首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

The aluminum solubility of acidified soils both from furrows and under tree canopies of a tea garden was studied using equilibrium experiments in 0.01 mol L?1 CaCl2 solution systems. The soils were originally classified as allophanic Andosols. The furrow soils were more severely acidified because of the heavy application of nitrogen fertilizer, especially in the upper soil horizons (pH[H2O] of 3.6–3.8 in the A1 and 2A2 horizons). These acidified soils were characterized by the dissolution of allophanic materials (allophane, imogolite and allophane-like materials) and by an increase in Al–humus complexes. Ion activity product (IAP) values of the strongly acidified soil horizons were largely undersaturated with respect to imogolite (allophanic clay) or gibbsite. Plots of p(Al3+) as a function of pH strongly indicated that Al solubility of the soils was largely controlled by Al–humus complexes, especially in the A1 horizon. In the canopy soils, which were more weakly acidified (pH[H2O] 4.9–5.0), Al solubility was close to that of gibbsite and allophanic materials, indicating that the solubility is partly controlled by these minerals.  相似文献   

2.
Abstract

Allophanic Andosols are widely used as a major material in commercial nursery media for fruit vegetables in Japan because of their remarkable physical properties, such as a high water-holding capacity. In the present study, our objectives were: (1) to examine the effect of phosphogypsum (PG) on the chemical properties of Andosols, (2) to investigate the effect of PG on the growth and Ca uptake of melon seedlings. The effect of PG on chemical properties of Andosols was studied using five Andosols with different inorganic and organic colloidal components. The change in soil pH (H2O) was dependent on the soil samples; an increase was observed in the case of Kawatabi 3Bw soil; a sharp decrease in Kawatabi A2 soil; and almost no change or a slight decrease in Kameoka A1, A2 and Bw soils. The water-soluble Ca content was examined as an index of Ca availability in Andosols treated with PG. The increment in water-soluble Ca by PG application was depressed by allophane. The effect of PG application to the nursery media prepared from Andosols on growth and Ca uptake of melon (Cucumis melo L.) was examined in 2002. Three different varieties, Amusu, Earl's and Midorishima, were used in this experiment. The pH value of nursery media was stable at 6.4 ± 0.1 regardless of PG application rate. In contrast, electrical conductivity was clearly increased by PG application, and was reached at 1.2 dS m?1 in 4.0 g L?1 application. The application of PG increased water soluble Ca of nursery media from 1.7 to 5.2 cmolc L?1. Both top and root growth of melon seedlings were enhanced regardless of varieties, dry matter weights were maximized at 4 g L?1 PG application. The Ca uptake of melon seedlings was promoted by PG application in all the varieties. It was suggested that the relative root growth rate of melon seedlings was closely related to the Ca uptake of melon seedlings.  相似文献   

3.
Abstract

A great deal of information on the efficiency of gypsum or phosphogypsum to ameliorate acidity in highly weathered soils is available, but only limited information is available on the efficiency in acid Andosols, which possess large amounts of active aluminum (Al). We examined the effectiveness of gypsum application to non-allophanic Andosols (one humus-rich A horizon and two B horizons poor in humus) using extractable soil Al analyses (batch and continuous extraction methods) and a cultivation test using burdock (Arctium lappa). With gypsum amendment, pH(H2O) values of the soil decreased from 4.5–4.7 to 4.2–4.4, whereas the treatment made almost no difference to the values of pH(KCl). Total active Al (acid oxalate-extractable Al) was hardly affected by gypsum for all samples. Potassium chloride-extractable Al definitely decreased with the addition of gypsum in all soils; however, the decrease was small (0.1–1.4 cmolc kg?1) and the values still exceeded “the threshold of 2 cmolc kg?1” for inducing Al toxicity in sensitive plants (4.4–8.6 cmolc Al kg?1). The change in Al solubility with gypsum application represented by Al release rates from soils using continuous extraction methods with a dilute acetate buffer solution (10?3 mol L?1, pH 3.5) differed greatly among the soil samples: The release rate of one of the B horizon samples decreased by 71%, certainly showing the insolubilization of Al compounds, whereas the release rates of the A horizon sample showed almost no change. These changes in Al solubility were well correlated with the plant root growth. Root growth was improved with gypsum in the B horizon sample, whereas improvement was not observed in the A horizon soil. The decrease in the rate of Al release of another B horizon soil with gypsum treatment was smaller (by 20–34%), possibly because of lower pH values after gypsum application (pH[H2O] of 4.2–4.3). In the B horizon soil, root growth improved only slightly. Thus, the effectiveness of gypsum application to acid Andosols appeared to be largely influenced by soil humus contents and slight differences in soil pH values, and corresponded to a decrease in Al release rates using the continuous extraction method.  相似文献   

4.
We examined soils derived from volcanic ash of Kikai-Akahoya tephra on Yakushima Island, Japan, and classified them according to the Unified Soil Classification System of Japan, 2nd Approximation (USCSJ 2nd) and the World Reference Base for Soil Resources (WRB). Five pedons with horizons showing high (>20%) volcanic glass content were investigated. Soils developed under evergreen broad-leaved forests had high acid oxalate-extractable aluminum (Alo) and acid oxalate-extractable silicon (Sio) concentrations, and low acid oxalate-extractable iron (Fe)/dithionite-citrate-extractable Fe ratio. This indicates a warmer climate and less severe leaching conditions compared with soils developed under coniferous forests dominated by Cryptomeria japonica and grasslands dominated by Pseudosasa owatarii. All soils contained considerable amount of hydroxyl-Al-interlayered 2:1 clay minerals. The surface horizons of the pedons developed under the cool-temperate C. japonica forests contained smectite as a result of podzolization. However, the surface horizon of the pedon developed under cool-temperate P. owatarii grasslands did not contain smectite. All pedons belonged to the Kuroboku soils great group (USCSJ 2nd) and Andosols (WRB). Pedons in mountainous areas did not contain horizons with more than 6?g?kg?1 of Sio and hence were classified as non-allophanic Andosols. In mountainous areas, it was observed that allophane formation was inhibited by Al leaching due to intense rainfall (>10,000?mm year?1); Al consumption due to the formation of the Al-humus complex; and Al incorporation into the interlayers of vermiculite. The low soil water pH [pH(H2O)] and leaching of silicon (Si) in mountainous areas would support these anti-allophanic effects.  相似文献   

5.
Surface and subsurface horizons of 16 representative sugarcane growing soils with varying soil properties in the eastern region of Thailand were collected to determine the potassium (K) fertility status and its availability by using the quantity/intensity relationship (potential buffering capacity of K (PBCk)). The results showed that most soils had a low K fertility status and lack of reserved K from K-bearing minerals. The PBCk values of the studied soils ranged from 3.75 to 168 cmol kg?1/(mol L?1)1/2, and the coarse-textured soil group showed much lower PBCk values; these results suggested a low capability of these soils to replenish K removal by plant uptake compared with that of the fine-textured soil group. The negative delta K (ΔK°) values of the coarse-textured soil group also indicated a large quantity of readily available K for plant uptake that easily leaches at the same time. The higher K activity ratio (ARke) of the coarse-textured soil group (>0.001 mol L?1)1/2) than that of the fine-textured soil group (<0.001 mol L?1)1/2) suggested that readily available K was desorbed from the non-specific sites of 1:1 clay minerals and specific sites of 2:1 clay minerals, respectively. The ΔK° value of the studied soils was more significantly correlated to K concentration in sugarcane stalks (R2 = 0.64) than that of readily available K content (R2 = 0.54). Therefore, the results of this study suggested that ΔK° represents a better parameter to estimate K availability in these soils compared to conventional ammonium acetate (NH4OAc)-extractable K content.  相似文献   

6.
The role of the mineralogy of the clay fraction and the physicochemical properties of alluvial soils in the floodplain of the Iput River and its tributary the Buldynka River (in the region of the settlement of Starye Bobovichi in Bryansk oblast) in the distribution and immobilization of radioactive isotope 137Cs from the atmospheric fallout after the Chernobyl accident was studied. The soils had a sandy texture; a significant variation in the content of amorphous iron oxides (0.1–0.77%) and labile manganese (11.2–193 mg/kg), the cation exchange capacity (6.1–54.2 meq/100 g soil), and the base saturation (29–100%) was common; an appreciable content of X-ray amorphous mineral substances in the clay fraction (<1 μm) enriched with organic carbon (7.7–13.1%); the predominance of trioctahedral hydromicas (Me=50%) in the clay fraction; and the presence of fine-disperse quartz and lepidocrocite. The specific activity of the 137Cs in the clay fraction of the moderately and strongly contaminated layers increased with the increasing portion of smectite formations and (or) hydromicas. On the whole, the presence of the clay fraction favored a decrease in the 137Cs mobility (the correlation between its content and that of exchangeable cesium was r=?0.608, n=17). However, the portion of exchangeable radiocesium (extracted with 1 M CH3COONH4, 1:10) had a tendency toward an increase with increasing content of hydromicas in the clay fraction. Thus, the minerals of this group were a potential source of exchangeable 137Cs in the soils. The significant role of amorphous and mobile iron forms in the immobilization and migration of radiocesium in the secondary contaminated horizons of the alluvial soils was revealed.  相似文献   

7.
Abstract

Within Amaranthaceae, 33 different varieties, including local varieties from Japan, were grown in 2012 in a field in the town of Iino in the Fukushima prefecture, which is located approximately 51 km north of Tokyo Electric Power Company, Fukushima Daiichi Nuclear Power Plant (FDNPP). The contamination level of the soil was 2770 ± 140 Bq kg?1 dry weight (134Cesium (Cs) + 137Cs, average ± SE), and the field was also cultivated in 2011. There was a significant varietal difference in the dry weight production, radiocesium accumulation and transfer factor (TF) of radiocesium from the soil to the plant. The ratio of the lowest TF to the highest TF was approximately 3. Because the ratio of 137Cs to 133Cs was significantly positive, radiocesium seems to be absorbed in a manner similar to that of 133Cs. It is suggested that the varietal difference in the behavior of radiocesium uptake mainly depends on its genetic background rather than on environmental factors.  相似文献   

8.
Employing four mathematical models (first-order, parabolic-diffusion, Elovich and zero-order), kinetics of potassium desorption from eight soils with and without cropping were studied to evaluate their ability in explaining K release from soils. The decline in the soil test K in cropped soils over original soils was drastic in easily desorbable forms compared to that of strongly held forms like 3 M H2SO4 K. Results showed that parabolic diffusion as well as first-order kinetic equation explained the K release data well for both original and K depleted (cropped) soils. Elovich and zero-order equations were not suitable to describe the kinetic data. However, zero-order equation explained K release data better in case of K-depleted soils as compared to original soils. Soils with higher initial K contents registered higher release rate constants. Over the entire period of cropping the range of release rate (b) decreased from 1.26 to 1.53 × 10?2 to values ranging from 1.12 to 1.30 × 10?2 h?1. In contrast, the first-order equation, parabolic diffusion showed higher b values for cropped soils as they represent the diffusion gradient. Mica and its biotite content in both silt and clay fractions showed significant correlation (r) with b values. Similarly with the rate of K release, clay content of soils maintained significant r whereas the silt content did not.  相似文献   

9.
Drainage of peatlands affects the fluxes of greenhouse gases (GHGs). Organic soils used for agriculture contribute a large proportion of anthropogenic GHG emissions, and on-farm mitigation options are important. This field study investigated whether choice of a cropping system can be used to mitigate emissions of N2O and influence CH4 fluxes from cultivated organic and carbon-rich soils during the growing season. Ten different sites in southern Sweden representing peat soils, peaty marl and gyttja clay, with a range of different soil properties, were used for on-site measurements of N2O and CH4 fluxes. The fluxes during the growing season from soils under two different crops grown in the same field and same environmental conditions were monitored. Crop intensities varied from grasslands to intensive potato cultivation. The results showed no difference in median seasonal N2O emissions between the two crops compared. Median seasonal emissions ranged from 0 to 919?µg?N2O?m?2?h?1, with peaks on individual sampling occasions of up to 3317?µg?N2O?m?2?h?1. Nitrous oxide emissions differed widely between sites, indicating that soil properties are a regulating factor. However, pH was the only soil factor that correlated with N2O emissions (negative exponential correlation). The type of crop grown on the soil did not influence CH4 fluxes. Median seasonal CH4 flux from the different sites ranged from uptake of 36?µg CH4?m?2?h?1 to release of 4.5?µg?CH4?m?2?h?1. From our results, it was concluded that farmers cannot mitigate N2O emissions during the growing season or influence CH4 fluxes by changing the cropping system in the field.  相似文献   

10.
Potato common scab induced by Streptomyces scabies is a serious constraint for potato-producing farmers and the incidence of potato scab depends on the soil chemical properties. We examined the chemical characteristics of conducive and suppressive soils to potato common scab with reference to the chemical properties of nonallophanic Andosols, recently incorporated into the classification system of cultivated soils in Japan. Allophanic Andosols with a ratio of pyrophosphate-extractable aluminum (Alp) to oxalate-extractable aluminum (Alo) of less than 0.3–0.4 were “conducive” soils with a high allophane content of more than 3%. On the other hand, nonallophanic Andosols with a Alp/Ala ratio higher than this critical value were “suppressive” soils, and their allophane content was less than 2%. The concentration of water-soluble aluminum (AI) was also a useful index for separating conducive from suppressive soils as well as the Alp/Ala value and allophane content. The suppressive soils showed a much higher concentration of water-soluble Al at pH 4.5 to 5.5 than the conducive soils. The high concentration of water-soluble Al may be responsible for the control of the incidence of potato common scab in Andosols.  相似文献   

11.
Mechanism of reduction of exchangeable aluminum in acid Andosols treated with gypsum was studied by using cation exchange resin methods to determine the amount of polymerized aluminum. Two types of acid Andosols were used as test soils: Kitakami light colored Andosol (fine, mixed, mesic, Andic Dystrochrept) and Kawatabi thick high humic Andosol (medial, mesic mixed Alic Pachic Melanudand). Polymerization of aluminum in the soil solution of both Kitakami and Kawatabi Andosols treated with gypsum was suggested based on an analysis using cation exchange resin methods, whereas that in monomer aluminum solution was not detected. Accumulation of polymerized aluminum in both Kitakami and Kawatabi Andosols was determined by using cation exchange resin, and the amounts of polymer aluminum trapped by the resin and the ratio of polymer aluminum to monomer aluminum were increased with the incubation time. The values of CEC which decreased in the Kitakami Andosol after gypsum treatment were almost equivalent to the amounts of cation exchange sites occupied by polymer aluminum ions which were calculated based on the decrease of the values of Y l. We conclude that the mechanism of reduction of exchangeable aluminum in strongly acid Andosols treated with gypsum is as follows: firstly, exchangeable aluminum adsorbed on the cation exchange sites of soils may be released into the soil solution due to the increase in the ion strength caused by gypsum application, and then monomer aluminum in soil solution may be polymerized in the presence of soil colloidal materials. Consequently, the polymer aluminum formed in the soil solution may be selectively and irreversibly fixed on the cation exchange sites of 2 : 1 clay minerals.  相似文献   

12.
The acid- and base-buffering properties of 84 non-calcareous surface soil samples were studied by batch titration with HCI or KOH at a constant ionic strength of I = 0.1. The soil samples were classified according to their pH of zero point of titration (ZPT). Differential buffer values, dB(H) or dB(OH) (H+ or OH? as meq kg?1 needed to reduce or increase the soil pH sequentially by 0.5 units, respectively), were introduced to describe the course of titration curve and the intensity of buffer action. In all soils, the first acid-buffer value, dB(H)0→0.5, varied from 8 to 78 meq kg?1 and the second one, dB(H)0.5→1, from 10 to 138 meq kg?1. The corresponding base-buffer values, dB(OH)0→0.5 and dB(OH)0.5→1, ranged from 10 to 48 and from 14 to 44 meq kg?1, respectively. The most acid soils were most strongly buffered against acid, and the soils with the highest initial pH against base. The results reveal the acid-buffering by exchange reactions to be very important. In the soils with ZPT≦5.4, the first acid-buffer value was dependent on the content of organic matter and oxalate-soluble Al, whereas in the more acid soils the role of clay became significant. Thus, it was concluded that at higher pHs the foremost inactivation of H+ is attributable to soil components of pH-dependent charges, and the significance of constituents of permanent charges to increase with proceeding acidification. In strongly acid soils (ZPT≦4.8) the very effective buffering seemed to be primarily due to the dissolution of Al-hydroxides and, thus, to exert detrimental effects on the edaphic environment. The general rank of soil factors explaining the variation in the base-buffer values was in accord with the neutralization sequence, i.e. the strongest acid in the soil being neutralized first. In the strongly acid soils (ZPT≦4.8) the base-buffer values seemed to depend on the clay as well as KCl- and NH4OAc-extractable Al, whereas in the soils with higher initial pH mostly on organic C.  相似文献   

13.
Andosols are characterized by an abundance of black humic acids (HAs) belonging to Type A with a high content of aromatic carbon (C) in particular condensed aromatic C. Black HAs are also observed in other soils, such as Chernozems and the subsoil of paddy field, and extracted after washing with an acid or using chelating agent such as sodium pyrophosphate (Na4P2O7). However, contribution of condensed aromatic structures to those soil HAs are unknown. To obtain the information about C skeletal structures of black HAs in soils other than Andosols, HAs were obtained from 2 Chinese Chernozem samples, 2 subsoil samples from Japanese paddy fields (Fulvisols), and a Rendzina-like soil (Cambisols) as well as an Andosol sample (reference) by successive extraction with 0.1 M NaOH (HAs1) and 0.1 M Na4P2O7 (HAs2), and 13C nuclear magnetic resonance and X-ray diffraction 11-band profile analyses were applied. In the black HAs2 from the non-Andosol samples, the proportion of C present as aromatic C, size of C layer planes, and relative C layer plane content ranged from 52 to 59%, 0.48 to 1.92 nm (mean size, 0.76–0.91 nm), and 58 to 100 AU (arbitrary unit) mg?1, respectively, with a positive correlation between total C layer plane content and the degree of humification. Those ranges were similar to the distribution ranges of Andosols HAs1 reported by our previous study.  相似文献   

14.
The apparent diffusion coefficients, Dp/b+ø, of Zn and ZnEDTA were linear functions of added Zn, and were related to the adsorption and fixation capacities of soils rather than their pH. Lower apparent diffusion coefficient values were found in an Haplustoll soil that had higher clay and humus contents inspite of its lower pH. At comparable rates of added Zn, the apparent diffusion of ZnEDTA was 930–1010 (Bakyria), 700–1330 (Dirab), and 730–1880 (Baha) times that of Zn in the soils. The adsorbed Zn per cm3 of soil/Zn per cm3 of the equilibrium solution at the water content existing in the diffusion experiment approximated the capacity factor and was determined by extrapolation. The self-diffusion coefficient of Zn in Baha soil (5 × 10?7 cm2sec?1) of higher clay and water content was higher than in Bakyria or Dirab soil (2 × 10?7 cm2sec?1). These values were similar to the self-diffusion coefficient of P in soils of similar texture at similar water content.  相似文献   

15.
Abstract

To evaluate labile selenium (Se) content in agricultural soils in Japan and to investigate its determining factors, 178 soil samples were collected from the surface layer of paddy or upland fields in Japan and their soluble Se contents were determined. Two grams of soil was extracted with 20 mL of 0.1 mol L?1 sodium sulfate (Na2SO4) solution for 30 min in boiling water, and the released Se was reduced to Se (IV) after organic matter decomposition. The concentration of Se (IV) was then determined by high performance liquid chromatography (HPLC) with a fluorescence detector after treatment with 2,3-diaminonaphthalene (DAN) and extraction with cyclohexane. Soluble Se content ranged from 2.5 to 44.5 μg kg?1 with geometric and arithmetic means of 11.4 and 12.8 μg kg?1, respectively, and corresponded to 3.2% of the total Se on average. The overall data showed log-normal distribution. In terms of soil type, Non-allophanic Andosols and Volcanogenous Regosols had relatively high soluble Se content, and Wet Andosols and Lowland Paddy soils had relatively low soluble Se content. In terms of land use, upland soils had significantly higher soluble Se content than paddy soils (p < 0.01). The soluble Se content had significant positive correlation with total organic carbon (TOC) content of the extract, soil pH and total Se content (p < 0.01). In conclusion, total Se content in combination with soil pH was the main determining factor of the soluble Se content of agricultural soils in Japan.  相似文献   

16.
Formation and classification of humus-rich marshland soils of the Weser marshland, Germany The formation and classification of marshland soils are still controversial. To improve the knowledge on the formation of humus-rich marshland soils 11 soil profiles have been investigated. The soils mostly showed Phragmitis in the subsoil. The Gr-horizons began at low depths (40–60 cm). The clay content was often about 60% and the Corg content up to 480 g kg?1. The amount of total sulfur was up to 29.6 g kg?1, that of exchangeable sulfate up to 4608 mg kg?1 and that of sulfate in the saturation extract 51.2 mg l?1. With pH (H2O) values between 2.0 and 7.4, Carbonate/S ratios < 3 and total sulfur contents > 7.5 g kg?1 some soils showed “Actual Acid Sulfate Soil” (AASS) properties. The pH(per) values varied between 2.4 and 7.1, thus some profiles showed “Potential Acid Sulfate Soils” (PASS) properties. Brakish as well as marine environments with an intensive sulfur dynamics and carbonate leaching are likely within the geogenetic phase of soil development. Via the control of the water regime the pedogenetic phase is mainly of anthropogenic influence. We propose to classify humus-rich marshland soils into “Organomarsch” and “Thiomarsch” on the soil type level of the German systematics.  相似文献   

17.
Acetylene blockage was evaluated as a method for measuring losses of N2O + N2 from two Denchworth series clay soils. The denitrification potential in anaerobic, dark incubations at 20°C with nitrate (equivalent to 100 kg N ha?1 0–20 cm depth), maximum water holding capacity, and acetylene (1%), was equivalent to 32 ± 11 and 39 ± 6 kg N ha?1 per day for the two 0–20 cm soils and was positively correlated with carbon content (r= 0.98). After 4 days N2O was reduced to N2 in the presence of C2H2. In April 1980 following irrigation (24 mm) and applications of ammonium nitrate (70 kg N ha?1) and acetylene, the mean nitrous oxide flux from soil under permanent grass was 0.05 ± 0.01 kg N2O-N ha?1 per day for 8 days. In June 1980, the losses of nitrogen from cultivated soils under winter wheat after irrigation (36 mm) and acetylene treatment were 0.006 ± 0.002 and 0.04–0.07 ± 0.01 kg N ha?1 per day respectively before and after fertilizer application (70 kg N ha?1). The nitrous oxide flux in the presence of acetylene decreased briefly, indicating that nitrification was rate determining in drying soil.  相似文献   

18.
Lentic wetlands are usually regarded as the most important natural freshwater sources of methane (CH4) and nitrous oxide (N2O) to the atmosphere, and very few studies have quantified the importance of lowland streams in trace gas emissions. In this study, we estimated fluxes of CH4 and N2O in three macrophyte-rich, lowland agricultural streams in New Zealand, to place their trace gas emissions in context with other sources and investigate the value of minimising their emissions from agricultural land. All three streams were net sources of both gases, with emission of CH4 ranging from <1 to 500 μmol m?2 h?1 and of N2O ranging from <1 to 100 μmol m?2 h?1 during mid-summer. For CH4, both turbulent diffusion across the surface and ebullition of sediment gas bubbles were important transport processes, with ebullition accounting for 20–60% of the emissions at different sites. The emissions were similar on a per area basis to other major global sources of CH4 and N2O. Although small on a catchment scale compared to emissions from intensively grazed pastures, they were significant relative to low-intensity pastures and other agricultural land uses. Because hydraulic variables (viz. depth, velocity and slope) strongly influence turbulent diffusion, complete denitrification can best proceed to N2 as the dominant end-product (rather than N2O) in riparian wetlands, rather than in open stream channels where N2O fluxes are sometimes very large.  相似文献   

19.
The development of shrub willow as a bioenergy feedstock contributes to renewable energy portfolios in many countries with temperate climates and marginal croplands. As willow is developed commercially in the US Northeast, there is a need to better understand its impact on water quality and greenhouse gas (GHG) emissions compared to alternative land uses (e.g., corn, hay). We measured the impact of cultivated willow of various ages (2 and 5 years) and management strategies (fertilized vs. unfertilized) compared to corn and hay on water table depth, soil water NO3 ? and PO4 3? concentrations, and N2O, CH4, and CO2 fluxes at the soil-atmosphere interface during a drier than normal year in heavy clay soils with marginal agricultural value in upstate New York, USA. Soil water concentrations resulted in higher PO4 3? in willow and higher NO3 ? in corn and hay, although willow is unlikely to negatively impact water quality with respect to phosphorus due to shorter periods of hydrologic connectivity in willow and hay than in corn. Gas fluxes varied spatially and temporally with hot moments of CH4 and N2O in corn and hay and seasonally variable CO2 in willow. While CH4 did not vary between fields, N2O was higher in corn and hay, and CO2 in willow, resulting in no net difference between CO2 equivalent (CH4, CO2, and N2O) emissions between fields. Converting marginal cropland on clay soils from corn or hay to willow left overall GHG emissions unaffected, slightly increased PO4 3?, and decreased NO3 ? concentrations in soil water.  相似文献   

20.
Abstract

Surface charge characteristics of several Spanish Andosols were investigated. The relationship between these characteristics and the mineralogical composition and organic matter content of the soils were also taken into account.

The electro‐chemical behaviour of the soils was similar to that of many metallic oxides, in which the surface charge is determined exclusively by the activity of potential determining H and OH ions in the bulk solution.

The ZPC of the soils varies between 3.7 and 5.1 and always remains below the zero point of titration (between 0.6 and 10 meq/100g). These low ZPC values seem to be related to the high content of organic matter in the soils, but no clear correlation between both values has been found.

The mineralogical composition and the percentage of amorphous oxides in the soils, on the other hand, had an effect on the charge characteristics’. A correlation coefficient (r=0.801) was found between the Al2O3% and ZPC value of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号