首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
不同热解温度制备的水稻秸秆生物炭理化特性分析   总被引:1,自引:0,他引:1  
《土壤通报》2020,(1):136-143
以不同热解温度(100~800℃)制备的水稻秸秆生物炭为研究对象,研究在不同热解温度下制成的生物炭的理化特性。结果表明,热解温度为100~300℃制成的水稻秸秆生物炭呈弱酸性,400℃以上时呈碱性;水稻秸秆生物炭表面碱性含氧官能团数量随着热解温度的升高而增加、酸性含氧官能团则减少;水稻秸秆生物炭中的官能团C=C、C-O-C、-OH和-C=O在较高的热解温度下发生缔合或消除,促进了芳香基团的形成;随着热解温度的升高,水稻秸秆生物炭的阳离子交换量(CEC)、比表面积、孔径、比孔容、氮气吸附量和颗粒表面的分型维数(D1)均先增加后降低,阳离子交换量(CEC)在300~500℃时、其它性状在400~600℃之间达到最大值;以不同热解温度制成的水稻秸秆生物炭颗粒的孔隙结构均以孔隙宽度2~50 nm的中孔为主。随热解温度的升高,水稻秸秆生物炭的产率逐渐降低;400~500℃炭化2 h,生物炭产率最高,其孔隙结构最为复杂,所以可以认为400~500℃是水稻秸秆炭化的最佳温度。  相似文献   

2.
热解温度对玉米秸秆炭产率及理化特性的影响   总被引:2,自引:0,他引:2  
【目的】通过对不同热解温度条件下玉米秸秆炭理化特性的分析,探索玉米秸秆炭具有较高利用价值的炭化温度。【方法】以玉米秸秆为原料,采用低氧升温炭化法,在不同热解温度下 (100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃) 分别炭化2 h,制备生物炭,收集并测定了固体产物生物炭产率及特性。【结果】生物炭的产率随热解温度的升高逐渐降低。生物炭全碳含量和碳氮比随热解温度升高而升高,全氮含量在400℃以后随热解温度升高而降低。阳离子交换量 (CEC) 在400℃~600℃达到较高水平,为70.87~83.48 cmol/kg。随热解温度升高,玉米秸秆炭表面碱性含氧官能团增加、酸性含氧官能团减少,pH随着热解温度的升高逐渐增加,当温度达到400℃及400℃以上时呈碱性甚至强碱性。红外光谱分析表明,热解温度达到500℃时,纤维素和半纤维素已经完全分解;高温热解使玉米秸秆中–CH3、–CH2、–OH、–C=O间发生缔合或消除,促进芳香基团的形成。随着热解温度的升高,玉米秸秆炭的比表面积和比孔容均是先变大后变小,孔径先变小后变大,在400℃~600℃条件下,玉米秸秆炭的孔隙相对较为丰富,不同热解温度下玉米秸秆炭的比表面积和比孔容呈极显著正相关关系(P < 0.01)。【结论】综合各项指标,玉米秸秆的最佳热解温度为400℃~500℃,此温度下制备的生物炭产出率相对较高,氮、碳养分损失少,生物炭的理化性能和养分利用均达到最优。  相似文献   

3.
梁桓  索全义  侯建伟  刘常涛 《土壤》2015,47(5):886-891
掌握不同生物炭材料的结构特征和化学特性是合理利用生物炭的基础。通过无氧炭化法制备了不同炭化温度下的玉米秸秆生物炭和沙蒿生物炭,对比了不同材料和不同炭化温度下生物炭性质的差异。结果表明:炭化温度低于400℃时,两种材料生物炭的孔隙结构保存完整,600℃以上时,两种材料生物炭的蜂窝状结构均遭到破坏,玉米秸秆生物炭被破坏得更严重;同一炭化温度下,玉米秸秆生物炭的比表面积及总孔容和平均孔径均大于沙蒿生物炭,两种生物炭的比表面积随炭化温度的升高均增大,总孔容呈"V"形变化;两种材料的生物炭均呈碱性,炭化温度越高,pH越大,400℃~800℃,每升高10℃,玉米秸秆生物炭和沙蒿生物炭的pH均以0.02的幅度增加,同一温度下,玉米秸秆生物炭的pH大于沙蒿生物炭,在400℃、600℃和800℃下分别比沙蒿生物炭高0.31、0.35和0.29单位;随炭化温度的升高,玉米秸秆生物炭和沙蒿生物炭的C、P、K和灰分含量增加,400℃~800℃,玉米秸秆生物炭的C、P、K含量以炭化温度每升高10℃分别增加2.94、0.11、0.20 g/kg的幅度变化,沙蒿生物炭也以4.35、0.07、0.24 g/kg的幅度增加,与此同时,玉米秸秆生物炭的N、H含量以每升高10℃分别以0.13 g/kg和0.86 g/kg的幅度降低,沙蒿生物炭的N、H含量分别以0.04 g/kg和0.82 g/kg的幅度下降,S含量无明显变化,C/N和C/H增大,且不同材料生物炭的元素含量差异显著;两种材料生物炭的N、P、K有效性随炭化温度的升高均下降,400℃~600℃,玉米秸秆生物炭和沙蒿生物炭的速效N含量分别下降了57.89%和19.05%,800℃时两种生物炭的速效N均接近0 mg/kg,400℃~800℃玉米秸秆生物炭和沙蒿生物炭的速效P含量分别降低了67.41%和52.36%,此时速效K含量也分别降低了45.62%和90.16%。总之,不同材料和炭化温度对生物炭的物理特征和化学特性都有较大影响。  相似文献   

4.
热解温度对回转窑玉米秸秆热解产物理化特性的影响   总被引:1,自引:1,他引:0  
针对北方农业秸秆废弃物产量巨大且无法全部还田导致丢弃和露天焚烧现象激增等问题,该文通过搭建小型回转窑生物质热解装置考察不同热解温度下秸秆热解特性,分析主要产物的产率、元素组成等理化特性指标。结果表明:回转窑内热解温度的增加提高了热解液相产物产率和热解水产率,焦油产率呈先增加后降低趋势。与此同时,热解气总体积逐渐增加,H2含量和CH4含量也有所提高,生物炭产率和热值有所降低。当热解温度从400℃增加至700℃时,焦油产率从12.21%增加至21.70%;当温度进一步增加至800℃时,焦油产率降低至20.13%;相应的焦油热值从400℃时的19 974.0 kJ/kg逐渐增加到800℃时的21 710.0 kJ/kg。高热解温度加快热解过程中的热传递,加剧生物质大分子所含的羟基、羰基等含氧官能团的分解并促进挥发物的产生,进而提高了热解液体产物、热解水和焦油产率。过高的加热温度会加剧挥发分的二次反应,降低焦油产率;更多的含氧杂环结构会随着热解温度提高逐渐分解,因而焦油热值逐渐增加。生物炭产率随着温度增加逐渐降低,生物炭pH值和C/N比均逐渐增加,在兼顾生物炭产率和应用于炭基肥制备所需理化性质的同时需充分考虑热解温度影响。  相似文献   

5.
为评价花生壳生物炭农业与环境领域应用价值与潜力,该研究分别在100~800℃条件下制备花生壳生物炭,测定其孔隙参数,以期了解花生壳生物炭在不同热解温度条件下的孔结构变化规律。结果表明,在100~500℃条件下制备的花生壳生物炭以中孔和大孔为主,其吸附解析等温线为Ⅱ类吸附等温线,迟滞回线属于H3型,孔隙结构主要由狭缝孔构成;600~800℃条件下制备的生物炭以微孔为主,其吸附解析等温线为Ⅰ类吸附等温线,迟滞回线属于H4型,孔隙结构主要是锥形孔。当热解温度从100℃上升至600℃过程中,BET比表面积、比孔容均呈上升趋势,同时t-Plot微孔比表面积、t-Plot微孔孔容、中孔比表面积、中孔孔容也均在600℃时基本达到最高水平。花生壳生物炭的孔径分布随温度的变化非常明显,孔峰主要在3~5 nm处,100~600℃条件下峰值表现为升高趋势,600~800℃条件下峰值逐渐降低,与比表面积分布图结果相一致。花生壳生物炭孔隙表面分形维数D1和体积分形维数D2均在600~800℃条件下水平较高,高热解温度导致孔隙结构的复杂程度有所增加,生物炭表面更加粗糙。根据花生壳生物炭在不同热解温度条件下的孔结构变化规律,为花生壳生物炭制备及应用提供参考依据,有利于实现花生壳综合高效利用。  相似文献   

6.
不同热解温度限氧制备的畜禽粪便生物炭养分特征   总被引:3,自引:2,他引:1  
为了分析畜禽粪便生物炭中的养分特征变化,以鸡粪、猪粪渣和牛粪为原料,采用限氧控温法制备生物炭,研究了不同热解温度(350、450、550、650和750 ℃)的畜禽粪便生物炭灰分含量,C含量、大量和中微量元素养分含量及其残留率的变化,并分析了C/N比值,原材料与炭化产品养分含量、及热解温度和生物炭养分特征的相关性。结果表明,随着热解温度的升高,畜禽粪便生物炭C、N含量逐渐下降,灰分含量和P、K、Ca、Mg、Fe、Mn养分含量逐渐增加。高温热解虽增加畜禽粪便生物炭的养分总量和C/N比值,但也降低了各养分残留率。综合分析表明,畜禽粪便生物炭养分含量及其残留率与原材料中的养分含量、热解温度密切相关,其中与热解温度相关性显著。因此,选择高C和高养分含量的畜禽粪便原材料是提升生物炭养分含量的基础,而适宜温度是保留生物炭较高养分残留率的关键。该研究中畜禽粪便适宜热解温度为450 ℃,该温度下各生物炭的养分残留率整体表现为牛粪>猪粪渣>鸡粪。  相似文献   

7.
不同温度下水稻秸秆多孔生物炭结构与电化学性能   总被引:1,自引:1,他引:0  
针对一步热解活化技术制备的秸秆多孔生物炭的表面活性位点偏少、孔隙结构不发达和电化学性能欠佳的问题,该研究以水稻秸秆微波磷酸水热炭为前驱体,开展了500~900 ℃下多孔生物炭的制备试验,探讨了不同温度下多孔生物炭的结构及电化学性能。结果表明,随着活化温度的升高,水稻秸秆多孔生物炭产率由50.31%降低到33.47%,800 ℃多孔生物炭的C含量最高,为74.09%。多孔生物炭表面上含有的-OH、C-O-C等含O基团和吡啶氮、吡咯氮、石墨氮和氮的氧化物等含N基团,有利于其在电解质中的润湿性,降低离子转移电阻。随着活化温度的升高,多孔生物炭的碳的无序度和缺陷程度先增加后降低。800 ℃多孔生物炭的表面缺陷较多,其比表面积为1 002.20 m2/g,总孔体积最大为0.79 cm3/g,中孔体积率为45.57%。在三电极的KOH电解质体系下,800 ℃多孔生物炭电极的比电容最大,倍率性能较好,电阻较小,且其在1 A/g电流密度下的比电容为312.81 F/g。800 ℃多孔生物炭制备的对称电容器在228 W/kg功率密度下的能量密度达到10.73 W·h/kg,且在10 A/g电流密度和5 000次循环充放电后,其比电容保持率为95.82%。  相似文献   

8.
为解决近年来元宝枫产业化产生的大量果壳废弃物,以元宝枫籽壳为原料,研究了不同炭化温度下粉末炭的得率、元素组成、微观结构、NH_4~+-N吸附能力。结果显示,随着烧制温度增加,生物质炭的得率减少,炭中碳含量逐渐增加,C/N比值升高;400℃温度下烧制的生物质炭孔槽结构密集,500℃热解的生物质炭表面褶皱丰富;400℃下烧制的元宝枫籽壳生物质炭对NH_4~+-N吸附能力最高,吸附值最高达到0.188 mg·g~(-1)。元宝枫籽壳生物质炭的开发可为农林废弃生物质的资源化利用提供重要的理论与实践指导。  相似文献   

9.
不同温度玉米秸秆生物炭对萘的吸附动力学特征与机理   总被引:2,自引:0,他引:2  
通过批平衡实验,研究不同剂量热解温度(300、400、500、600℃,记作C300、C400、C500、C600)玉米秸秆生物炭对萘的吸附动力学特征与机理。同一热解温度下生物炭投加剂量为10 mg时对萘的平衡吸附量大于50 mg。热解温度对生物炭吸附萘的影响也不同,投加剂量为10 mg时,萘的平衡吸附量为C400C300C600C500;剂量为50 mg时,C300、C400和C600的平衡吸附量相近,而C500的平衡吸附量最低。生物炭对萘的吸附动力学数据随时间的变化可以用假二级动力学方程很好地拟合,表明生物炭对萘的吸附是复杂的,并不是单一的单层吸附。用颗粒内扩散模型和Boyd模型分析,发现液膜扩散以及颗粒内扩散均影响吸附过程,且液膜扩散为限速因素。  相似文献   

10.
采用低温烘焙技术制备玉米秸秆成型生物炭,可解决玉米秸秆带来的环境污染及资源浪费。研究以玉米秸秆成型颗粒为原料,利用固定床反应器,制备了不同烘焙温度(250~400℃)成型生物炭,采用元素分析、工业分析、能量产率、质量产率、机械性能、疏水性、红外光谱(Fourier transform infrared spectroscopy,FTIR)、扫描电镜(Scanning electron microscopy,SEM)、元素K含量等分析生物炭特性。随烘焙温度升高,热值增加,能量产率降低,400℃时,成型生物炭热值为21.86MJ/kg,能量产率为50.17%。成型生物炭颗粒表面裂纹增多,机械性能降低,350℃烘焙成型生物炭(CSP350)机械性能好于400℃烘焙成型生物炭(CSP400),低于成型生物质颗。烘焙生物炭疏水性提升,可贮藏于室外。成型玉米秸秆经烘焙热解发生了脱水、脱羰基、脱甲基反应,纤维素、半纤维素热解剧烈,木质素开始热解。随温度升高,其孔径呈下降趋势,比表面积增大。结果表明,玉米秸秆成型烘焙生物炭可作为优质生物燃料,适宜制备温度为300~350℃。  相似文献   

11.
The use of sewage sludge biochar (SSB) for agro-environmental purposes has been increasing. However, due to the strong influence of pyrolysis temperatures on its production, there is great variation in its final properties. In this regard, efforts to generate relationships among many correlated SSB properties may help to understand this influence. This study sought to evaluate the effect of pyrolysis temperature on agro-environmental physicochemical properties of SSB. Biochars from sewage sludge (SS) were produced at 300, 400 and 500°C and their physicochemical properties were evaluated in comparison to SS samples. The increase in pyrolysis temperature decreased C, N, and H contents and the H/C atomic ratio, while increasing the C/N ratio. The pyrolysis process increased pH values, the surface area and pore volume and enriched the SSB with macro and micronutrients. Considering all variables together, the biochar produced at 300°C was that which showed the greatest nutrients availability, such as N total, S, NO3?, NH4+, Ca2+ and Mg2+. Conversely, SSB produced at 500°C showed higher recalcitrant organic matter and alkalinity, important properties for C sequestration and the correction of acidic soils. The combined application of SSB produced at lower and higher pyrolysis temperatures should be furthered studied.  相似文献   

12.
Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristics is needed for more targeted and efficient biochar application strategies. Herein, we systematically review the effects of biochar pyrolysis temperature (175–950°C) and feedstock (corn stover, switchgrass and wood) on selected biochar characteristics (carbon content, H/C ratio, nitrogen content, pH, specific surface area, ash content and pore volume). These specific characteristics were selected as being pertinent to soil organic carbon sequestration and soil health improvement. Despite numerous studies on these topics, few have numerically quantified the effects of pyrolysis temperature. Our results show that high pyrolysis temperature (>500°C) increased carbon content and pore volume for wood biochar compared with low pyrolysis temperature (≤500°C). The high pyrolysis temperature decreased the H/C ratio and nitrogen content but increased pH, specific surface area and ash content regardless of feedstock. Compared with corn stover biochar and switchgrass biochar, wood biochar had higher carbon content and larger specific surface area but lower nitrogen and ash contents regardless of pyrolysis temperature. The higher biochar carbon content might be derived from higher lignin and cellulose contents of wood feedstock. Wood feedstock had 76%–109% more lignin and 27%–47% more cellulose than corn stover and switchgrass. Corn stover biochar had higher pH, and switchgrass biochar had larger pore volume than wood biochar. Our study indicates that the targeted production of biochar with specific characteristics can be facilitated by the selection of pyrolysis temperature and feedstock type. For amending soil with biochar, more operationally defined biochar production conditions and feedstock selection might be a way forward to wider acceptance and better predictability of biochar performance under field conditions.  相似文献   

13.
This study was conducted to investigate the effect of pyrolysis temperature on chemical properties of poultry manure (PM) biochar over the range of 200–500°C. Chemical properties of biochar produced at 200°C were almost the same as PM, but significant changes were observed in higher-temperature-produced biochars. According to elemental and fourier transformation infrared analyses, the degree of carbonization in biochar was accelerated with increasing pyrolysis temperature. Biochar yield decreased, while its pH, cation exchange capacity, and P, K, Fe, Mn, Zn, and Cu contents increased with increasing pyrolysis temperature. The biochar produced at 400°C or 500°C was highly alkaline. Also, due to high electrical conductivity, these types of biochars may not be suitable for salt-sensitive crops. It was concluded that the pyrolysis temperature of more than 300°C reduces the quality of PM biochar for use in calcareous soils, although it may be suitable for acidic soils or environmental application.  相似文献   

14.
生物炭对向日葵秸秆热解特性及气体产物影响   总被引:1,自引:1,他引:0  
为了研究生物炭对向日葵秸秆热解的影响,以向日葵秸秆为原料,基于TG-FTIR研究生物炭添加前后向日葵秸秆热解特性与气体产物的变化。结果表明,与向日葵秸秆相比,混合样品主热解区间由276~349℃变得更长,并且发生不同程度的偏移,热解活化能不同程度降低,由60.21降到38.07~50.35 kJ/mol,呋喃类、酸类、含羰基类化合物、芳香醛类、CO、CH4等产物吸光度值存在差异。随着添加500℃制备生物炭比例增加,混合样品热解的活化能减小,释放气体产物中芳香醛类释放量增量减少,CO与CH4释放量降低。添加不同制备温度的生物炭,混合样品热解产生呋喃类、酸类、含羰基类化合物释放量均有所降低;添加500和700℃制备的生物炭,混合样品热解气体产物中芳香醛类增加。添加900℃制备的生物炭,向日葵秸秆热解气体产物中CO产量增加。该研究为向日葵秸秆的有效利用提供理论基础和技术支撑。  相似文献   

15.
生物炭主要类型、理化性质及其研究展望   总被引:25,自引:3,他引:22  
【目的】 生物炭作为工农业生产副产品低碳利用的有效手段,其改善土壤及提高作物品质的有益功效已被逐步认识,但对其研究报道分散且差异较大。对已有研究进行梳理总结,可为生物炭生产施用以及形成有效的产业链提供科学依据。 主要进展 1)生物炭全碳含量在 30%~90% 之间,平均 64%。生物炭碳含量由大到小来源依次是木质、秸秆、壳类、粪污和污泥。秸秆类生物炭碳含量大多为 40%~80%,木质类生物炭在 60%~85%。生物炭灰分含量在 0~40% 之间变动,平均 15.52%。灰分含量由大到小依次是污泥、粪污、秸秆、壳类和木质。秸秆生物炭灰分含量主要在 20%~35% 之间,较少为 15%;木质炭灰分主要在 0~10% 范围内。生物炭碳含量和灰分含量相关系数为–0.77。裂解温度与生物炭碳灰组分呈正相关,相关系数分别为 0.17 和 0.28。施入生物炭可以改善土壤状况,生物炭灰分通常对养分贫瘠土壤及沙质土壤的一些养分补充作用较明显。2)生物炭比表面积绝大多数在 0~520 m2/g 之间,平均 124.83 m2/g,壳类、秸秆、木质、粪污和污泥生物炭比表面积逐渐降低。秸秆炭比表面积集中在 0~200 m2/g 以内,木质炭比表面积集中在 0~100 m2/g 以内。制备温度与比表面积的相关系数为 0.48。生物炭的孔隙结构能降低土壤容重、降低土壤密度,能较好地去除溶液和钝化土壤中的重金属。3)生物炭 pH 值范围在 5~12,平均为 9.15。秸秆、污泥、粪污、木质、壳类生物炭 pH 值中值逐渐降低。秸秆生物炭 pH 值多集中在 8~11 范围内,木质生物炭 pH 相对一致。生物炭的 CEC 从 0 到 500 cmol /kg 都有分布,平均为 71.91 cmol/kg。秸秆类生物炭 CEC 值大多集中在 0~100 cmol/kg 范围内,木质生物炭则在 5~10 与 15~25 cmol/kg 范围内均有一定数量的分布。裂解温度与 pH 值和 CEC 的相关系数为 0.58 和 0.30。生物炭施入土壤后可消耗土壤质子,提高酸性土壤 pH 值,提高酸性土壤一些养分的有效性;其巨大的表面积还可提高对阳离子的吸附,提高土壤保肥能力。4)生物炭的裂解温度大都集中在 200~800℃ 之间,偶有达到 1000℃ 的裂解温度。 建议和展望 目前,全世界范围内对生物炭的生产和使用还处于就近和来源方便的初级阶段,影响着生物炭功能和效益的最大化。应从以下几个方面加强研究和应用试验:首先,系统研究生物炭制造参数对理化性状的影响,研究不同原料生物炭的作用机理差异及其针对性,建立生物炭理化性质参数数据库;其次,加强应用研究,根据土壤理化性状和改良目标选择适宜的生物炭类型,根据对作物经济性状的要求,研究选择适宜的生物炭类型,实现生物炭功效的最大利用。加强不同原料的选配和组合研究,改良生物炭产品的目标性状,形成系列化产品。   相似文献   

16.
热解温度对生物炭表面性质及释放氮磷的影响   总被引:1,自引:0,他引:1  
热解温度是影响生物炭表面性质的重要因素。在250~450℃范围内制备玉米秸秆生物炭(CB)和杨木生物炭(PB)。采用X-射线光电子能谱仪对生物炭的表面元素进行分析,发现各元素含量随热解温度而变化,2种生物炭的变化规律不同。傅里叶变换红外分析表明,热解温度升高造成生物炭基团的变化,C=O基团增多,芳香性增强。研究生物炭在水中的氮磷释放行为发现,随着热解温度的升高,NH_4~+-N和NO_3~--N的释放呈现先增加后减少的趋势;CB的总磷释放有所增加,PB的总磷释放先增加后降低。不同热解温度的生物炭,其营养元素的释放速率在初期存在一定差别,释放过程在48 h内基本完成。生物炭的表面性质及氮磷释放行为与热解温度及生物质来源密切相关。  相似文献   

17.
生物质炭对设施大棚土壤性质与果蔬产量影响的整合分析   总被引:5,自引:1,他引:4  
【目的】 设施大棚是果蔬的重要生产基地,量化和评估生物质炭在设施栽培中的应用效果,对生物质炭在设施大棚的推广应用具有重要的实践价值。 【方法】 通过文献收集并建立数据库,共获得典型设施大棚或温室环境条件下相对独立的匹配数据214组,采用数据整合分析 (Meta-analysis) 方法,定量分析生物质炭特性 (原料、制备温度、C/N、pH) 与管理措施 (施用量与施用时长) 对果蔬产量、土壤理化性质的影响程度。 【结果】 设施条件下施用生物质炭可显著提高土壤pH,且土壤有机碳、氮、磷等均有不同程度的增加。果蔬增产效应显著,其中,叶菜类、块茎类、果菜类以及豆类产量分别增加23.9%、43.3%、60.6%和79.5%。低量施用 (< 10.0 t/hm2) 平均增产30.8%,高量施用 (10.0~80.0 t/hm2) 增产14.0%~27.4%。施用生物质炭前6个月增产效果显著,最高可达30.4%,超过6个月,增产效果不显著。不同制备生物质炭的增产效果也存在一定差异,畜禽粪便类 (66.4%) > 秸秆类 (31.2%) > 木材类 (19.0%) > 壳渣类 (5.9%)。制备温度低于600℃的生物质炭增产20.4%~36.5%,超过600℃时增产效果不显著。当原料生物质炭C/N值 < 100时,增产19.3%~49.1%,且随C/N值的增加增产效果呈降低趋势。当生物质炭呈碱性时 (pH 9~10) 增产效果最佳。 【结论】 生物质炭类型及施用量是影响设施土壤肥力与果蔬产量的关键因素,低温 (400~500℃下) 制备的生物质炭增产效果显著,建议施用量控制在10.0 t/hm2以下且间断性施用,可降低成本,提高经济效益。   相似文献   

18.
镉污染水稻秸秆生物炭对土壤中镉稳定性的影响   总被引:1,自引:1,他引:0  
中国农田土壤镉等重金属污染问题突出,对其生产过程中产生的镉污染水稻秸秆进行无害化和资源化利用研究具有重要意义。该研究通过连续提取试验、风险评价指数法、吸附动力学/热力学、土柱试验,以及X射线衍射分析、傅里叶变换红外光谱分析等手段,探究了不同热解温度下制备的镉污染水稻秸秆生物炭对土壤中Cd的稳定特性。研究结果表明,镉污染水稻秸秆热解制备的生物炭可有效吸附土壤镉。热解温度显著影响生物炭对Cd的吸附能力(P<0.05),高温生物炭对Cd吸附容量大,700 ℃下制备的生物炭对Cd的吸附容量可达72.57 mg/g。生物炭对Cd的吸附主要通过含氧官能团表面络合和碳酸盐共沉淀吸附,其吸附过程符合Langmuir方程和准二级动力学模型,吸附过程受化学速率控制。土柱试验表明,镉污染水稻秸秆生物炭能有效降低土壤Cd的下渗迁移能力,其作用机制主要是将土壤Cd从酸可提取态转化为残渣态,施入高温生物炭的土壤中Cd的残渣态比例最高。上述结果表明,热解可有效处理镉污染水稻秸秆,制备的生物炭可用于Cd等重金属污染土壤的稳定修复,有效解决镉污染水稻秸秆的潜在二次污染问题并实现其安全利用。  相似文献   

19.
  【目的】  以酿酒废弃物(酒糟)为原料热解制备可燃气体和生物炭,研究生物炭对土壤及作物产量的影响,为酒糟的无害化处理与资源化利用,以及合理施用生物炭提供理论依据。  【方法】  利用电子显微镜观察比较400°C、480°C和600°C裂解得到的生物炭表面结构,分析其理化性质。在四川泸州设置油菜–高粱轮作田间试验,研究不施肥(CK)、单施化肥(CF)和化肥与生物炭配施(CF+BC)处理的作物产量和土壤理化性质及生物学性状。  【结果】  在480°C热裂解条件下,酒糟生物炭的表面孔隙结构最佳,pH 10.1,阳离子交换较大(33.41 cmol/kg),保蓄了较多的碳、氮、磷、钾,理化性质最优。在CF+BC处理中,田间土壤碳含量增加,土壤微生物生物量碳氮提高,蔗糖酶和磷酸酶活性及有效氮、磷、钾含量显著高于或相似于CF,说明部分生物炭能被微生物利用,促进其生长繁殖,增强土壤酶活,提高土壤养分的生物有效性。与单施化肥相比,化肥配施生物炭使油菜和高粱产量分别增加9.3%和9.5%,油菜磷和钾的经济效率分别提高15.1%和30.7%。  【结论】  采用480℃低温热裂解制备的酒糟生物炭理化性质优良,与化肥配施有利于提高油菜和高粱产量,改善土壤理化和生物学性状,具有良好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号