首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
塑料大棚地下热交换系统的研究   总被引:2,自引:7,他引:2       下载免费PDF全文
本文对地下热交换系统在我国保护地蔬菜生产中的应用进行了研究。在北京郊区塑料大棚中进行的贮能加温试验表明,地下热交换统能有效地贮存太阳能并用于夜间加温,因而使塑料大棚在不用燃料的情况下在夜间维持10℃左右的棚内外温差,同时也使棚内地温得到相应提高。采用地下热交换系统的塑料大棚在春季能比普通大棚提早20~30天到适于喜温蔬菜定植的小气候条件,若进一步改进、完善以后,可望将喜温蔬菜的春季定植期比普通大棚提前一个月左右。本文还在实验资料的基础上,提出了地下热交换系统的数学模型。  相似文献   

2.
冬季塑料大棚多重覆盖及电加热增温效果研究   总被引:7,自引:1,他引:7  
对普通塑料大棚内加设中棚、小棚,再覆盖无纺布被、地膜以及用电热线加热等不同处理,沉淀了棚内冬季的温度动态变化规律。结果表明,每增加一层覆盖物,都可以提高夜间温度1~2℃,且保温效果具有累加效应,晴天白天棚内升温加快。在小棚内使用空气加热线的增温效果比单纯覆盖措施效果好。采用大棚内多层覆盖,再辅之以电热线加温,长江流域地区冬天塑料大棚内可栽培番茄等喜温作物  相似文献   

3.
不织布(无纺布、丰收布)是一种新型的保温覆盖材料,具有保温降湿性能,塑料大棚内覆盖不织布与对照棚相比较,棚内生态环境有所改善。 经1986~1987年两年春季,在塑料大棚内覆盖不织布进行了早椒栽培试验。试验棚为两个GP-A型钢管大棚,各0.5亩,试验棚用20307白色不织布双层覆盖,对照棚用0.08mm聚乙烯薄膜覆盖,拉幕机操作。试验表明:(1)3月份不织布棚内气温日均最低温度,比对照棚高1.2~2.6℃,且降温慢,保温时间  相似文献   

4.
巨型塑料大棚温度性能研究   总被引:1,自引:0,他引:1  
通过对巨型大棚温度因子的观测,揭示巨型大棚温度因子变化规律,从而为巨型大棚温度调控及生产管理提供科学依据。分析结果显示:巨型大棚内11月下旬日平均气温和10 cm地温分别为10.3℃和10.6℃,3月上旬日平均气温和10 cm地温可回升至12.6℃和9.7℃。与常规大棚相比,晴天日平均气温可提高0.7℃,日温差降低2.7℃;巨型大棚加盖简易的内保温幕可提高气温和地温,其提温范围在1-2℃。  相似文献   

5.
为探讨灌溉方式对巨型塑料大棚环境因子的影响,采用膜下滴灌、膜下沟灌、裸露沟灌3种处理,研究了不同灌溉方式对棚内空气相对湿度、结露时间、土壤水分、棚内气温以及地温的综合效应。测试结果表明:与裸露沟灌相比,膜下沟灌、膜下滴灌均可降低棚内的相对湿度,其中膜下滴灌的降湿效果优于膜下沟灌;不同时刻、不同天气下的降湿效果不同,表现为白天的降湿效果优于夜晚,晴天的降湿效果好于阴天;膜下滴灌与膜下沟灌可以降低棚内的结露时间,提升棚内的气温与10cm地温,增加土壤含水量。  相似文献   

6.
主动式太阳能集热/土壤蓄热塑料大棚增温系统及效果   总被引:8,自引:2,他引:6  
试验研究了一套主动式太阳能塑料大棚增温系统。它以空气为载热介质,土壤为蓄热介质,白天利用太阳能空气集热器加热空气,由风机把热空气抽入地下,通过地下管道与土壤的热交换,将热量传给土壤储存。夜间热量缓慢上升至地表,从而使土壤保持恒温。经过连续4 d的加温试验得出:与利用自然辐照的对比温室相比,主动式太阳能塑料大棚的夜间气温平均升高3.8℃,地温平均升高2.3℃,系统蓄热量可达228.9~319.1 MJ。试验结果证明,这种结合太阳能空气集热器和土壤蓄热的塑料大棚增温系统,能有效地提高棚内的气温和地温,具有良好的发展前景。  相似文献   

7.
南方塑料大棚冬春季温湿度的神经网络模拟   总被引:8,自引:0,他引:8  
利用浙江省慈溪市草莓塑料大棚和南京信息工程大学农业气象试验站番茄塑料大棚的小气候观测数据及气象站资料,建立3个以棚外辐射、温度、相对湿度和风速为输入变量,棚内温度和相对湿度为输出变量的BP神经网络预测模型。结果表明,3个模型气温训练值与实测值的均方根误差(RMSE)都在2℃以内,相对误差都在4%左右;相对湿度训练值的RMSE都在7个百分点以内,相对误差不超过7%。利用此模型得到的气温预测值与实测值的RMSE都在2℃左右,冬季气温的相对误差较大,春季通风和不通风模型气温的相对误差不超过6%;相对湿度预测值的RMSE都在7个百分点以内,相对误差不超过9%。说明所建BP神经网络模型对于不同季节、不同通风条件、不同作物的大棚温湿度模拟都有较高的精度,能够满足棚内温湿度的预测要求,且对温度的模拟精度高于对相对湿度的模拟。  相似文献   

8.
组装式太阳能双效温室应用效果试验   总被引:4,自引:3,他引:1  
为解决目前日光温室普遍存在的设备简陋、环境调控与抗寒防病能力差、土地利用率与劳动生产效率低的问题,建造了组装式太阳能双效温室并进行试验。该文分别选择内保温和外保温太阳能双效温室(温室内配置太阳能集热器、蓄热水池和热泵机组在内的太阳能热泵系统)测试其保温降湿性能和增产效果,主要测试指标为空气最低温度、日平均温度、光照度、空气相对湿度,种植作物的单株产量、单位面积产量。测试结果表明:内保温组装式太阳能双效温室室内最低气温都在9℃以上,与对照温室相比,1月份试验温室室内平均气温提高3.4℃,1月份室内平均最低气温提高4.0℃;外保温太阳能双效温室1月份室内平均最低气温为12.5℃,空气相对湿度控制在80%以下,比对照温室室内温度提高3.8℃,蔬菜增产19%~55%。组装式太阳能双效温室改善了温室的环境条件,提升了日光温室抗寒防病和增产增收的能力,该温室的研究与应用为中国北方同类地区提供借鉴与参考。  相似文献   

9.
"棚温逆差"指设施大棚采取保温措施时出现棚内日最低气温低于棚外的现象,利用2010-2015年冬季和初春浙江地区塑料大棚内外气象资料,结合大棚覆膜保温、开窗通风等人工操作记录,对南方塑料大棚"棚温逆差"发生的特征及关键影响因子进行探究;选用5种常见神经网络方法(BP、GA-BP、RBF、GRNN、PNN)分别构建"棚温逆差"预报模型,并基于不同模型预报准确率构建集合预报模型。结果表明:(1)初春和初冬季"棚温逆差"频率较严冬高3倍,棚内1.5m高处出现概率较0.5m处偏高3倍;0.5m高处大棚边缘出现"棚温逆差"概率为中央的8~13倍,1.5m高处中央和边缘位置出现概率差异较小。(2)"棚温逆差"发生时,棚外日最低气温主要在2~11℃区间,大棚保温方式为单膜或双膜覆盖,其中单膜覆盖占比达93%以上。"棚温逆差"多发生在白天东西侧窗开启高度较高(平均高度35~40cm)且夜间放小缝通风时;0.5m处发生"棚温逆差"时,天气条件较1.5m处发生时明显偏差,日最小相对湿度、总云量和日均风速偏高,日照时数偏少。(3)5种神经网络方法对"棚温逆差"的预报准确率在80%左右,其中GA-BP模型预报准确率最高;集合预报模型对0.5m高度处"棚温逆差"预报准确率在85%左右,1.5m高度处准确率在80%左右,且预报稳定性较单一模型高。  相似文献   

10.
日光温室夏季降温措施的试验研究初报   总被引:8,自引:2,他引:8  
针对日光温室的夏季降温需要,分别对自然通风、自然通风+遮阳网系统、自然通风+微喷降温系统、自然通风+遮阳网+微喷降温系统四种措施进行对比试验,分析了这4种措施对室内的气温、相对湿度和地温的影响。结果表明,自然通风+遮阳网系统下温室内的气温最多降低2.2℃,白天平均降低1.4℃,室内地温平均降低3.8℃,最多可降低4.5℃;自然通风+微喷降温系统下温室内气温最多降低3.2℃,平均降低2.4℃,地温最多降低2.0℃,平均降低0.9℃;在自然通风情况下联合运用遮阳网和微喷降温系统室内气温最多降低5.4℃,平均降低4.4℃,与室外气温相比,最多高1.9℃,平均仅高0.7℃,基本接近室外气温。而在自然通风条件下,室内的气温比室外气温最多高7.2℃,平均高5.1℃。可见,自然通风+遮阳网+微喷降温系统降温效果最好。  相似文献   

11.
为解决中国北方地区连栋温室冬季加温能耗大、盈利性和可持续性差等问题,该研究以降低屋面热损失为出发点,设计了大屋面外保温连栋温室,将外保温系统创新应用于连栋温室,并在山东寿光地区,以文洛型连栋温室为参照,对该温室光热环境及保温性能进行试验测试与分析。结果表明:1)连续40d白天(10:00—16:00),外保温连栋温室作物冠层上方平均太阳辐射为152 W/m2,总透光率(含天沟下方)为40%,比文洛型连栋温室高7个百分点。外保温连栋温室跨中采光最佳,跨东、跨西及天沟下方太阳辐射强度与跨中相比分别减少17%、29%及46%。2)太阳升起后,外保温连栋温室东、西屋面外保温被依次收拢,09:30—12:00室内气温升速为1.9℃/h,较文洛型连栋温室低0.3℃/h,收拢保温后10min内室内气温骤降幅度比文洛型连栋温室低0.3℃。温室采用空气内循环加温,地面出风,再由设备间风机组内侧窗回风;加温期间(20:00—07:00)室内空气水平方向平均温差不超过1.2℃,垂直方向不超过1.0℃。外保温连栋温室水平方向气温分布均匀,垂直方向温差小于文洛型连栋温室。3)夜间,外保温连...  相似文献   

12.
基于BP神经网络的杨梅大棚内气温预测模型研究   总被引:12,自引:0,他引:12  
利用2009年12月-2010年5月塑料大棚内外观测的气象数据,构建了基于BP神经网络的杨梅生产大棚内的最高、最低气温预测模型,根据逐时转化系数计算出棚内相应的逐时气温,达到逐时预报大棚内气温的目的。通过模拟回代和对独立试验数据的验证,基于BP神经网络模型对大棚内日最低气温、日最高气温和逐时气温预测值与实际值的回归估计标准误差(RMSE)分别为0.8℃、1.4℃和0.7℃,精度明显高于同时利用逐步回归法建立的模型。该模型所需参数少,实用性强,模拟精度高,可为设施杨梅气象服务和环境调控提供依据。  相似文献   

13.
大棚无子西瓜因采用先进无公害生产管理技术,以其上市早、品质优、经济效益高而备受消费者欢迎,市场发展前景广阔。1设施构造与保温方式采用拱圆型大棚,实行三膜一苫覆盖,即在大棚里套小拱棚,小拱棚内覆盖地膜,小拱棚外覆盖草苫。据测定,这种保温方式在郑州地区2月(最低气温-10℃左右)棚内温度最高达到28℃,最低6℃,能够满足西瓜生长对温度的要求,能比露地西瓜提前上市40~50d。在11月份建好大棚,长度100m,宽度7m,东西方向,大棚最高处为1.8m。在建好的大棚内以南建阳畦,畦北埂为棚中心,畦宽1.2~1.5m,高50~60cm,长度根据育苗数量而定,四周…  相似文献   

14.
大跨度主动蓄能型温室温湿环境监测及节能保温性能评价   总被引:10,自引:6,他引:4  
针对日光温室土地利用率低,单体小不能进行立体栽培果树种植,不利于机械化操作等问题。该文提出一种大跨度主动蓄能型温室,该温室南北走向,双屋面拱形钢骨架结构,并采用主动蓄放热系统进行能量的蓄积与释放。该试验以传统砖墙日光温室作为对照,对大跨度主动蓄能型温室室内外温湿度以及主动蓄放热系统的能量收支进行分析,并对比2种温室的建造成本,综合分析了试验温室保温节能效果及经济效益。结果表明:大跨度主动蓄能型温室土地利用率高达87.4%。温室夜间平均气温高于10℃,无极端低温,晴天夜间平均气温比对照温室高1.5~3.1℃,比室外高13.9~19.3℃;阴天夜间平均气温比对照温室高1.2~2.8℃,比室外高12.5~18.9℃。夜间室内相对湿度平均比对照温室低7%~10%。主动蓄放热系统性能系数COP(coefficient of performance)为3.4~4.2,平均每天能耗0.013 k Wh/m2,与传统燃煤锅炉加温系统相比,平均节能率为47%。大跨度主动蓄能型温室建造成本每平米307.2元,比传统砖墙日光温室低144.5元。大跨度主动蓄能型温室是一种土地利用率高,单体大,保温性能良好,能进行冬季果菜生产的新型温室类型,且投入少,综合其经济环境效益,值得推广应用。  相似文献   

15.
为精准把控并及时调节葡萄大棚棚内小气候,利用清徐县葡萄大棚农田小气候站观测数据及气象站、辐射站、土壤水分站资料,建立以棚外气温、相对湿度、风速、总辐射、土壤湿度为输入变量,棚内气温、相对湿度、土壤温度为输出变量的基于BP神经网络葡萄大棚小气候预测模型。为了对比分析BP神经网络的精确度和稳定性,同时建立多元线性回归模型。结果表明,基于BP神经网络建立的预测模型,其训练值和实测值之间的绝对误差分别为1.55 ℃、4.46%、0.77 ℃,标准误差分别为2.18 ℃、5.94%、1.00 ℃;预测值和实测值之间的绝对误差分别为1.37 ℃、2.84%、0.42 ℃,标准误差分别为1.96 ℃、4.60%、0.53 ℃。预测效果明显优于多元线性回归模型,预测精度满足棚内小气候要素预报要求。  相似文献   

16.
空气循环式塑料大棚蓄热除湿装置及运行效果   总被引:3,自引:2,他引:1  
根据湿热空气遇到固体低温表面产生冷凝效应,其水汽凝结为水,同时放出潜热的原理,利用冬季晴天时塑料大棚内气温高,湿度大,而地温低的环境条件,在塑料大棚内设计、建造和安装了一套空气循环式蓄热除湿装置,晴天将塑料大棚内的湿热空气用轴流式风机强制性地抽送入安装在土壤中的多个冷凝管道,并使其从塑料大棚内另一端的出口排出,再回到塑料大棚内,形成循环,达到既除湿又不降温的目的。观测分析结果表明,与对照塑料大棚相比,试验塑料大棚内1.7 m高度的相对湿度明显降低,大部分时间段达到差异显著(P<0.05)或极显著(P<0.01)水平;晴天各个正点时刻,冷凝塑料大棚内1.7 m高度平均气温和20 cm地温均高于对照,分别高出0.1~3.0℃、1.4~1.7℃。  相似文献   

17.
基于谐波法的塑料大棚内气温日变化模拟   总被引:1,自引:0,他引:1  
依据浙江省慈溪市2006-2009年塑料大棚小气候数据进行季节和天气状况分类,以棚外气象要素为自变量进行逐步回归模拟得到棚内气温二阶谐波模型所需参数,据此构建冬春季晴、昙、阴3种天气状况下塑料大棚内24h气温谐波预测模型并进行验证。结果表明:晴天和昙天的气温预测值与实测值间拟合直线方程的决定系数均在0.92以上,预测值与实测值间的均方根误差(RMSE)在3.0℃以内,绝对误差在2.4℃以内;阴天气温预测值与实测值间拟合直线方程的决定系数均在0.79左右,RMSE在3.0℃以内,绝对误差在2.0℃左右。从均方根误差和绝对误差来看,昙天预测模型精度最高,阴天次之,晴天最低;相同天气状况下冬季预测模型精度均略低于春季,两季相差在0.1~0.4℃。棚内预测气温相位均略提前于棚外,晴、昙天比阴天明显,冬季比春季明显;棚内日最低气温始终低于棚外,以晴天尤其明显,昙天次之,阴天基本持平;相同天气状况下春季均明显低于冬季。本研究论证了谐波分析方法在特定条件的塑料大棚气温日变化模拟方面的可行性,可为大棚小规模种植管理工作提供参考。  相似文献   

18.
连栋塑料大棚棚内环境易受寒潮侵扰,为调节棚内热湿环境,将表冷器-风机集放系统应用于连栋塑料大棚中,在白天适宜条件下运行系统,将棚内空气盈余的热量收集并储存在蓄热水箱中,夜间气温较低时,再将储存的热量释放出来用以加温。对表冷器-风机集放热系统的运行效果进行试验,通过集热量、放热量和性能系数等评价集放热性能,并且将水气温差作为主要影响因素对系统运行阶段分别进行热流量分析和分析。结果表明,在寒潮下系统可以保证棚内气温比棚外高5.2~7.8 ℃。集热量达到了390.6~693 MJ,放热量为361.2~609 MJ,系统性能系数达到了4.4~7.2,节能效果较为显著。系统在运行过程中水气温差每增长1 ℃,集热流量增加0.82 kW,放热流量增加0.58 kW,单位时间内换热量较大;此外系统在集热阶段析湿系数约为1.70,表冷器-风机进出口空气含湿量差最高可达1.3×10-3 kg/kg,说明在集热阶段系统具有冷凝除湿的效果;同时在冷凝除湿过程中系统效率随着水气温差的增加而增加,最高可达到82.8%,能量利用率较高。该研究对保证连栋塑料大棚安全越冬生产具有重要意义。  相似文献   

19.
日光温室优型结构的研究   总被引:5,自引:1,他引:5  
对节能型日光温室墙体、后坡及采光面等各项主要结构进行了单项因子温光性能的测试与分析,提出了优型结构的各项参数指标。依据这些参数设计的优型结构温室在鞍山地区冬季严守季节室内外最低温度温差达到30℃,在不加温的情况下冬季可生产喜温的果菜类蔬菜。  相似文献   

20.
果园百喜草覆盖与敷盖对小气候的影响   总被引:1,自引:0,他引:1  
实测分析了果园覆盖与敷盖百喜草的光照、风速、温度、相对湿度时空变化规律。冬季中午1200时桃园比桔园光照强2倍左右,1400时风速大3~4倍,夏季地面最高温度行间裸地比行间百喜草高20.0℃,株间裸地比敷草高10.0℃;冬季桔园覆盖百喜草比裸地高2.4℃,比桃园高1.1℃,夏季降温效应、冬季保温效应非常明显。桔园透光率随高度的变化呈指数关系,株间风速与株高的关系近似于二次曲线,裸地气温随高度升高而降低,百喜草和敷盖地则相反,相对湿度早晚小,中午大,夏季大于冬季;不同处理的相对湿度随高度的分布其增大、减小相间出现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号