首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
本文从100条ISSR引物中筛选出21条引物,对8个四川苎麻品种(系)间的遗传关系进行了分析。PCR扩增结果表明,21条引物在8份材料中共扩增出86条带,平均每条引物扩增出4.1条,其中多态性位点71个,各引物扩增出的位点数3~8个不等,平均每条引物可以检测到3.4个多态性位点。聚类分析和遗传距离分析结果表明,供试品种川7、川8与其亲本遗传距离较远。3个杂交品种(川7、川8、川9)均表现特有的偏父本遗传现象。此外,本研究用ISSR引物U835筛选到了1个雄性不育分子标记,并将其扩增产物克隆测序,结果表明该序列大小为658bp。根据该序列,此标记被转化成稳定的SCAR标记,可用于苎麻雄性不育分子标记辅助育种。  相似文献   

2.
摘要:本文针对来源于荷兰的4个引进甜菜品种和国内的6个甜菜品系(其中2个为一年生野生甜菜)进行了ISSR指纹图谱构建和聚类分析研究。筛选出稳定性高且多态性好的6个引物用于试验。利用筛选的6条引物ISSR-PCR 共扩增出51个条带, 其中多态性条带百分率为86.3%. 利用该6条引物ISSR-PCR建立的指纹图谱能将试验中的全部甜菜品种都鉴定区分开。只利用2条引物L1和UBC846 扩增的8个多态性条带构建了10个甜菜品种(系)的数字指纹识别码,该数字指纹图谱能完全区分10个甜菜品种(系),结果显示ISSR 指纹图谱能非常有效的鉴定不同的甜菜品种。利用生物软件NTSYS-pc针对10个试验甜菜品种(系)的ISSR 扩增条带进行遗传相似性聚类分析,结果显示10个甜菜品种(系)的相似系数为0.43与0.83之间,平均为0.62。利用非加权组平均法(UPGMA)进行聚类分析,结果显示10个甜菜品种(系)聚类为2个组和3个亚组。UPGMA 聚类分析能清楚的显示10个甜菜群体间的遗传关系并且聚类结果与10个甜菜群体的特性一致, 说明ISSR标记能用于甜菜不同群体间遗传距离的评估。  相似文献   

3.
摘要:为建立簇毛麦特定染色体上的特异性ISSR标记,以二倍体簇毛麦、小麦中国春等为材料,对96条ISSR引物进行PCR筛选,发现引物UBC848可在二倍体簇毛麦中扩出一条长388bp的特异性片段(命名为pDv848/388),而中国春等小麦均未扩出该片段。进而利用UBC848对小麦近缘种偏凸山羊草等进行扩增,发现它们均未扩出该片段。用一套中国春-二倍体簇毛麦附加系CSDA1V~CSDA7V对目标片段进行染色体定位,将目标片段确定在二倍体簇毛麦5V染色体上。进一步用UBC848对多年生簇毛麦、小麦-簇毛麦双二倍体、部分双二倍体及其衍生后代进行扩增,发现它们均能扩出目标片段,这表明,在小麦染色体工程育种中, pDv848/388可作为簇毛麦5V染色体上的一个特异性ISSR标记,用于快速跟踪检测簇毛麦遗传物质向栽培小麦中的导入。  相似文献   

4.
苦瓜ISSR扩增条件优化的研究   总被引:6,自引:1,他引:6  
宣朴  邓婧  陈新  尹春蓉  陈放 《核农学报》2006,20(3):215-217,168
本文对ISSR-PCR扩增苦瓜基因组DNA的主要影响因子进行了筛选和分析。试验结果表明,25μl的反应体系中采用20~30ng的模板DNA、1μmol/L ISSR引物1、U Tag DNA聚合酶,以及48℃~52℃的复性温度为苦瓜ISSR-PCR扩增条件的最佳选择。苦瓜ISSR-PCR扩增条件的优化为进行苦瓜种群间遗传分化的研究奠定了基础。  相似文献   

5.
小麦抗叶锈基因Lr37 ISSR分子标记   总被引:7,自引:0,他引:7  
利用ISSR(内部简单重复序列)技术对Thatcher及20个以Thatcher为轮回亲本的小麦(Triticum aestivum)抗叶锈病(Pucciniareconcita f.sp.tritici)近等基因系(NILs)进行分析,发现1个与Lr37基因连锁的ISSR标记.经过多次重复发现,在100个ISSR引物(UBC801-UBC900)中有2个引物UBC812和UBC848在小麦抗叶锈基因Lr37近等基因系间表现多态性.当用这2个引物对已知含Lr37基因的3个抗病材料及其它不含Lr37基因的感病材料进行检测时,多态性标记UBC812-1200可以从3个含Lr37基因的抗病材料中检测到1条1 200bp的多态性带,而在其它感病材料中,均未出现.进一步用UBC812和UBC848对128株(Thatcher× Lr37/6*Thatcher)F2分离群体进行分析,发现标记UBC812-1200与Lr37基因共分离,可作为该基因的分子标记.  相似文献   

6.
本研究利用ISSR技术对37份龙眼种质资源进行遗传多样性检测。研究结果表明,从100条ISSR引物中筛选出7条重复性好,条带清晰的引物对37份龙眼品种基因组DNA进行扩增,共扩增出54条带,其中43条具有多态性,比率为79.6%。不同龙眼品种间遗传相似系数变幅为0.69~0.97,平均达0.83,说明ISSR标记能够揭示材料间较高的遗传多样性。UPGMA聚类结果表明,ISSR标记能将37份龙眼品种完全区分开,并能将来源于中国、越南和泰国的37份龙眼品种分别聚类到中国、越南和泰国三大品种群,说明龙眼品种资源的亲缘关系与地理因素有关,三个国家的龙眼品种之间存在较大的遗传差异。本研究结果将为为龙眼品种资源的研究利用提供参考。  相似文献   

7.
为研究广东省惠州市种植的常规水稻品种的遗传多样性,本实验利用ISSR标记对47份水稻品种资源进行遗传多样性检测。从49条引物中筛选出5条重复性好,条带清晰的引物进行PCR扩增,共扩增出53条带,每个引物可以扩增出9~13条带,平均为10.6条,其中47条具有多态性,比率为88.7%。不同水稻品种间遗传相似系数变幅为0.319~0.936,平均达0.691,说明ISSR标记能够揭示材料间较高的遗传多样性。通过聚类,从分子水平对水稻品种资源的遗传关系进行分析,并对47份水稻品种资源进行分类,ISSR标记能将47份水稻品种完全区分开,为水稻品种资源的研究利用提供参考。  相似文献   

8.
为建立簇毛麦(Dasypyrum)特定染色体上的特异性ISSR标记,以二倍体簇毛麦(Dasypyrum villosum)和小麦中国春(Triticum aestivum)等为材料,对96条ISSR引物进行PCR筛选,发现引物UBC848可在二倍体簇毛麦中扩出一条长388bp的特异性片段,命名为pDv848/388(GenBank登录号:EF411201),而中国春等小麦均未扩出该片段。利用UBC848对小麦近缘种偏凸山羊草(Aegilops ventricosa)、荆州黑麦(Secale cereale cv.Jingzhou rye)和节节麦(Ae.tauschii)等进行扩增,发现它们均未扩出pDv848/388。进而用一套中国春-二倍体簇毛麦附加系CSDA1V~CSDA7V对pDv848/388进行染色体定位,将目标片段确定在二倍体簇毛麦5V染色体上。进一步用UBC848对多年生簇毛麦(D.breviaristatum)、小麦-簇毛麦双二倍体、部分双二倍体及其衍生后代进行扩增,发现它们均能扩出pDv848/388,表明pDv848/388可作为簇毛麦5V染色体上的一个特异性ISSR标记,用于快速跟踪检测簇毛麦遗传物质向栽培小麦中的导入。  相似文献   

9.
基于ISSR指纹的甘薯食用品种的遗传多样性分析   总被引:2,自引:0,他引:2  
运用ISSR分子指纹技术检测甘薯基因组DNA的多态性,是鉴定甘薯遗传多样性和亲缘关系有效的方法之一。本研究选用6个ISSR标记对17份甘薯品种进行了DNA指纹扩增,共扩增出55条谱带,其中多态性谱带50条,多态性水平为90.91%;UBC825引物扩增出带型最多,有16种;根据Nei’s遗传距离计算获得的聚类树状图表明,在GS为0.625时,参试的17份甘薯品种分为4个组群;遗传相似性分析表明,顶芽菜用品种间遗传相似系数最高0.877,叶柄食用品种和烤薯型品种之内的遗传相似系数分别为0.778和0.740。结果表明甘薯主要食用间具有较好的遗传多样性,但同类型品种间却又有较高的遗传相似性,这类品种需要引进或创制新资源。  相似文献   

10.
EMS诱导小麦品种烟农15突变体的鉴定和EST-SSR分析   总被引:4,自引:2,他引:2  
用EMS对小麦品种烟农15进行诱变处理,以构建突变体库、创造小麦新种质,为小麦功能基因研究和小麦遗传改良提供基础材料。经过M2代筛选和M3代鉴定,得到11个农艺性状发生明显变异的突变系,其中籽粒大小和株高2个性状的变异幅度最大。11个突变系均有复合性状突变出现,将其分为3类突变表型:8个大粒、高秆突变系;2个半矮秆突变系;1个高秆、多蘖突变系。用715个EST-SSR引物对受体烟农15和4个M3突变系进行了分析,共有14个引物对在受体和突变系间能扩增出差异条带。其中12个引物对扩增结果的差异表现为条带的有无;2个引物对表现为扩增出长度不同的差异条带。  相似文献   

11.
Genetic diversity and relationships among 48 safflower accessions were evaluated using 22 inter-simple sequence repeats (ISSR) primers. A total of 429 bands were amplified, and 355 bands (about 82.7%) were polymorphic. Five to forty-one polymorphic bands could be amplified by each primer, with an average of 16.1 polymorphic bands per primer. The results showed that the polymorphism of the safflower germplasm was higher at the DNA level. All the 48 accessions could be distinguished by ISSR markers and were divided into 9 groups based on ISSR GS by using UPGMA method. The genetic relationships among the accessions from different continents were closer. Comparatively, the genetic diversity of the accessions originated from Asia was higher, from Europe assembled. The results also showed that the genetic variation of accessions from Indian and Middle Eastern safflower diversity centers were relatively higher. ISSR is an effective and promising marker system for detecting genetic diversity among safflower and give some useful information on its phylogenic relationships.  相似文献   

12.
Little is known about the genetic diversity of pale flax (Linum bienne Mill.), the wild progenitor of cultivated flax (L. usitatissimum L.), and ex situ germplasm of pale flax was scarce. Effort was made to collect 34 pale flax accessions and five landrace accessions of cultivated flax in Turkey. The inter simple sequence repeat (ISSR) technique was applied to characterize this set of flax germplasm, along with one Turkish cultivar, one Russian cultivar, five winter and four dehiscent type accessions of cultivated flax. Twenty-four ISSR primer pairs detected a total of 311 DNA fragments, of which 298 bands were polymorphic across 493 flax samples (roughly 10 samples per accession). These polymorphic bands had frequencies ranging from 0.002 to 0.998 and averaging 0.38. Accession-specific ISSR variation (Fst values) ranged from 0.469 to 0.514 and averaged 0.493. There was 49.3% ISSR variation resided among these 50 accessions, 35.9% harbored among landrace, winter, dehiscent types of cultivated flax and pale flax, and 38.2% present among 34 pale flax accessions. Pale flax displayed more ISSR variation than landraces and dehiscent type, but less than winter type, of cultivated flax. Clustering 493 individual plants revealed that these assayed plants were largely grouped according to their plant types and that pale flax was genetically more close to the dehiscent type, followed by the winter type and landrace, of cultivated flax. Pale flax collected within the geographic range of 180 km displayed a significant spatial genetic autocorrelation. Genetic distances among the pale flax accessions were significantly associated with their geographic distances and elevation differences. These findings are significant for understanding flax domestication and its primary gene pool.  相似文献   

13.
Detection of genetic relationships between 19 chickpea cultivars and five accessions of its wild progenitor Cicer reticulatum Ladizinsky were investigated by using RAPD and ISSR markers. On an average, six bands per primer were observed in RAPD analysis and 11 bands per primer in ISSR analysis. In RAPD, the wild accessions shared 77.8% polymorphic bands with chickpea cultivars, whereas they shared 79.6% polymorphic bands in ISSR analysis. In RAPD analysis 51.7% and 50.5% polymorphic bands were observed among wild accessions and chickpea cultivars, respectively. Similarly, 65.63% and 56.25% polymorphic bands were found in ISSR analysis. The dendrogram developed by pooling the data of RAPD and ISSR analysis revealed that the wild accessions and the ICCV lines showed similar pattern with the dendrogram of RAPD analysis. The ISSR analysis clearly indicated that even with six polymorphic primers, reliable estimation of genetic diversity could be obtained, while nearly 30 primers are required for RAPD. Moreover, RAPD can cause genotyping errors due to competition in the amplification of all RAPD fragments. The markers generated by ISSR and RAPD assays can provide practical information for the management of genetic resources. For the selection of good parental material in breeding programs the genetic data produced through ISSR can be used to correlate with the relationship measures based on pedigree data and morphological traits to minimize the individual inaccuracies in chickpea.  相似文献   

14.
Solanum trilobatum L. is an Indian medicinal plant containing rich amount of steroidal glyco-alkoloids that can be used as precursor for commercial steroid production. Two efficient marker systems such as Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeats (ISSR) were used for the first time to assess the genetic diversity across 14 S. trilobatum accessions obtained from five South Indian states. Twenty out of 60 RAPD primers generated 189 distinct bands of which 160 were polymorphic with an average of 8 polymorphic bands per primer. A maximum of up to 15 fragments were amplified with an average of 9.45 bands per primer and the amplicons varied in size between 100 and 3,000 bp. The percentage of polymorphism ranged from 55.5 to 100, with an average of 84.6. ISSR profiling using 7 out of 20 primers amplified 83 bands and the number of amplified fragments varied from 2 to 16 with a size range of 200–1,800 bp. Totally 72 polymorphic bands were obtained using 7 ISSR primers at an average of 10.28 polymorphic bands per primer. Polymorphism percentage varied from 50 to 100 among the selected accessions resulting in an average percentage of polymorphism of 86.7. The PIC values ranged from 0.49 to 0.93 for RAPD and 0.16 to 0.90 for ISSR primers. The study pointed out that ISSR markers were more efficient than RAPD markers in evaluating the degree of genetic variation in S. trilobatum. The UPGMA cluster analysis grouped all Tamil Nadu accessions in one cluster and other state accessions in another cluster. The Principal component analysis also substantiates this clustering pattern. Thus the phylogenetic relationship and a high genetic variation revealed in the present study could provide a baseline data for conservation and improvement of this plant in future. Also the molecular markers identified in this study will be helpful in authentication of this species to prevent adulteration in herbal medicine.  相似文献   

15.
Wild species of safflower, Carthamus oxyacanthus Bieb., is highly crossable with cultivated species, C. tinctorius L. and could be directly exploited in broadening safflower gene pool and improving the crop for biotic and abiotic stress environments. In this study, genetic diversity among accessions of C. oxyacanthus and their relationships with cultivated safflower were evaluated using agro-morphological traits and polymorphic inter-simple sequence repeats (ISSR) markers. Significant variation was observed among accessions particularly for seeds per capitulum, seed yield per plant, harvest index and capitula per plant. Cluster analysis based on agro-morphological traits classified the wild accessions in two groups according to their geographical regions, and separated them from the cultivated genotypes. ISSR marker also revealed a high genetic variation among the accessions, and cluster analysis based on this marker divided genotypes into four groups, with cultivated ones in a separate clade. Genetic variation observed among the wild safflower germplasm at the DNA level was higher than the agro-morphological traits, indicating that ISSR is an effective marker system for detecting diversity among safflower genotypes and their genetic relationships. Accessions of C. oxyacanthus with high genetic relationship to cultivated species could be used for interspecific hybridization in breeding programs of safflower.  相似文献   

16.
Dioscorea trifida L. (Dioscoreaceae) is among the economically most important cultivated Amerindian yam species, whose origin and domestication are still unresolved issues. In order to estimate the genetic diversity maintained by traditional farmers in Brazil, 53 accessions of D. trifida from 11 municipalities in the states of São Paulo, Santa Catarina, Mato Grosso and Amazonas were characterized on the basis of eight Simple Sequence Repeats (SSR) and 16 Inter Simple Sequence Repeats (ISSR) markers. The level of polymorphism among the accessions was high, 95 % for SSR and 75.8 % for ISSR. The SSR marker showed higher discrimination power among accessions compared to ISSR, with D parameter values of 0.79 and 0.44, respectively. Although SSR and ISSR markers led to dendrograms with different topologies, both separated the accessions into three main groups: I—Ubatuba-SP; II—Iguape-SP and Santa Catarina; and III—Mato Grosso. The accessions from Amazonas State were classified in group II with SSR and in a separate group with ISSR. Bayesian and principal coordinate analyzes conducted with both molecular markers corroborated the classification into three main groups. Higher variation was found within groups in the AMOVA analysis for both markers (66.5 and 60.6 % for ISSR and SSR, respectively), and higher Shannon diversity index was found for group II with SSR. Significant but low correlations were found between genetic and geographic distances (r = 0.08; p = 0.0007 for SSR and r = 0.16; p = 0.0002 for ISSR). Therefore, results from both markers showed a slight spatially structured genetic diversity in D. trifida accessions maintained by small traditional farmers in Brazil.  相似文献   

17.
The genetic diversity of 18 Tunisian fig cultivars was investigated at the DNA level using the Inter Simple Sequence Repeat (ISSR) associated with the Polymerase Chain Reaction (PCR). Using a set of primers, the most informative ones were selected that were characterized by an important Resolving power value of 29.6. A total of 47 discernible fragments were scored from samples, with a mean of 11.7 fragments per primer. The 90.4% of sample that were polymorphic were scored as molecular markers to examine the Tunisian fig germplasm polymorphism at DNA level. A large genetic diversity as related to ISSR patterns was found within the local Tunisian fig germplasm. An UPGMA dendrogram exhibits the unstructured variability in this crop. Moreover, the principal component analysis shows that the observed diversity was typically continuous. Our data provide a large number of ISSR markers that are useful in the fingerprinting of Ficus carica L. cultivars, and in the understanding of the genetic relationships among these accessions.  相似文献   

18.
There are many valuable Tadehagi accessions in southwest China, but it is unknown that the genetic diversity and phylogenetic relationship of these Tadehagi resources. This report is the first study in which 41 primers of inter-simple sequence repeat (ISSR) were used to assess the genetic diversity of 36 Tadehagi accessions from 3 provinces in the southwest of China. Totally, 30 usable ISSR primers detected 163 polymorphic bands among the 36 accessions, which suggested high utility of ISSR primers in the genetic analysis of Tadehagi accessions. Genetic similarity coefficients among all of the accessions ranged from 0.54 to 0.92 with the average of 0.79 based on the ISSR data, indicating high level of genetic variation in Tadehagi resources from the southwest of China. As for the 3 population, Hainan population had the maximum average genetic similarity coefficients of 0.81, while similarity coefficient of Guangxi and Yunnan population was 0.75 and 0.74, respectively. All the 36 Tadehagi accessions were divided into 4 groups in the UPGMA dendrogram constructed from genetic similarity coefficients. The Tadehagi accessions from Yunnan and Guangxi provinces showed more genetic variation and occupied the bottom of the dendrogram. On the contrary, those from Hainan Province had less genetic variation and clustered in the middle and top of the dendrogram. The information on the genetic diversity and phylogenetic relationship from this study is propitious to construct a core germplasm collection and develop novel Tadehagi cultivars with desired economic traits.  相似文献   

19.
The most important evolutionary event in the success of commercial tea cultivation outside China in ~30 countries came about by the origin of India hybrid tea in India, derived from the extensive spontaneous hybridization that took place between the Assam type tea growing in the forest regions of Assam, North-East India and China type tea introduced from China in ~1875 to many regions of North-East India. The release of an enormous pool of vigorous and highly variable plants of India hybrid tea in North-East India was a significant step forward for the origin and evolution of tea as a highly successful crop plant. The 1,644 accessions and clones of India hybrid tea, representatives of known 15 morphotypes, were screened by 412 AFLP markers amplified by 7 AFLP primer pair combinations. All the 412 genetic loci were polymorphic across the 1,644 accessions and clones. The analysis was done with distance (PCoA and NJ) methods, and the STRUCTURE (Bayesian) model. Both PCoA and NJ analysis clustered 1,644 tea accessions and clones into six major groups with one group in each, constituted mostly by China hybrid, Assam China hybrid and Assam hybrid morphotypes, of distinct genetic identity. No group was exclusive for any particular morphotype. The accessions and clones belonging to morphotypes, Assam type, Assam hybrid, China hybrid and China Cambod were distributed in all the groups. It is the Assam type/Assam hybrid morphotypes which exhibit much broader genetic variability than in China type/China hybrid/Cambod type/Cambod hybrid morphotypes. The STRUCTURE analysis inferred 16 populations (K = 16), for which the greatest values of probability were obtained. Nine of the 16 clusters were constituted by the tea accessions and clones of ‘pure’ ancestry. The remaining clusters were of ‘mixed’ ancestry. This analysis provides evidence that the accessions and clones of the same morphotype are not always of same genetic ancestry structure. The tea accessions and clones obtained from outside North-East India shared the same groups (distance method) and clusters (STRUCTURE model) which were constituted by North-East India accessions. The present study also demonstrates very narrow genetic diversity in the commercial tea clones vis-à-vis the profound genetic diversity existing in the tea accessions. These clones were distributed in hardly two of the six groups in NJ tree. The identified 105 core accessions and clones, capturing 98% diversity, have their origin from almost all groups/subgroups of NJ tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号