首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 335 毫秒
1.
对祁连山海北地区矮嵩草(Kobresia humilis)草甸和金露梅(Potentilla fruticosa)灌丛草甸两种植被类型土壤热通量观测和比较分析发现:晴天两种植被类型区土壤热通量日变化均表现为单峰型,夜间低午后高;阴雨天土壤热通量变化复杂,随降水或云层厚薄波动剧烈。金露梅灌丛草甸土壤热通量的日变化较矮嵩草草甸更为平稳。两种草甸土壤热通量的月际变化同样表现为单峰型,12月最低(矮嵩草草甸和金露梅灌丛草甸分别为-40.27MJ/m2和-16.85MJ/m2)、6月最高(矮嵩草草甸和金露梅灌丛草甸分别为20.47MJ/m2和18.98MJ/m2)。矮嵩草草甸与金露梅灌丛草甸土壤热通量的年总量差异明显,分别为-24.72MJ/m2和48.10MJ/m2。表现出前者由土壤深层向地表散热,而后者由地表向土壤深层输送热量。两种植被类型区不同时间尺度上的土壤热通量与冠层净辐射均有显著的线性相关关系。由于冠层厚度的影响,金露梅灌丛草甸土壤热通量所占净辐射的比例较小,同步性较差,反馈延时约2.5h,而矮嵩草草甸的土壤热通量与净辐射的相关性更加密切。  相似文献   

2.
研究了高寒草甸不同类型草地土壤养分与多样性—生产力之间的关系,即物种多样性对生产力的效应如何受到资源供给率等因素的影响。结果表明:以莎草类为优势种的藏嵩草沼泽化草甸群落其总生物量(包括地上和地下生物量)最高(13,196.96±719.69gm-2)、小嵩草草甸和金露梅灌丛群落为中等水平(2,869.58±147.52gm-2、2,672.94±122.49gm-2)、矮嵩草草甸群落为最低(2,153.08±141.95gm-2)。在藏嵩草沼泽化草甸群落中,总生物量和物种丰富度呈显著负相关(P<0.05);地上生物量与土壤有机质、土壤含水量和群落盖度显著正相关(P<0.05);地下生物量和土壤含水量显著正相关(P<0.05)。在矮嵩草草甸、小嵩草草甸、金露梅灌丛群落中,地上生物量与土壤有机质和土壤总氮显著正相关(P<0.05)。以上结果说明生物量的分布与土壤营养和水分变化相一致。在矮嵩草草甸、小嵩草草甸和金露梅灌丛中,多样性有随土壤养分的增加而增加的趋势;在藏嵩草沼泽化草甸中,则呈现负相关的关系。  相似文献   

3.
高寒矮嵩草草甸地面热源强度及与生物量关系的初步研究   总被引:1,自引:0,他引:1  
在青藏高原海北高寒矮嵩草草甸地区,依据2002年涡度相关法观测的能量平衡各分量资料和6-10月植物地上、地下生物量测定值,分析了高寒矮嵩草草甸近地表热量平衡、地面热源强度的变化特征,讨论了地面热源强度与植物生物量季节变化过程中的相互关系。结果表明:在青藏高原海北高寒矮嵩草草甸地区,年内地面均为热源,热源强度季节变化明显,地面热源强度年平均为88.5 W/m2;地上生物量季节变化与热源强度具有显著的正相关关系,而地下生物量季节变化与热源强度关系不明显。  相似文献   

4.
亚高山草甸土纤维素分解过程及与环境因子的对应关系   总被引:3,自引:0,他引:3  
李英年  姜文波 《土壤通报》2000,31(3):122-124
对海北高寒草甸生态系统的矮嵩草研究表明 ,在亚高山草甸土中纤维素的分解 ,作用均在月均温度最高时达最大 ,2月份最小 ,年内表现有明显的单峰式曲线变化过程 ;非退化矮嵩草草甸的纤维素分解显著高于退化的矮嵩草草甸 ;纤维素分解除自身的季节变化规律外 ,与气象等环境因子有关 ,特别是与水热协调配合具有极显著线性正相关关系 (P <0 .0 0 1 ) .  相似文献   

5.
以空间代替时间的方法,于2012年7月中旬-8月中旬在青藏高原祁连山南麓分别选取原生、轻度、中度和重度4种不同退化梯度的高寒嵩草(Kobresia)草甸,对其土壤理化、水分特征和植被群落进行研究,以探究高寒嵩草草甸生态功能退化过程中植被群落的变化特征.结果表明,中度退化样地的地上生物量、表层(0-10cm)土壤含水量和降水地表入渗速率显著最小(P<0.01),表层地下生物量、表层土壤有机质、表层田间持水量和草毡层厚度显著最大(P<0.01).基于退化高寒嵩草草甸群落的植被功能群和群落多样性的非度量多维排序结果表明,其退化过程可明确划分为原生植被、轻度退化、中度退化和重度退化4个阶段,冠层高度、地上生物量、草毡层厚度和降水地表入渗速率对群落变化的相对贡献较大.植被群落对退化过程的响应为非平衡型(Non-equilibrium),群落变化的“分水岭”存在于中度退化和重度退化之间.研究结果对退化嵩草草甸的恢复措施选择具有重要的指导意义.  相似文献   

6.
全球气候变化背景下,青藏高原高寒草甸灌丛化已经成为青藏高原植被景观的主要变化趋势。为了更好地认识和理解灌丛化与高寒草甸生态系统的关系,以青藏高原东缘川西锦鸡儿(Caragana Erinacea Kom)和金露梅(Potentilla Fruticosa)灌丛化高寒草甸为对象,采用环刀浸泡法和双环入渗法研究了其在未灌丛化、轻度灌丛化、中度灌丛化和重度灌丛化阶段土壤持水和入渗能力特征。结果表明:(1)2种灌丛化草甸土壤容重在中度灌丛化阶段最低,总孔隙度在中度灌丛化阶段最高。(2)随着灌丛化程度的增加,2种灌丛化草甸土壤含水量呈增加趋势,表现为在重度灌丛化阶段最高;土壤毛管持水量、田间持水量和最大持水量呈抛物线变化趋势,在中度灌丛化阶段最大。(3)2种灌丛化草甸土壤的初渗率、稳渗率和入渗速度随灌丛化程度的增加总体表现为增加趋势,其中在中度和重度灌丛化阶段显著高于未灌丛化阶段。(4)相关性分析表明,灌丛化草甸土壤的入渗指标与土壤含水量、非毛管孔隙度有显著相关关系。因此,高寒草甸灌丛化过程中,土壤水力性质的改变通常发生在中度和重度灌丛化阶段。  相似文献   

7.
高寒矮嵩草草甸地上生物量和叶面积指数的季节动态模拟   总被引:1,自引:1,他引:0  
基于2007年中国科学院海北高寒草甸生态系统定位站植被和气象观测资料,探讨了高寒矮嵩草草甸群落叶面积指数、地上生物量的季节动态变化及其数学模型,分析了叶面积指数与地上生物量的相互关系,以及气象条件对叶面积指数和地上生物量的影响。结果表明,高寒矮嵩草草甸群落植被生长期地上生物量的季节动态变化可以用Logistic回归模型拟合;植被叶面积指数的季节动态变化可以用三次函数曲线拟合,叶面积指数受温度和降水量的影响明显,与植物生长期日平均气温≥3℃的积温和降水累积量分别有三次函数的拟合关系,而考虑与积温和降水累积量的综合关系可用二元二次函数拟合;同时,叶面积指数与地上生物量之间有二次函数的拟合关系。  相似文献   

8.
以寒区两个典型小流域为例,根据理论变异函数,通过Krige空间内插法对比研究小流域0~30cm层土壤水分空间变异性及其特征。结果表明:(1)受植被类型、覆盖度影响,水平方向上,同一流域不同植被类型土壤含水量分布为:高寒灌丛草甸〉高寒嵩草草甸〉退化草地;相同草甸类型条件下,纳通河流域平均土壤水分含量均小于跨热洼尔玛流域;各坡位、坡向草甸植被严重退化区域土壤水分含量均略小于高寒草甸草地区域。(2)从剖面分析,跨热洼尔玛流域各层土壤含水量均大于纳通河流域;剖面变异性、土壤水分下渗速度纳通河流域总体均大于跨热洼尔玛流域;土壤水分变化剧烈程度高寒草甸草地区域在20~30 cm层、植被退化区域10~20 cm层;土壤水分下渗速度草甸植被严重退化区域大于高寒草甸草地;高寒草甸草地区域在10~20 cm层土壤水分在下渗过程中有一定的滞后作用;而草甸植被严重退化区域则无此类情况。  相似文献   

9.
基于涡度相关技术,研究了2015年青海湖2种高寒嵩草湿草甸湿地生态系统水热通量的特征。结果表明:(1)2015年青海湖高寒藏嵩草和小嵩草湿草甸湿地生态系统日平均水汽通量分别为1.74,0.99mm,年水汽通量分别为633.3,362.1mm。(2)青海湖2种高寒嵩草湿草甸湿地生态系统感热、潜热和净辐射日变化均呈单峰曲线,感热和潜热月平均日变化最大值出现的时间均晚于净辐射。藏嵩草湿草甸湿地生态系统感热月均日变化最大值最大为179.06W/m~2,最小为46.02W/m~2;潜热最大为312.55W/m~2,最小为30.58 W/m~2;小嵩草湿草甸湿地生态系统感热月均日变化最大值最大为161.86 W/m~2,最小为31.60 W/m~2;潜热最大为215.44 W/m~2;最小为14.08 W/m~2。(3)通过波文比分析发现,2种高寒嵩草湿草甸湿地生态系统生长季能量分配以潜热为主,非生长季小嵩草湿草甸湿地生态系统能量分配以感热为主,藏嵩草湿草甸湿地生态系统则较为复杂。藏嵩草湿草甸湿地生态系统全年能量平衡率为0.82,小嵩草湿草甸湿地生态系统为0.89,增加土壤热通量项能改善能量平衡状况。  相似文献   

10.
放牧高寒嵩草草甸的稳定性及自我维持机制   总被引:4,自引:0,他引:4  
以空间代时间,在"三江源"和中国科学院海北高寒草甸生态系统研究站地区,将处于不同退化阶段的高寒嵩草草甸作为研究对象,进行了其植物群落、地表状况、草毡表层厚度、根土比和水分渗透速率的演替过程与规律研究,以明晰放牧高寒嵩草草甸退化过程中其系统稳定性及自我维持机制。结果表明,高寒嵩草草甸虽然结构简单,但在长期适应寒冷气候进化过程中形成了低矮化、细绒化和草毡表层加厚、极度发育等一系列特殊的稳定性维持机制,可以承受一定范围内的人为干扰和气候波动,具有较高的系统稳定性与自我调控能力,但系统遭到破坏后的恢复能力极差。今日高寒草甸的大面积退化,是人类所赋加于草地的承载力远超过其承载力阈值而导致系统稳定性崩溃的结果。  相似文献   

11.
模拟降水氮沉降对藏北高寒草甸土壤呼吸的影响   总被引:1,自引:0,他引:1  
全球范围内大气氮沉降量的升高,增加了陆地生态系统的氮输入,从而影响土壤CO2的排放。2014年采用生长季(6-8月)喷洒添加定量NH4NO3液体的方式模拟降水氮沉降,参照中国氮沉降分布格局决定氮素添加剂量为40kgN·hm-2·a-1(N40),以喷洒等量清水为对照(CK)。生长季内定期测定植物群落生物量,并利用LI-8100土壤碳通量测量系统,选两个典型晴天进行土壤呼吸速率日动态变化过程测定,同时在6月下旬-9月初定期测定土壤呼吸速率,以探究氮沉降增加对藏北高寒草甸土壤呼吸的影响。结果表明:(1)氮沉降使高寒草甸地上生物量显著增加(P<0.05)。(2)高寒草甸生长季土壤呼吸具有明显的典型日动态变化和生长季变化。典型日动态呈双峰曲线,土壤呼吸速率最大值出现在13:00-14:00和16:00;生长季变化呈单峰曲线,最大值出现在8月,生长季初期和末期土壤呼吸速率较低。(3)氮沉降极显著促进了高寒草甸的土壤呼吸,与对照相比,生长季平均土壤呼吸速率增加66.1%(P<0.001)。(4)土壤呼吸速率与土壤温度、土壤湿度和地上生物量呈极显著正相关关系(P<0.001)。(5)氮沉降对土壤呼吸的温度敏感性无显著影响。研究结果说明在高寒草甸,由于氮沉降导致地上地下生物量增加,从而导致土壤呼吸速率的增加。  相似文献   

12.
土壤表层水汽传输阻抗是估算区域蒸散的关键参数之一,但其与土壤水热参数的数量关系的研究在高寒系统中十分薄弱。利用涡度相关系统观测的2014/2015年度高寒草甸非植被生长季(11月-翌年4月)的土壤蒸发数据,基于Penman-Monteith方程反推得出非生长季土壤表层阻抗的昼(9:00-18:00)变化特征,并研究其与土壤5cm温度和土壤5cm含水量的关系。结果表明,非生长季土壤表层阻抗表现出单峰型日变化特征,其最大值一般出现在15:00前后。逐时土壤表层阻抗与土壤5cm温度呈极显著幂函数阈值关系(R2=0.38,P0.01,N=115),即土壤温度为–4.25℃时土壤表层阻抗最大;与土壤5cm含水量呈极显著指数负相关(R2=0.12,P0.01,N=115)。非生长季逐日土壤表层阻抗的变化无明显季节规律,与土壤5cm温度(R2=0.69,P0.01,N=10)和土壤5cm含水量(R2=0.27,P0.01,N=10)均表现为极显著指数负相关。相关分析表明,非生长季土壤蒸发主要受太阳总辐射(R20.50,P0.01)的控制。研究结果表明土壤温度而非土壤含水量主导着高寒草甸非生长季土壤表层阻抗的变化。  相似文献   

13.
以天山中部中科院巴音布鲁克草原生态观测站三种类型草地长期(26 a)围栏封育样地为研究对象,通过野外调查取样结合室内分析的方法,研究了长期(26 a)围栏封育对草地土壤有机碳和微生物量碳含量的影响,结果表明:(1)围栏外(自然放牧条件下),表层的土壤有机碳含量为高寒草甸(165.29 g·kg-1)〉高寒草甸草原(98.73 g·kg-1)〉高寒草原(83.54 g·kg-1),微生物量碳含量依次为高寒草甸草原(181.70 mg·kg-1)〉高寒草甸(146.37 mg·kg-1)〉高寒草原(43.06 mg·kg-1)。围栏封育后,高寒草甸、高寒草甸草原、高寒草原表层土壤有机碳含量分别提高了11.37%、3.26%和2.21%;高寒草甸草原和高寒草甸微生物量碳含量分别增长2.89%和12.04%,而高寒草原降低40.36%。(2)从围栏内外土壤剖面来看,土壤有机碳、微生物量碳含量随着土壤深度的增加依次降低,微生物熵也随土壤深度的增加呈现降低的趋势。(3)微生物量碳含量与土壤速效钾、全磷含量达到极显著负相关(P〈0.01),与速效磷含量达到极显著正相关(P〈0.01),与土壤有机碳、全氮、全钾含量呈显著正相关(P〈0.05)与土壤速效氮含量正相关,但不显著。  相似文献   

14.
应用TDP(Thermal Dissipation Probe)热扩散探针技术,通过对晋西黄土区刺槐和油松进行一个生长季(2010-04-10)的野外实地定位观测,结合同步测定的大气相对湿度、大气温度、太阳总辐射等气象因子,研究刺槐、油松树干液流的日变化及季节变化规律.结果表明:1)刺槐在5月上旬仅产生微弱液流,日均液流速率小于油松,无明显昼夜变化规律,到5月下旬,日均液流速率超过油松,并与油松呈现相同的昼夜变化规律,2树种夜间存在一定的树干液流,液流速率均于09:00开始快速上升,到12:00左右达到峰值;2)8月刺槐日均液流速率均大于油松,2树种液流速率连日变化规律基本相同,液流速率开始快速上升和达到峰值的时间与5月基本一致,峰值分别为5月的1.79和1.49倍,月平均值分别为5月的3.01和1.48倍;3)剌槐、油松树干液流和月耗水量呈现明显的季节性变化规律,耗水旺季集中在6-9月,4月达到最小值,7月达到最大值,在整个生长季(4-10月),油松林的总耗水量是刺槐林的1.63倍.经回归分析可知,影响刺槐、油松液流速率的主要因子均为太阳总辐射.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号