首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang  Weidong  Liu  Weiyue  Wu  Di  Wang  Xiaoxia  Zhu  Guibing 《Journal of Soils and Sediments》2019,19(2):1005-1016
Purpose

Nitrogen (N) is one of the major elements causing eutrophication in freshwater lakes, and the N cycle is mainly driven by microorganisms. Lake littoral zones are found to be “hotspots” for N removal from both the basin and receiving waters. However, the environmental factors that drive the distribution of microorganisms are diverse and unclear. Here, we examined the differentiation of nitrogen and microbial community between the littoral and limnetic sediments to explore their interactions.

Materials and methods

Sediment samples were collected in the littoral and limnetic zones of Chaohu Lake in winter (ca. 7 °C) and autumn (ca. 22 °C). Abundances of the bacterial and archaeal genes amoA (ammoxidation), nirS and nirK (denitrification), hzsB (anaerobic ammonium oxidation; anammox), and nrfA (dissimilatory nitrate reduction to ammonium; DNRA) were measured via quantitative real-time polymerase chain reaction (qPCR). Clone libraries were constructed for further phylogenetic analysis to study the community composition.

Results and discussion

We observed significant higher concentration values in terms of sedimentary NH4+-N and NO3?-N in the limnetic zone than littoral zone (p?<?0.05; n?=?12). In general, abundance values of the above six genes in the littoral zone were all higher than those in the limnetic zone, while higher in winter (7 °C) than in autumn (22 °C) (p?<?0.05; n?=?6). The spatial heterogeneity had the most significant effect on the distribution of ammonia-oxidizing archaea (AOA) and anammox bacteria abundance. Both temporal (temperature) and spatial heterogeneity affected the abundance of ammonia-oxidizing bacteria (AOB). The variation in the abundance of denitrifying bacteria and DNRA bacteria mainly reflected the temporal (temperature) heterogeneity.

Conclusions

The six N-cycle-related microorganisms were affected by different environmental factors and presented different distribution patterns. The lower nitrogen content and the higher microbial abundance and diversity showed that the littoral zone was the “hotspot” of N-cycling-related microorganisms in a large, eutrophic, and turbid lake. It is suggested that increasing the area and restoring the ecological function of the littoral zone was effective and significant in eutrophic lake management.

  相似文献   

2.

Purpose

Dissolved organic matter (DOM) has been shown to be an efficient electron transfer facilitator in biogeochemical reactions due to its ability to mediate redox reactions. It has been known that various fractions of DOM differed in their chemical and biogeochemical behaviors in environment. However, there has been relatively little work directed at predicting the dependence of redox properties of DOM on its fractions.

Materials and methods

DOM was extracted from sewage sludge compost. Freeze-dried DOM was grouped into three fractions of different molecular sizes (<3,500, 3,500–14,000, and >14,000 Da) using dialysis bags (Spectra/Por 3 and 4, Spectrum Industries, California, US). Cycle voltammetry was used to investigate the redox behavior of the fractions. Chronoamperometry was employed to study their electron accepting capacities and electron donating capacities by applying fixed positive or negative potential to the working electrode in a conventional three-electrode cell. Fourier-transform infrared and three-dimensional excitation/emission matrix fluorescence spectroscopies were used to determine the functional groups in the fractions. Shewanella putrefaciens 200 (SP200) and Klebsiella pneumoniae L17 (L17) were used for all microbial iron(III) reduction experiments.

Results and discussion

Electrochemical methods show that the electron transfer capacity (ETC) of DOM depends on its molecular weight, and ETC is in the order of high-molecular weight DOM (H-DOM) > moderate-molecular weight DOM > low-molecular weight DOM. The same trend is discovered in the DOM-stimulated iron(III) oxide bioreduction where DOM fractions act as electron shuttles transferring electrons from the Fe(III)-reducing bacteria to the iron oxide. Both spectroscopic and cyclic voltammogram assays show the highest abundance of redox moieties associated to H-DOM, which is possibly responsible for its strongest electron-shuttling ability.

Conclusions

DOM has a wide molecular weight (MW) distribution due to the complexity of its chemical composition and structure. In addition to structural variations, DOM fractions with different MW have different redox properties and electron-shuttling capacities in microbial Fe(III) reduction. The results are of great significance for further studies on DOM geochemical behavior in environment.  相似文献   

3.
The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 µM iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of129 I in natural systems.  相似文献   

4.
Sun  Dongyao  Liu  Min  Hou  Lijun  Zhao  Mengyue  Tang  Xiufeng  Zhao  Qiang  Li  Jun  Han  Ping 《Journal of Soils and Sediments》2021,21(10):3213-3224
Purpose

Complete ammonia oxidizers (comammox), which convert ammonia to nitrate through nitrite, are a newly discovered nitrifying group. In recent years, comammox Nitrospira have been discovered in various natural and engineered ecosystems. However, little is known about the distribution dynamics of comammox Nitrospira in estuary tidal flat sediments.

Materials and methods

Chongming eastern tidal flat, the largest tidal flat in the Yangtze River Estuary, was selected as the research area. Through a combination of molecular biology assays, phylogenetic analysis based on functional gene sequences and statistical correlation with physicochemical properties, we determined the distribution and diversity of comammox Nitrospira in Chongming eastern tidal flat and analyzed the potential influencing environmental factors.

Results and discussion

The results indicated comammox Nitrospira were widely distributed in Chongming eastern tidal flat, while with lower abundance than the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Clade A1 comammox Nitrospira showed adaptation to relatively high salinity, and was more distributed in middle and low tidal flats, while clade A2 and clade A3 were mostly distributed in high tidal flats with low salinity. The abundance and community structure of comammox Nitrospira were mainly affected by salinity, ammonia concentration, and temperature.

Conclusion

This study showed the general existence of comammox Nitrospira in Chongming eastern intertidal sediments and indicated that the differences of tidal locations, which lead to a gradient in the physicochemical properties of the sediments, in turn affects the spatial distribution of comammox Nitrospira in estuary tidal flats.

  相似文献   

5.
高浓度悬沙对长江河口水域初级生产力的影响   总被引:12,自引:0,他引:12  
根据近期观测的数据和有关文献表明,长江径流挟带的悬沙与潮流扰动产生的再悬浮泥沙在长江口形成透明度3m和3m以下的浑浊带,浑浊带悬沙的消光作用强于营养盐释放作用,抑制了长江口门区的初级生产力,使口门区的浮游植物生物量及密度显著低于附近水域.经估算,目前长江口浮游植物对N、P的吸收、同化能力分别为6.64万t/km2·α和9220t/km2·α  相似文献   

6.
Zheng  Xiangzhou  Lin  Cheng  Guo  Baoling  Yu  Juhua  Ding  Hong  Peng  Shaoyun  Zhang  Jinbo  Ireland  Eric  Chen  Deli  Müller  Christoph  Zhang  Yushu 《Journal of Soils and Sediments》2020,20(4):1897-1905
Purpose

Nitrogen (N) is an important nutrient for re-vegetation during ecosystem restoration, but the effects of cover restoration on soil N transformations are not fully understood. This study was conducted to investigate N transformations in soils with different cover restoration ages in Eastern China.

Materials and methods

Soil samples were collected from four degraded and subsequently restored lands with restoration ages of 7, 17, 23, and 35 years along with an adjacent control of degraded land. A 15N tracing technique was used to quantify gross N transformation rates.

Results and discussion

Compared with degraded land, soil organic carbon (SOC) and total N (TN) increased by 1.60–3.97 and 2.49–5.36 times in restoration land. Cover restoration increased ammonium and nitrate immobilization, and dissimilatory nitrate reduction to ammonium (DNRA) by 0.56–0.96, 0.34–2.10, and 0.79–3.45 times, respectively, indicating that restoration was beneficial for N retention. There were positive correlations between SOC content and ammonium and nitrate immobilization and DNRA, indicating that the increase in soil N retention capacity may be ascribed to increasing SOC concentrations. The stimulating effect of SOC on ammonium immobilization was greater than its effect on organic N mineralization, so while SOC and TN increased, inorganic N supply did not increase. Autotrophic and heterotrophic nitrification increased with increasing SOC and TN concentrations. Notably, heterotrophic nitrification was an important source of NO3??N production, accounting for 47–67% of NO3??N production among all restoration ages.

Conclusions

The capacity of N retention was improved by cover restoration, leading to an increase in soil organic carbon and total N over time, but inorganic N supply capacity did not change with cover restoration age.

  相似文献   

7.
Most studies on dissimilatory nitrate reduction to ammonium (DNRA) in paddy soils were conducted in the laboratory and in situ studies are in need for better understanding of the DNRA process.In this study,in situ incubations of soil DNRA using 15 N tracer were carried out in paddy fields under conventional water (CW) and low water (LW) managements to explore the potential of soil DNRA after liquid cattle waste (LCW) application and to investigate the impacts of soil redox potential (Eh) and labile carbon on DNRA.DNRA rates ranged from 3.06 to 10.40 mg N kg 1 dry soil d 1,which accounted for 8.55%-12.36% and 3.88%-25.44% of consumption of added NO 3-15 N when Eh at 5 cm soil depth ranged from 230 to 414 mV and 225 to 65 mV,respectively.DNRA rates showed no significant difference in paddy soils under two water managements although soil Eh and/or dissolved organic carbon (DOC) were more favorable for DNRA in the paddy soil under CW management 1 d before,or 5 and 7 d after LCW application.Soil DNRA rates were negatively correlated with soil Eh (P < 0.05,n=5) but positively correlated with soil DOC (P < 0.05,n=5) in the paddy soil under LW management,while no significant correlations were shown in the paddy soil under CW management.The potential of DNRA measured in situ was consistent with previous laboratory studies;and the controlling factors of DNRA in paddy soils might be different under different water managements,probably due to the presence of different microfloras of DNRA.  相似文献   

8.
长江口潮滩植物根际沉积物磷的累积及其生物有效性   总被引:3,自引:0,他引:3  
通过对长江口潮滩植物生物量及根际沉积物中磷的赋存形态和含量的研究,结果表明各个采样点的海三棱草从春季开始生长并一直延续到初夏,到7月其生物量基本上都达到一个峰值。海三棱草根际沉积物中磷的赋存形态包括弱吸附态磷(Ad-P)、铁结合态磷(Fe-P)、自生磷灰石及钙结合态磷[(Ap+Ca)-P]、碎屑态磷(De-P)和有机磷(OP),它们都具有较好的季节性变化,在一定程度上都受到氧化还原状态的控制。文中还研究了根际沉积物孔隙水中的磷酸盐含量,发现其有效性受到了氧化还原状态及沉积物中铁的影响。  相似文献   

9.
Purpose

The aim of this study is to investigate the abundance, diversity, and distribution of archaea and bacteria as affected by environment parameters in paddy soils, with focus on putative functional microbial groups related to redox processes. Because there is generally a high iron content in the soil, we also want to test a hypothesis that soil iron concentration significantly affects microbial diversity and distribution.

Materials and methods

Quantitative PCR and barcoded pyrosequencing of 16S ribosomal RNA genes were employed to investigate the abundance and community composition of archaeal and bacterial communities in 27 surface paddy soil samples. Pearson’s correlation, analysis of variance, partial least squares regression, principal coordinates analysis, and structural equation models were performed for the analyses of gene copy numbers, α-diversity, β-diversity, and relative abundances of archaea and bacteria and their relationships with environmental factors.

Results and discussion

Archaeal abundance was correlated greatest with temperature, but bacterial abundance was affected mainly by soil organic matter and total nitrogen content. Soil pH and concentrations of different ions were associated with archaeal and bacterial β-diversity. The relative abundances of Euryarchaeota and Thaumarchaeota were 61.3 and 13.1% of archaea and correlated with soil pH, which may affect the availability of substrates to methanogens and ammonia oxidizers. Dominant bacterial phyla were Proteobacteria (32.4%), Acidobacteria (17.8%), Bacteroidetes (9.3%), and Verrucomicrobia (6.0%). The relative abundances of putative bacterial reducers of nitrate, Fe(III), sulfate, and sulfur, and oxidizers of ammonia, nitrite, reduced sulfur, and C1 compounds had positive, negative, or non-significant correlations with the concentrations of their substrates. Soil iron concentration was correlated only with the distributions of some putative iron-reducing bacteria.

Conclusions

In paddy soils characterized by dynamic redox processes, archaea and bacteria differ in relationships of abundance, diversity, and distribution with environmental factors. Especially, the concentrations of electron donors or acceptors can explain the distributions of some but not all the putative functional microbial groups related to redox processes. Depending on pH range, soil pH has a strong impact on microbial ecology in paddy soils.

  相似文献   

10.
卢伟伟  施卫明 《土壤学报》2012,49(6):1120-1127
以太湖地区的湖白土和乌栅土为研究对象,通过室内15N 示踪实验研究了低浓度废水灌溉对土壤异化硝酸根还原为铵(DNRA)的影响。乌栅土DNRA速率和相对潜势分别为0.68 ~ 0.79 mg N kg-1干土 天-1和34.61 ~ 44.45%;湖白土DNRA速率和相对潜势分别为1.14 ~ 1.41 mg N kg-1干土 天-1和54.24 ~ 106.70%。低浓度废水对2种土壤的DNRA速率均影响不大;低浓度废水对湖白土DNRA相对潜势影响不大而明显降低了乌栅土DNRA相对潜势。相关分析表明,土壤DNRA相对潜势与培养开始(r = 0.836,p < 0.05,n = 6)和结束(r = 0.936,p < 0.01,n = 6)时的土壤溶解有机碳 / 硝态氮(DOC / NO3-N)均显著正相关,而与培养始末土壤Eh和DOC含量的相关性不显著。以上研究结果表明,太湖地区乌栅土具有较高的DNRA潜势,实践上有可能通过调控DNRA过程实现保持土壤氮素而减少农田氮损失的目的;尾水灌溉主要通过改变土壤DOC / NO3-N而影响DNRA对NO3-异化还原的贡献且其影响因土壤类型而异。  相似文献   

11.
Feng  Yu  Liu  Peng  Xie  Xianjun  Gan  Yiqun  Su  Chunli  Liu  YingYing  Finfrock  Y. Zou  Wang  Yongjie 《Journal of Soils and Sediments》2022,22(10):2827-2839
Purpose

Disposal operations for industrially polluted sediments are usually accompanied by disturbance and resuspension, which can induce metal remobilization and secondary pollution. Evaluating the risk of metal release under various redox conditions is fundamental for predicting contaminant mobilization and guiding remediation measures.

Methods

An abandoned oxidation pond, Yanjia Lake, China, was selected as a typical industrially polluted site. Re-suspension experiments were carried out by mixing polluted sediments with lake water under oxic or anoxic conditions, then investigating the effect of oxidation conditions on the release of multiple metals. Metal concentrations and aqueous chemistry in the overlying water were monitored. Synchrotron-based methods, including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), were used to characterize oxidation states and coordination conditions of metals in sediments.

Results

The release of metals, including Cr, Co, Ni, Cu, Zn, Se, Mo, Sn, Cd, and Pb, was enhanced under oxic vs. anoxic conditions. The XANES analysis revealed that elevated Cr and Zn concentrations under oxic conditions likely resulted from the oxidation of Cr(III) and oxidizing dissolution of ZnS, respectively. K-edge Cu XANES, S XANES, and Cu EXAFS analyses reconstructed the Cu–S association, indicating that S-related oxidation promoted Cu release and Cu–O partly replaced Cu–S in the sediment after a 7-day oxic treatment.

Conclusion

The release of most metals was promoted under oxic conditions, resulting from the oxidation of sulfides and metals as indicated by aqueous and synchrotron-based evidence. The risk of secondary pollution is greatly enhanced under oxic conditions, which suggests that measures should be taken to minimize the redox disturbance during sediment remediation. This information can guide the management of sediments in Yanjia Lake and other contaminated sites with similar properties.

  相似文献   

12.
Wang  Xugang  Sun  Lirong  Chen  Zhihuai  Guo  Dayong  Fan  Haolong  Xu  Xiaofeng  Shi  Zhaoyong  Chen  Xianni 《Journal of Soils and Sediments》2020,20(8):3171-3180
Purpose

The iron redox cycle is closely tied to the fate of carbon in terrestrial ecosystems, especially paddy soils. Varies diurnally and seasonally, light—the crucial environmental factor—may be a fundamental factor elucidating temporal and spatial variabilities of carbon-containing gases emission. The role of sunlight in the iron-mediated carbon cycle, however, has not been fully elucidated. We conduct this study to test the role of light in the iron-mediated carbon cycling.

Materials and methods

In this study, we conducted anaerobic incubation experiments of a calcareous paddy soil in serum vials under alternating dark and light conditions. The dynamic evolution of the carbon and iron contents was evaluated by measuring the CO2, CH4, and O2 concentrations in the headspace of the vials, as well as the water-soluble inorganic carbon, microbial biomass carbon, and HCl-extractable ferrous iron contents in soil slurries. We also analyzed the soil microbial community structure by high-throughput 16S rRNA gene sequencing.

Results and discussion

The results highlighted the positive correlation between carbon mineralization and ferric iron reduction under dark conditions. Under light conditions, however, ferrous iron was oxidized by the O2 generated via oxygenic photosynthesis of phototrophic bacteria such as Cyanobacteria, along with a decreased production of CO2, CH4, and water-soluble inorganic carbon. The abundance of Cyanobacteria positively correlated to O2 levels and MBC content significantly. Light-induced periodic variations in the redox conditions facilitated carbon fixation in microbial biomass and up to 31.79 μmol g?1 carbon was sequestrated during 30 days light incubation.

Conclusions

These results indicate that light inhibits the emission of carbon-containing greenhouse gases associated with the iron redox cycle in calcareous paddy soil. Assimilation of inorganic carbon by phototrophs may responsible for the inhibition of carbon mineralization. Our study suggests that procedures allowing more light to reach the soil surface, for instance, reducing the planting density, may mitigate greenhouse gas emissions and promote carbon sequestration in paddy soils.

  相似文献   

13.
Purpose

Port-dredging activities produce large volumes of contaminated sediments. Dredged sediments are considered a waste by national laws, but recently the desire to consider them a resource has become widespread and remedies for their contamination are being searched to allow their reuse. In this work, we studied, developed, and tested a method for remediate marine-dredged sediments contaminated by heavy metals using native fungi and a microporous membrane, in order to achieve the sediment quality and allow their reuse.

Materials and methods

Activity was carried out on port sediments from Genoa, Leghorn, Pisa, and Cagliari (Italy). Autochthonous fungi were isolated from each sediment and employed in mycoremediation tests. Two plastic boxes were prepared (for each Port) with 5 kg of sediment in each box, employed for metal bioaccumulation using a sterile polyester membrane inoculated with fungi. Membranes were analyzed at 15, 30, and 60 days after inoculums, and sediments were analyzed after 60 days at the end of the experiment to verify metal contamination degree. Recovery efficiency (RE%) and difference recovery efficiency (DRE%) were calculated for each experiment: the first shows the absorption capability of the membrane-fungi consortium; the second evidences only the fungal contribution to the metal absorption. To assess sediment contamination before and after the mycoremediation treatment, we considered chemical levels of reference L1 (the lowest chemical level of reference) and L2 (the highest chemical level of reference), and the evaluation of chemical hazard (HQ) for the chemical contaminants defined by the Italian Ministerial Decree 173/2016.

Results and discussion

Fungi from Genoa sediments increase the membrane absorption of Cu and Zn. Regarding Leghorn results, RE (%) increases and reaches the maximum value after 60 days of treatment for each considered metal. Cr tot, Ni, and Mn appear to be hyper-bioaccumulated. DRE values of Pisa sediments show that Mn is excluded by fungi and it does not bioaccumulate, while other metals and in particular Cd, Cr tot, Zn, and Sb are bioaccumulated. Cagliari DREs show that fungi are not able to bioaccumulate Cr tot, Ni, and Mn and their accumulation is due to the membrane, while As and Cd are bioaccumulated.

Conclusions

Our work evidenced that selected fungi are able to grow on a microporous support and actively reduce metal concentrations in the sediments, achieving their quality. This biomembrane system may represent an important instrument for the remediation of the residual metal contamination of port sediments.

  相似文献   

14.

Purpose  

The evaluation of the electron transfer capacities (ETC) of DOM is important to understand their roles in microbial activity, pollution degradation, and metal mobility. Those currently used methods to quantify ETC, such as Zn and Fe3+ assays, are normally time consuming and usually require experience and skills to achieve reproducible results. The aim of this paper is to develop a rapid and simple approach to accurately and directly quantify the ETC of DOM.  相似文献   

15.
G. Brümmer 《Geoderma》1974,12(3):207-222
Results of laboratory experiments with soil material saturated with sea water indicate that, as predicted by thermodynamics, manganese (III, IV)-oxides are first reduced to Mn2+-ions (beginning at about +450 mV at pH 6.1.; E7 ≈ +400 mV), next amorphous iron (III)-oxides are reduced to Fe2+-ions (beginning at about +220 mV at pH 6.0; E7 ≈ +160 mV), and finally sulphates are reduced to sulphides (beginning at about +10 mV at pH 6.0; E7 ≈ -50 mV). Direct quantitative relations between redox potentials, pH-values and Mn2+- (or Fe2+-) contents of water-saturated soils and sediments and calculated redox reactions of known manganese and iron systems could not be established.The influence of organic redox systems produced by microbial fermentation processes on the measured potentials and on the reduction of manganese and iron oxides is discussed.A reduction of the oxides by microbially formed sulphides, which themselves are oxidized by this process, seems also to be possible. Therefore, sulphides do not occur as stable sulphur phase in higher amounts before all available Fe-oxides are reduced to Fe2+-ions. Then formation of iron monosulphides takes place by precipitation of Fe2+- ions by sulphides (H2S, HS). In a sulphide-stabilized environment redox reactions of sulphur — especially the reaction H2Saq = S0 + 2 H+ + 2 e? — may determined the measured potentials.The results show that the dynamics and morphology of hydromorphic soils and sediments are strongly dependent on microbial processes.  相似文献   

16.
Purpose

The purpose of the study was to determine the levels of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F), two types of persistent organic pollutant (POP), in an urban retention reservoir located in an industrial zone within a coal-mining region. It also assesses the potential ecological risk of the PCDDs/Fs present in bottom sediments and the relationship between their content and the fraction of organic matter.

Materials and methods

The sediment samples were collected from Rybnik Reservoir, located in the centre of the Rybnik Coal Region, Silesia, one of Poland’s major industrial centres. Seventeen PCDD/F congeners in the surface of the sediments were analysed using high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS).

Results and discussion

The toxic equivalency (TEQ) of the PCDDs/Fs in the sediments ranged from 1.65 to 32.68 pg TEQ g?1. PCDDs constituted 59–78% of the total PCDDs/Fs, while the PCDFs accounted for 22–41%. The pattern of PCDD/F congeners in the sediments was dominated by OCDD. However, the second-most prevalent constituents were OCDF and ∑HpCDFs in the low TOC sediment (< 10 g TOC kg?1), but HpCDD in the rich TOC samples (> 10 g TOC kg?1). PCDD/F concentrations in the sediment samples were 2- to 38-fold higher than the sediment quality guidelines limit, indicating high ecological risk potential. Although a considerable proportion of PCDDs/Fs in the bottom sediments from the Rybnik Reservoir were derived from combustion processes, they were also obtained via transport, wastewater discharge, high-temperature processes and thermal electricity generation. The PCDD/F concentrations were significantly correlated with all fractions of organic matter; however, the strongest correlation coefficients were found between PCDDs/Fs and humic substances. Besides organic matter, the proportions of silt/clay fractions within sediments played an important role in the transport of PCDDs/Fs in bottom sediments.

Conclusions

The silt/clay fraction of the bottom sediments plays a dominant role in the movement of PCDDs/Fs, while the organic matter fraction affects their sorption. The results indicate that the environmental behaviour of PCDDs/Fs is affected by the quantity and quality of organic matter and the texture of sediments.

  相似文献   

17.
土壤是产生N2O的最主要来源之一。硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O。N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定。通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法。并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍。  相似文献   

18.
铁文周  黄雪娇  黄金兰  蒋代华 《土壤》2023,55(5):974-982
土壤硝酸盐异化还原成铵(DNRA)是生态系统土壤氮转化的重要途径,理清环境因素对土壤DNRA速率的影响意义重大。本研究通过收集246项试验观测值采用整合分析方法(Meta-analysis)研究了亚热带地区不同生态系统中DNRA速率的变化范围及其影响因素。结果表明:纬度对亚热带土壤DNRA速率无显著影响;土壤p H、全氮(TN)、SOC/NO3-N、Fe(Ⅱ)、阳离子交换量(CEC)、易氧化有机碳(EOC)、有效磷(AP)、黏粒含量和年平均气温(MAT)的增加均会促进DNRA速率;年平均降水量(MAP)和土壤NH4+-N含量的增加会抑制土壤DNRA速率。此外,环境因子对DNRA速率的影响随生态系统的不同表现出较大差异。结构方程模型分析结果显示,SOC/NO3-N是DNRA主要驱动因素,p H、NH4+-N、MAP和MAT对土壤DNRA也有较大影响。  相似文献   

19.
Purpose

To explore the mechanisms in the deposition and release of phosphorus (P) in the sediment of a shallow eutrophic lake using preserved samples, we investigated the vertical and temporal changes in P, manganese (Mn), sulfur (S), iron (Fe), aluminum (Al), calcium (Ca), and magnesium (Mg) in the sediment samples and the phosphate in the sediment pore water samples over a period of 6 years.

Materials and methods

The upper 15 cm of sediment from Lake Kasumigaura in Japan was collected monthly from 2003 to 2008 from the center of the lake. Sediment cores were divided into seven depth segments and were acid-digested for an elemental analysis via inductively coupled plasma atomic emission spectroscopy. Phosphate concentrations of the sediment pore water were determined using the molybdenum blue method. A multiple regression analysis was conducted by setting the P content as the response variable and Mn, S, Fe, Al, Ca, and Mg as explanatory variables.

Results and discussion

The results of the multiple regression analysis demonstrated that P co-precipitates with Fe and Al oxides and accumulates on the sediment surface. The vertical distributions of Mn and S suggest that Mn reduction occurs within the 0–1-cm-depth layer of the sediment and that iron sulfide is actively formed in the 6–10-cm-depth layer of the sediment. These findings imply that the layer in which ferric oxides are reduced to ferrous ions is present near the 1–6-cm-depth layer of the sediment. This layer corresponds to the layer in which the maximum phosphate concentration of the sediment pore water often occurred (the 2–6-cm-depth layer). These results indicate that vertical distributions of mineral elements are useful for assessing P dynamics in sediments.

Conclusions

The lake sediments record the dynamics of P in the sediment. Our analytical approach using long-term observation data demonstrated that the accumulation and release of P associated with a change in the redox state can be assessed based on the vertical distributions of mineral elements in the lake sediments.

  相似文献   

20.
土壤氮气排放研究进展   总被引:3,自引:0,他引:3  
自20世纪初人类发明并掌握工业合成氨的技术以来,氮肥施用量迅速增长。在一部分国家或地区,氮肥的施入量已经超过作物对氮素的需求,导致大量氮素损失到环境中,造成氨挥发、氧化亚氮排放、地下水硝酸盐污染等环境问题。土壤在微生物的作用下可以通过反硝化、厌氧氨氧化等过程将活性氮素转化为惰性氮气,达到清除过多活性氮的目的。由于大气中氮气背景浓度太高,因此很难直接准确测定土壤的氮气排放速率,导致土壤氮气排放通量、过程与调控机制研究远远落后于土壤氮循环的其他方面。本文综述了土壤氮气排放主要途径(反硝化、厌氧氨氧化与共反硝化)及其对土壤氮气排放的贡献;测定土壤氮气排放速率的方法(乙炔抑制法、氮同位素示踪法、N2/Ar比率-膜进样质谱法、氦环境法与N2O同位素自然丰度法)及其优缺点;调控土壤氮气排放通量的主要因素(氧气、可溶性有机碳、硝酸盐、微生物群落结构与功能基因表达等)及其相关作用机制。最后指出研发新的测定原位无扰动土壤氮气通量的方法是推进本领域相关研究的关键;定量典型生态系统(如旱地农田、稻田、森林、草地与湿地)土壤氮气排放通量,阐明其中的微生物学机制,模拟并预测土壤氮气排放对全球变化的响应规律是本领域的研究热点与发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号