首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular weight-dependent electron transfer capacities of dissolved organic matter derived from sewage sludge compost
Authors:Yong Yuan  Shungui Zhou  Tian Yuan  Li Zhuang  Fangbai Li
Institution:1. Guangdong Institute of Eco-environmental and Soil Sciences, 808 Tianyuan Road, Guangzhou, Guangdong Province, 510650, People’s Republic of China
Abstract:

Purpose

Dissolved organic matter (DOM) has been shown to be an efficient electron transfer facilitator in biogeochemical reactions due to its ability to mediate redox reactions. It has been known that various fractions of DOM differed in their chemical and biogeochemical behaviors in environment. However, there has been relatively little work directed at predicting the dependence of redox properties of DOM on its fractions.

Materials and methods

DOM was extracted from sewage sludge compost. Freeze-dried DOM was grouped into three fractions of different molecular sizes (<3,500, 3,500–14,000, and >14,000 Da) using dialysis bags (Spectra/Por 3 and 4, Spectrum Industries, California, US). Cycle voltammetry was used to investigate the redox behavior of the fractions. Chronoamperometry was employed to study their electron accepting capacities and electron donating capacities by applying fixed positive or negative potential to the working electrode in a conventional three-electrode cell. Fourier-transform infrared and three-dimensional excitation/emission matrix fluorescence spectroscopies were used to determine the functional groups in the fractions. Shewanella putrefaciens 200 (SP200) and Klebsiella pneumoniae L17 (L17) were used for all microbial iron(III) reduction experiments.

Results and discussion

Electrochemical methods show that the electron transfer capacity (ETC) of DOM depends on its molecular weight, and ETC is in the order of high-molecular weight DOM (H-DOM) > moderate-molecular weight DOM > low-molecular weight DOM. The same trend is discovered in the DOM-stimulated iron(III) oxide bioreduction where DOM fractions act as electron shuttles transferring electrons from the Fe(III)-reducing bacteria to the iron oxide. Both spectroscopic and cyclic voltammogram assays show the highest abundance of redox moieties associated to H-DOM, which is possibly responsible for its strongest electron-shuttling ability.

Conclusions

DOM has a wide molecular weight (MW) distribution due to the complexity of its chemical composition and structure. In addition to structural variations, DOM fractions with different MW have different redox properties and electron-shuttling capacities in microbial Fe(III) reduction. The results are of great significance for further studies on DOM geochemical behavior in environment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号