月出现最高值(1.9 μmol m2/s).喀斯特地区土壤碳通量的变化因土壤类型不同而存在差异,土面和土石面的喀斯特土壤碳通量差异受气候、季节和植被的影响较大.  相似文献   

19.
依托青藏高原东北隅高寒矮嵩草草甸的5a放牧强度(禁牧、轻度放牧、中度放牧、重度放牧)试验平台,2016年在植物生长季的6-9月,基于静态暗箱-气相色谱法,测定N2O的释放特征及相应的环境、生物因子,探讨放牧强度对高寒草甸N2O释放特征的影响及其内在环境生物驱动机制。结果表明:环境、生物因子中仅表层土壤容积含水量、土壤容重及土壤有机碳含量对放牧强度响应显著(P<0.05)。高寒草甸N2O释放的季节特征表现出生长季的早期和晚期相对较高的“U”型趋势。禁牧样地N2O释放速率最小,极显著(P<0.01)低于其它3个放牧样地。高寒草甸N2O释放强度与放牧强度间表现出正相关趋势(R= 0.49, P<0.01)。相关分析表明,表层土壤温度是高寒草甸N2O释放速率的主要影响因子,但放牧强度改变了土壤温度的影响程度。中短期放牧管理改变了高寒草甸植被生长季N2O释放速率,但未改变其释放的季节特征。禁牧管理提高了土壤温度,进而显著降低植被生长季N2O释放强度。  相似文献   

20.
为了探讨气候变化背景下昼夜温差的减小对高寒生态系统碳平衡产生的影响,基于涡度相关系统,利用2009年、2010年、2011年的涡动相关系统观测资料,对青藏高原高寒灌丛昼夜温差对净生态系统CO_2交换(NEE)的影响及其变化特征进行了研究。结果表明:高寒灌丛生态系统2009年、2010年、2011年NEE的逐日变化趋势基本一致,最大碳吸收的月份都是7月,分别为-263.49,-318.73,-278.47 g/(m~2·月)。就全年来看,高寒灌丛生态系统2009年、2010年、2011年的NEE为-466.19,-483.65,-204.83 g/(m~2·a),表现为弱的碳汇。高寒灌丛的日最高温和日最低温在一年中都表现为先增大后减小的变化趋势,而昼夜温差却有着相反的变化趋势。2009年、2010年、2011年昼夜温差的月平均最小值都出现在9月,分别为11.28,12.29,10.87℃,但NEE的月平均最小值都为7月。在2009年、2010年和2011年的5—9月的昼夜温差与NEE都呈显著的负相关关系,说明高寒灌丛在生长季昼夜温差的增大有利于生态系统碳的积累,暗示在未来昼夜温差减小的条件下高寒灌丛可能会促进陆地生态系统的碳损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号