首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 640 毫秒
1.
植物应答缺铁胁迫的分子生理机制及其调控   总被引:3,自引:0,他引:3  
铁是植物生长发育中所必需的微量营养元素。虽然土壤中铁的丰度很高,但其生物有效性非常低,特别是在碱性石灰性土壤上,高pH和高重碳酸盐含量严重降低了土壤中铁的有效性。因此如何有效地提高植物对铁的利用效率及增强植物对缺铁胁迫的响应已成为目前该领域的研究热点。本文重点阐述了植物两种不同的铁吸收机制,以及对缺铁胁迫的应答反应;对目前所发现的植物中调控缺铁胁迫的相关基因进行了全面的综述,包括新发现的吞噬机理中所涉及的NRAMP基因;同时也介绍了感应铁缺乏的众多相关信号,包括植物激素、气体信号分子及microRNAs等;此外,还提出利用铁吸收相关基因的转导、控制铁吸收相关因子以及各种农艺措施的实施来提高植物铁的生物有效性从而有效缓解缺铁胁迫。最后对未来有关植物吞噬机制、铁缺乏感应信号及改善植物铁营养新途径等研究方向作了初步展望。  相似文献   

2.
机理Ⅰ植物铁吸收与运输的分子机制   总被引:1,自引:0,他引:1  
铁虽然在地壳中的含量很高,但生物有效性非常低,植物如何适应缺铁胁迫一直是植物营养与植物逆境生理领域研究的热点问题。近两年来,人们对于植物,尤其是机理Ⅰ植物适应铁胁迫的机制又有了新的认识,铁还原酶基因的表达部位除根系外,在地上部、花等器官也能够检测到;IRT1基因是机理Ⅰ植物主要的Fe(Ⅱ)运输基因;烟碱酰胺在铁的长距离运输中起到重要作用。本文从还原、吸收、长距离运输及对这些过程的调控等方面综述了近年来有关机理Ⅰ植物适应铁胁迫的研究进展,并对将来的研究方向进行了初步展望。  相似文献   

3.
机理I植物铁吸收与运输的分子机制   总被引:1,自引:0,他引:1  
铁虽然在地壳中的含量很高,但生物有效性非常低,植物如何适应缺铁胁迫一直是植物营养与植物逆境生理领域研究的热点问题。近两年来,人们对于植物,尤其是机理I植物适应铁胁迫的机制又有了新的认识:铁还原酶基因的表达部位除根系外,在地上部、花等器官也能够检测到;IRT1基因是机理I植物主要的Fe (Ⅱ) 运输基因;烟碱酰胺在铁的长距离运输中起到重要作用。本文从还原、吸收、长距离运输及对这些过程的调控等方面综述了近年来有关机理I植物适应铁胁迫的研究进展,并对将来的研究方向进行了初步展望。  相似文献   

4.
铁是植物所必需的微量矿质元素,在光合作用、呼吸作用等过程中发挥着重要的作用。虽然铁在地壳中含量丰富,但生物有效获取率非常低。因此,探索高等植物铁吸收及运输机制一直是植物铁营养领域研究的热点问题。近几年来,人们对于高等植物体内铁运输,尤其是细胞内铁运输又有了新的认识。本文主要对高等植物体内长距离铁运输(木质部,韧皮部)和细胞内的铁运输(液泡,叶绿体和线粒体)两方面的运输机制进行了综述,这将帮助我们进一步了解植物铁代谢机制,对我们培育高铁含量作物和提高植物抗逆性有着重要意义。  相似文献   

5.
机理Ⅰ植物铁营养的吸收转运及信号调控机制研究进展   总被引:1,自引:1,他引:0  
铁是植物正常生长发育必需的微量元素之一。在通气良好的碱性或石灰性土壤中,常常因铁有效性低而难以满足植物生长发育所需,缺铁已成为继缺氮和缺磷之后农业生产所面临的又一重要的营养障碍因子。与机理Ⅱ植物相比,机理Ⅰ植物更易缺铁,因此全面了解机理Ⅰ植物的铁吸收及利用机制是分子育种改良此类植物铁营养的重要基础。基于国内外的相关研究进展,从机理Ⅰ植物的根际铁活化、根系铁吸收、木质部和韧皮部中的铁运输以及胞外和胞内铁的再利用等几方面进行综述;在此基础上,从bHLH和MYB转录因子调控网络、蛋白的泛素化修饰以及小分子化学信号调控途径等几方面,重点阐述机理Ⅰ植物铁营养吸收、转运及稳态平衡过程的调控机制;同时,对研究中存在的部分问题及未来研究方向进行简要的讨论分析。  相似文献   

6.
铁虽然在地壳中的含量很高,但生物有效性非常低,植物如何适应缺铁胁迫一直是植物营养与植物逆境生理领域研究的热点问题。近年来,人们对于植物适应铁胁迫的机制又有了新的认识,提出植物中可能存在一种新的铁吸收机制-吞噬机制,主要综述了对植物在长期的进化过程中形成的一些适应环境铁缺乏的机制及与这些机制相关的基因等方面的研究进展,本文并对将来的研究方向进行了初步展望。  相似文献   

7.
植物吸收和转运铁的分子生理机制研究进展   总被引:5,自引:2,他引:5  
铁是植物正常生命活动过程中的必需微量元素之一。由于土壤中铁的有效性很低,导致植物极易缺铁,不仅影响作物的产量和品质,而且影响人类微量元素健康,因此如何通过生物强化达到人类铁营养状况改善的目的是目前该研究领域关注的热点。本文就近5年来植物铁吸收、体内转运、子粒中积累等重要生物过程的分子生理机制的研究进展进行了详细阐述,其中对水稻兼备机理I和机理II铁吸收机制有了新的认识,而且发现YSL蛋白家族在植物铁吸收、转运和子粒积累过程中的重要性。同时,讨论了利用上述机制的研究结果通过基因工程和农学措施改善植物铁营养和提高作物子粒铁富集的技术途径。  相似文献   

8.
富铁水稻研究进展   总被引:10,自引:4,他引:10  
本文简述了水稻品种间铁含量的差异性及其遗传控制,综述了采取提高铁绝对含量及增加其生物有效性开展富铁水稻的研究进展,包括常规育种、诱变育种、转基因技术。对富铁水稻研究中存在的问题及诱变技术在该方面的应用前景也作了探讨。  相似文献   

9.
水稻微营养育种进展   总被引:1,自引:1,他引:0  
微营养不良是全世界,特别是发展中国家最主要的营养问题之一。本文简述了稻米中微营养的含量及分布;采用提高绝对含量及增加其生物有效性两种策略,综述了开展富含微营养水稻育种的进展,包括富微营养水稻的常规育种、诱变育种及转基因育;指出水稻微营养育种的局限性及解决途径。  相似文献   

10.
通过盆栽试验的方法,研究了牛粪和植物种类对石灰性土壤中铁肥形态转化及其有效性的影响。结果表明,牛粪施用改变了土壤中铁(含外源铁)的有效性及其在各形态铁间的分配,从长期的观点来看,牛粪施用能提高土壤铁的有效性,有利于土壤铁有效供给的维持,与花生相比,油菜对土壤铁具有更高的利用和活性能力,种植油菜后,土壤交换态铁被耗竭,而有效铁、氧化锰结合态铁和无定形氧化铁结合态铁的含量明显提高。有机肥的合理施用和铁效率差异性植物间的轮作或间作是增加、维系土壤铁有效性的重要农艺措施。  相似文献   

11.
In order to prioritise interventions for micronutrient deficiencies in China, the populations affected by iron and zinc deficiencies were assessed based on data from the 2002 China National Nutrition and Health Survey. The costs and cost-effectiveness of supplementation, food diversification and food fortification were estimated using the standard World Health Organization ingredients approach. Results indicated that 30% of children (60 years), pregnant and lactating women, and 20% of women of reproductive age were anaemic, some 245 million people. Approximately 100 million people were affected by zinc deficiency (zinc intake inadequacy and stunting), the majority living in rural areas. Among interventions on iron and zinc deficiency, biofortification showed the lowest costs per capita, I 0.01 (international dollars), while dietary diversification through health education represented the highest costs at I 1148(international dollars). The cost-effectiveness of supplementation, food fortification and dietary diversification for iron deficiency alone was I 179(international dollars) , I 66 and I 103 (international dollars) per disability-adjusted life-year (DALY), respectively. Data for biofortification were not available. For zinc deficiency, the corresponding figures were I 399(international dollars), I 153(international dollars) and I 103(international dollars) per DALY, respectively. In conclusion, iron and zinc deficiencies are of great public health concern in China. Of the two long-term intervention strategies, i.e. dietary diversification and biofortification with improved varieties, the latter is especially feasible and cost-effective for rural populations. Supplementation and fortification can be used as short-term strategies for specific groups.  相似文献   

12.
Deficiencies of vitamin A, iodine, iron and zinc (Zn) in humans are caused partly by the consumption of food that has insufficient quantities of these. Their deficiency has a negative impact on the health, wellbeing, social and economic status of human beings. A national survey conducted in 2012 identified deficiencies of vitamin A, Fe, and Zn among other nutrients in South Africans and regarded the deficiencies of vitamin A and Fe as a moderate but not Zn. This review discusses causes of Zn prevalence in low-income South Africans and that it is largely caused by the low content of Zn in their diets. Initiatives to reduce Zn deficiency include fortification of wheat products and maize meal which has failed to address it successfully. Weaknesses of fortification include high cost of fortified food products to low-income populations, poor regulation in ensuring compliance in fortification, non-fortification of sorghum meal, and leaching of fortified nutrients during processing. This review suggests Zn-biofortification of locally-preferred common bean cultivars as an alternative strategy to compliment fortification. The review also discusses advantages of adopting biofortified Nutritional Andean common beans. Furthermore, the review suggests initiatives including evaluation of the common bean genotypes’ adaptation to different agro-ecologies.  相似文献   

13.
Iron deficiency is the most common nutritional disorder worldwide. Iron fortification of foods is considered to be the most cost-effective long-term approach to reduce iron deficiency. However, for fortified foods to be effective in reducing iron deficiency, the added iron must be sufficiently bioavailable. In this study, fortification of whole-grain wheat flour with different sources of iron was evaluated in vitro by measuring the amount of dialyzable iron after simulated gastrointestinal digestion of flour baked into chapatis and subsequent intestinal absorption of the released iron using Caco-2 cell layers. The dialyzability of iron from iron-fortified wheat flour was extremely low. Additions of 50 mg/kg iron to the flour in the form of ferrous sulfate, Ferrochel amino acid chelate, ferric amino acid chelate taste free (TF), Lipofer, ferrous lactate, ferrous fumarate, ferric pyrophosphate, carbonyl iron, or electrolytic iron did not significantly increase the amount of in vitro dialyzable iron after simulated gastrointestinal digestion. In contrast, fortification of flour with SunActive Fe or NaFeEDTA resulted in a significant increase in the amount of in vitro dialyzable iron. Relative to iron from ferrous sulfate, iron from SunActive Fe and NaFeEDTA appeared to be 2 and 7 times more available in the in vitro assay, respectively. Caco-2 cell iron absorption from digested chapatis fortified with NaFeEDTA, but not from those fortified with SunActive Fe, was significantly higher than from digested chapatis fortified with ferrous sulfate. On the basis of these results it appears that fortification with NaFeEDTA may result in whole-grain wheat flour that effectively improves the iron status.  相似文献   

14.
Iron deficiency, one of the most important nutritional problems in the world, can be caused not only by foods deficient in iron but also by poor availability of dietary iron. Iron food fortification in combination with highly available iron from supplements could effectively reduce this deficiency. The aim of this study was to examine the iron availability from iron-fortified spirulina. We have used an in vitro digestion/Caco-2 cell culture system to measure iron spirulina availability and made a comparison with those of beef, yeast, wheat floor, and iron sulfate plus ascorbic acid as a reference. Iron availability was assessed by ferritin formation in Caco-2 cells exposed to digests containing the same amount of iron. Our results demonstrate a 27% higher ferritin formation from beef and spirulina digests than from digests of yeast and wheat flour. When iron availability was expressed per microgram of iron used in each digest, a 6.5-fold increase appeared using spirulina digest in comparison with meat. In view of this observed high iron availability from spirulina, we conclude that spirulina could represent an adequate source of iron.  相似文献   

15.
Iron deficiency anemia is a widespread occurrence. Consequently, iron is commonly added in cereal fortification programs. However, many iron sources cause undesirable sensory changes, especially color changes, in the food being fortified. This study evaluated the effect of different iron sources on CIE L*a*b* color values and sensory color perception in fortified corn tortillas. Corn masa flour was fortified with micronutrient premix containing vitamins, zinc, and one of eight iron compounds. Iron sources included ferrous fumarate (F), ferrous sulfate (S), ferric orthophosphate (OP), ferrous lactate (L), ferrous gluconate (G), ferric pyrophosphate (PP), sodium iron (III)‐EDTA, and A‐131 electrolytic iron (E), with addition levels adjusted based on bioavailability. Control (Ct) samples were prepared with all micronutrients except iron. All iron‐fortified tortillas had lower L* values and were significantly darker than control tortillas. Based on instrumental color values and Mexican regulatory recommendations, five treatments were selected for further testing. A difference‐from‐control sensory test was conducted comparing PP, E, OP, F, and S with Ct tortillas. Sensory rankings were C t > E = PP > OP > F > S. A‐131 electrolytic iron is recommended for fortification of corn tortillas due to minimal effect on color and significantly lower cost than other iron sources evaluated.  相似文献   

16.
One sixth of the world’s population is suffering from hidden hunger that indicates a gross malnutrition particularly among children and women of third world countries. The deficiency of micro nutrients, especially iron (Fe) causes a number of ailments such as megaloblastic anemia and neural tube defects in poor population. There is a dire need to supplement iron in the diet. Current efforts implicate fortification of wheat flour and other grains with different iron formulations such as ethylenediaminetetraacetic acid (EDTA), FeSO4 and elemental iron. However, all such interventions are not sustainable due to logistic and quality assurance problems in resource-limited settings. For a long term solution, development of crop plants with increased micronutrients and iron bioavailability is essential. Therefore, biofortification of cereal grains using translational genomics approaches for enhancement of folate through genome editing in cereals is inevitable to mitigate the folate deficiency in poor remote population in a cost effective manner.  相似文献   

17.
Application of foliar iron (Fe) sprays is a common means of correcting Fe deficiency of agricultural crops. However, variable plant responses to iron sprays, ranging from no effect to defoliation, have often been described in the Fe-fertilization literature. Knowledge is still limited concerning the mechanisms of penetration of a leaf-applied, Fe-containing solution and the role of Fe in the leaf. The complex and multi-disciplinary character of the factors determining the effects of Fe sprays hinder the development of suitable foliar fertilization strategies, applicable under variable local conditions and for different plant types. This review describes some key factors involved on the process of penetration of a leaf-applied, Fe-containing solution before briefly analyzing the available foliar Fe-fertilization literature. Iron chemistry, leaf penetration, and plant-nutrition principles will be merged with the aim of clarifying the constraints, opportunities, and future perspectives of foliar Fe sprays to cure plant Fe deficiency.  相似文献   

18.
Despite extensive research and variety screening efforts, iron deficiency chlorosis is a common, yield-limiting condition for soybean [Glycine max (L.) Merr.] grown in areas with high pH, calcareous soils. In the North Central U.S., total land area where soybean is grown on high pH soils is approximately 1.8 million ha, with iron deficiency responsible for an estimated loss in soybean grain production of 340,000 Mg at a value of $820 million per annum. This is a significant increase in the extent of iron deficiency problems relative to the past because of an expansion of soybean production in the region. Soil properties associated with iron deficiency in this region compared to adjacent areas without iron deficiency include greater soil moisture content and concentrations of soluble salts, carbonates, and DTPA-Cr, and lesser concentrations of DTPA-Fe, Mn, Ni, and Cd. Iron deficiency occurs due to multiple stresses and not simply to limited available iron. Biotic and management factors such as pests and diseases, symbiotic nitrogen fixation, seeding rate, and herbicide application also interact with iron deficiency in the field. There is a need to better match varieties to the specific soil and environmental conditions to which they are adapted.  相似文献   

19.
Iron and steel slags are smelting wastes, mainly including blast furnace slag(BFS) and steel slag(SS) produced in the iron and steel industry. Utilization of iron and steel slags as resources for solving the problem of slag disposals has attracted much attention with increasing iron and steel smelting slags in China. Because the iron and steel slags contain calcium(Ca), magnesium(Mg), phosphorus(P), and silicon(Si), some have tried to use them as Si-and P-fertilizers, for producing Ca-Mg-P fertilizers, or as soil amendments in agriculture. However, in the iron metallurgical process, several pollutants in iron ores can inevitably transfer into iron and steel slags, resulting in the enrichment of pollutants both in BFS(mainly nickel(Ni), copper(Cu), mercury, zinc(Zn),cadmium(Cd), chromium(Cr), arsenic, lead, selenium, fluorine(F), and chlorine(Cl)) and in SS(mainly Ni, Cr, Cd, Zn, Cu, F, and Cl), in which some of pollutants(especially Cr, Ni, F, and Cl) exceed the limits of environmental quality standards for soils and groundwater. The elements of manganese, barium,and vanadium in iron and steel slags are higher than the background values of soil environment. In order to ensure soil health, food safety, and environmental quality, it is suggested that those industrial solid wastes, such as iron and steel slags, without any pretreatment for reducing harmful pollutants and with environmental safety risk, should not be allowed to use for soil remediation or conditioning directly in farmlands by solid waste disposal methods, to prevent pollutants from entering food chain and harming human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号