首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract

To evaluate labile selenium (Se) content in agricultural soils in Japan and to investigate its determining factors, 178 soil samples were collected from the surface layer of paddy or upland fields in Japan and their soluble Se contents were determined. Two grams of soil was extracted with 20 mL of 0.1 mol L?1 sodium sulfate (Na2SO4) solution for 30 min in boiling water, and the released Se was reduced to Se (IV) after organic matter decomposition. The concentration of Se (IV) was then determined by high performance liquid chromatography (HPLC) with a fluorescence detector after treatment with 2,3-diaminonaphthalene (DAN) and extraction with cyclohexane. Soluble Se content ranged from 2.5 to 44.5 μg kg?1 with geometric and arithmetic means of 11.4 and 12.8 μg kg?1, respectively, and corresponded to 3.2% of the total Se on average. The overall data showed log-normal distribution. In terms of soil type, Non-allophanic Andosols and Volcanogenous Regosols had relatively high soluble Se content, and Wet Andosols and Lowland Paddy soils had relatively low soluble Se content. In terms of land use, upland soils had significantly higher soluble Se content than paddy soils (p < 0.01). The soluble Se content had significant positive correlation with total organic carbon (TOC) content of the extract, soil pH and total Se content (p < 0.01). In conclusion, total Se content in combination with soil pH was the main determining factor of the soluble Se content of agricultural soils in Japan.  相似文献   

2.
ABSTRACT

Following the Fukushima Daiichi Nuclear Power Plant accident of 2011, the potential for radiocesium transfer from contaminated soils, such as Andosols, to agricultural crops became a significant concern. Andosols account for up to 70% of paddy soils in the northern and northwest areas of Tochigi Prefecture, where the radiocesium concentration is 1000 Bq kg?1 or greater in the soil of some fields. The present study was carried out in order to determine the phytoavailability of radiocesium in Andosols by comparing it with that of gray lowland soils in the first 3 years following the accident. The transfer factor (TF) tended to be higher in Andosols than in gray lowland soils, leading to higher radiocesium concentrations in brown rice grown in Andosols. The exchangeable potassium (Ex-K2O) in Andosols was highly and negatively correlated with TF, followed by clay. The Ex-K2O value was positively correlated with the clay/total carbon (T-C) value, suggesting that a high T–C ratio could weaken K2O adsorption on clay mineral sites; hence, the low clay/T-C values can partially explain the relatively large TF values of Andosols. Samples with Ex-K2O contents less than 200 mg kg?1 and with low clay/T-C values showed striking decreases in TF values from 2011 to 2012. However, the decrease from 2012 to 2013 was quite small; radiocesium in these samples was potentially available for rice uptake for a long time, likely due to the reversible adsorption and fixation characteristics of allophane. Most gray lowland soil samples showed very low TF values over the 3 years of the study, except for those with TF values greater than 0.1 due to low Ex-K2O and clay contents; the geometric mean (GM) value of TF was below 0.01 in 2012. The extraction of exchangeable radiocesium (Ex-Cs) with a 1 mol L?1 ammonium acetate solution may not be an appropriate method for explaining the variability in radiocesium TF in Andosols. This is because the Ex-Cs value was significantly correlated with Ex-K2O in Andosols, but not in gray lowland soils, indicating that Ex-K2O explained this variability in relation to Ex-Cs.  相似文献   

3.
Although condensed aromatic components are considered to be one of the major structural units of soil humic acids (HAs) and to be responsible for the dark colour of HAs, their amount and composition remain largely unknown. In ruthenium tetroxide oxidation (RTO), condensed aromatic components are detectable as their degradation products, mainly benzenepolycarboxylic acids (BPCAs). We applied this technique to soil HAs with various degrees of humification (darkening). The yields of water‐ and dichloromethane‐soluble products from HAs upon RTO after methylation ranged from 210 to 430 mg g−1 and 10–40 mg g−1, respectively. Eight kinds of BPCAs with two to six carboxyl groups, and seven kinds of BPCAs with additional side chains (tentative assignment) were obtained as methylated counterparts. The yield of each BPCA and the sum of the yields of BPCAs (12–85 mg g−1 HAs) increased with increasing degree of humification and aromatic C content. The compositions of BPCAs indicated that the degree of condensation was greater in the HAs with greater degrees of humification. The sum of the yields of aliphatic compounds ranged from 0.1 to 6.5 mg g−1, and decreased with increasing degree of humification. The C12 to C30 monocarboxylic acid methyl esters accounted for > 56% of the aliphatic compounds assigned, which may be present mainly as end alkyl groups in the HA molecules. We also obtained the methylated counterparts of C14 to C24 dicarboxylic acids; these were possibly derived from polymethylene bridges between adjacent aromatic rings.  相似文献   

4.
Laboratory incubation experiments in addition to physicochemical analyses of volcanic ash soils were carried out in order to identify biogeochemical factors related with soil organic C (SOC) stabilization in the long term and with the potential for C sequestration of agroecosystems. Up to 24 vineyard plots under similar subtropical conditions in Tenerife Island (Spain) were sampled. Soil samples were incubated for 30 days in laboratory conditions (27 °C and 66% water holding capacity) and the CO2 released was periodically measured to plot C mineralization curves. Soil organic matter (SOM) with special emphasis paid on the humic acid (HA) was characterized by elemental composition, spectroscopic techniques: visible, infrared (IR) and 13C nuclear magnetic resonance (13C NMR) and analytical pyrolysis–gas chromatography/mass spectrometry (GC/MS). The dependent variables examined were either the total mineralization coefficient (TMC, g C · kg C soil?1 day?1) in laboratory incubations, or the SOC. A very significant negative correlation was found between SOC and TMC, i.e., in our soils, the higher the biodegradation rates under laboratory conditions, the lower the soil C sequestered in the corresponding plots. In it was also observed that the concentration of amorphous minerals (Alo + ½ Feo index) and the water holding capacity at 0.033 MPa were associated with lower CO2 release; the latter could suggest microanaerobic conditions hampering biodegradation in these thixotropic soils. Conversely, no correlation was found between SOC or TMC and typical soil physical and chemical factors, such as granulometric fractions or exchangeable calcium. The molecular characteristics of the HAs showed also predictive potential as regards SOC resilience, reflecting the comparatively fast biodegradation of SOM composed mainly of biomass constituents (prominent lignin signature and O-alkyl 13C NMR region). The poor correlation between total aromaticity of the HAs and SOM resistance against biodegradation could be explained by a dual origin of aromatic structures in HAs, either consisting of methoxyl-containing non-decomposed lignin structures or condensed black carbon-like polyaromatic structures. The results suggested the possibility of predicting the vulnerability of SOC to biodegradation from laboratory incubation experiments, which results of interest for modeling global change scenarios.  相似文献   

5.
Organic carbon stocks and soil erodibility in Canary Islands Andosols   总被引:3,自引:0,他引:3  
Soil organic carbon (SOC) plays a key role in the structural stability of soils and in their resistance against erosion. However, and as far as andic soils are concerned, these mechanisms and processes, as well as the influence of the different types of SOC on aggregate stability, are not fully understood. The targets of this paper are: (i) to determine the content and forms of SOC in Andosols under evergreen forest vegetation [laurel (Laurus) and heather (Erica) forest] and (ii) to find out the role of soil organic matter (SOM) in the aggregate stability and in the resistance of Andosols to water erosion. Soil samples have been collected in 80 sites in a 40 km2 area under udic soil moisture regime. In them, fulvic and humic acids, Walkley–Black SOC, pyrophosphate-extractable SOC, Fe and Al, potassium sulphate extractable SOC, dissolved SOC, acid oxalate-extractable Fe, Al and Si, USLE K-factor and aggregate stability have been determined. The Andosols over volcanic ash are Aluandic Andosols (non-allophanic Andosols), whereas over basaltic lava flows are Silandic Andosols (allophanic Andosols). The surface (0–30 cm) samples analyzed contain 9.5–30 kg C m− 2 being significantly higher in allophanic Andosols (p < 0.5). Organic carbon adsorbed onto the mineral fraction (extractable pyrophosphate, Cp) accounts for 35–55% of the total SOC. All samples show a high stability to slaking and raindrop impact, being the first one highly correlated (r = 0.6) with pyrophosphate extractable C (Cp), Fe (Fep), and Al (Alp) in allophanic Andosols, unlike non-allophanic ones. The stability to raindrop impact correlates with pyrophosphate extractable C (Cp) and Fe (Fep) in both types of soils (r = 0.3–0.6, p < 0.05). These findings suggest that the high stability to both slaking and water-drop impact is due to the occurrence of allophane–Fe–OC complexes, rather than to the total OC, and the active Fe and Al forms, generated by the weathering of volcanic materials, constitute an essential constituent responsible for C sequestration and resistance to degradation in these soils.  相似文献   

6.
The structure of humic acids (HAs) in zonal soil types—soddy-podzolic soils (two samples), gray forest soil (one sample), and chernozems (two samples)—was quantitatively studied by 13C NMR spectros-copy. In the series considered, the content of unsubstituted carbon in the aromatic fragments of HAs increased, and the fraction of unsubstituted aliphatic structures decreased. HAs of soddy-podzolic soils were found to be enriched with carbohydrate fragments compared to HAs of chernozems and gray forest soil. The carbon skeleton of HAs from typical rich chernozem contained significantly more aliphatic and carbohydrate fragments compared to typical chernozem, which probably reflected the lower degree of HA transformation in rich chernozem.  相似文献   

7.
Rice straw contains up to 2.3% K in dry matter, including potassium (K) subcompartmented in phytoliths, complex siliceous structures formed in plant tissue via precipitation of Si. Rice straw is usually returned to the soil as a conventional practice to sustain soil nutrients, and therefore, the K pool accompanied with rice straw phytoliths is also cycled. Based on phytoliths obtained by ashing of rice straw at 400 °C and dissolution experiments using batch extraction in combination with physical separation of phytoliths by heavy liquid, this study evaluated the phytolith K(phytK) pool in rice straw and aged phytoliths in paddy soils. Entrapped organic matter containing K within phytolith silica cells was visualized by X-ray tomographic microscopy, and releases of this phytK pool accompanying phytolith dissolution were quantified. A 1% Na2CO3 solution, which has been commonly used to extract amorphous Si and to quantify soil phytoliths, showed obvious responses for K derived from phytolith dissolution, indicating that the Na2CO3 method can be developed for measurement of phytK. In 13 soil samples, Na2CO3-dissolvable K content assignable to phytK was 0.55 ± 0.39 g kg?1 in the puddled horizon, suggesting the phytK pool is of high significance for the management of K in paddy soils.  相似文献   

8.
Abstract

An investigation was conducted on physico‐chemical properties of humic acids (HAs) in Venezuelan soils. The HAs were extracted by the NaOH method from a Banco‐Bajio‐Estero soil toposequence (local names for soils located at high, intermediate and low topographic levels), in the Venezuelan plains (Mantecal, Apure State). The extracted HAs were analyzed for elemental composition and characterized by fluorescence, Fourier transform infrared (FT‐IR) and electron spin resonance (ESR) spectroscopies. The results showed that free radical concentration of HAs increased from soils at the highest to soils at the lowest topographic position. High carbon (C), nitrogen (N), and carboxyl group contents, E4/E6 ratio, aliphatic character and concentration of free radicals, and low oxygen (O) and phenolic hydroxyl group contents and total acidity were typical of HA from soils at the lower relief position. The FT‐IR spectra indicated that the HA from the soil at the lowest topographic position tended to have a slightly higher content of carboxyl groups than the HAs from soils at higher topographic levels. The observed fluorescence was attributed to the presence of condensed aromatic moieties and/or conjugated unsaturated systems of various complexity in the HA macromolecules.  相似文献   

9.
A pot experiment was conducted to estimate the amount of dissolved organic carbon (DOC) leached from the submerged plow layer of rice paddies during the cultivation period and its accumulation in the subsoil. Organic matter in the leachate was fractionated using insoluble polyvinylpyrrolidone (PVP) which can adsorb aromatic components having hydroxyl and/or carboxyl groups. Total amount of DOC leached throughout the growth period of rice plant corresponded to ca. 0.5% of total-C in the plow layer soil sample (total C, 17.8 g kg-1) irrespective of the presence of rice plant, and the PVP-adsorbed fraction accounted for 34–43% of it. The amount of DOC in the leachate decreased by more than 50%, and that of the PVP-adsorbed and non-adsorbed fractions decreased by 79–82 and 45–47% by passing through the subsoil packed in the glass columns, respectively. The decreases were considered to be due to the adsorption to the subsoil, since a corresponding increase was observed in the total carbon content in the subsoil. Successive extraction of organic matter from the subsoil before and after the rice growth period with water, 0.25 M NaNSON and 0.1 m Na4P2O7 (pH 7.0) solutions showed that the amount of organic carbon adsorbed on PVP mainly increased in the Na4P2O7 (pH 7.0)-extractable fractions during the rice growth period, while the amount of organic carbon non-adsorbed on PVP increased in all the fractions extracted. These results suggested that the PVP-adsorbed fractions in the leachate were adsorbed to the subsoil mainly by coordinate bonding while the PVP-non-adsorbed fractions were adsorbed by physical adsorption, weak hydrogen bonding, ion bonding, and coordinate bonding.  相似文献   

10.
Abstract

We examined the vertical distributions of total, Bray II and organic phosphorus (P) in the Ap horizons of five paddy rice fields including no tillage treatment. Soil samples were collected from the Ap horizons as nine thin layers of 0–1, 1–2, 2–3, 3–4, 4–6, 6–8, 8–10, 10–15 and 15–20 cm from the soil surface after harvest. In three lowland paddy soils of no-tillage Hachirogata (HA-NT), conventional-tillage Hachirogata (HA-T) and conventional-tillage Furukawa (FU-T), the total P (TP) content was relatively low. In these soils, the modified Bray II P (soil : solution = 1:20; shaking time 60s) content decreased and the organic P (OP) content increased at a depth of 0–1 cm compared with the underlying layers, possibly because of high microbial activities as suggested from the increased total C and N contents in this layer. In contrast, the decrease in Bray II P content and the increase in the OP content of the surface layer were not evident in two Andosols of the conventional-tillage Utsunomiya (UM-T) and conventional-tillage Kawatabi (KA-T). Even TP content fluctuated in the thin surface layers of 0–3 cm depending on the sampling site. Accordingly, percentages of Bray II P and OP to TP were calculated to compare the vertical distribution curves between Bray II P and OP. The percentage of Bray II P to TP of the 0–1 cm layer was lower and the percentage of OP to TP in the layer was higher than the underlying layers for HA-T, HA-NT and FU-T. The decrease in Bray II P was nearly compatible with the increase in OP for the surface of the 0–1 cm layers of HA-NT, HA-T and FU-T. This result suggests that a part of Bray II P was converted to OP in the thin surface layer of the Ap horizons in these paddy soils. This change in chemical form of P was more pronounced in the HA-NT by accumulating the effect of the microbial activities over a longer period of time because of no tillage compared with HA-T and FU-T. These findings add a new dimension to P behavior in submerged rice soils under field conditions, particularly near the soil surface. Moreover, we must be careful in soil sampling for P availability evaluation, and soil samples should represent the vertical distribution of P in the whole Ap horizon of a paddy field. Changes in OP with depth in UM-T and KA-T may have been masked by the high OP content as well as by the high TP content in these Andosols.  相似文献   

11.
Abstract

To clarify the effect of soil type on changes in sugar beet (Beta vulgaris L.) productivity since 1980 in Tokachi District (Hokkaido, Japan), we analyzed yield data from 121 settlements from 1980 to 2002 using maps of parent materials and surface organic matter contents in a geographical information system. The soil types were Brown Lowland soils, Andosols with an alluvial subsoil, Wet Andosols and Andosols. The sugar beet yields were highest in the Andosols and moderate in Andosols with an alluvial subsoil. Yields in Brown Lowland soils in the 1980s were similar to those in Andosols, but decreased below the yields in the Andosols by the 1990s. The yields in Wet Andosols were the lowest in the 1980s, but have been similar to those in Andosols with an alluvial subsoil since 1990. Thus, productivity appears to have varied over time in Brown Lowland soils and Wet Andosols. The correlation coefficients between yields and cumulative daily mean temperature from late April to mid-July since 1990 were highest in the Andosols (r = 0.67), lowest in the Brown Lowland soils (r = 0.50) and intermediate in the other soil types (r = 0.54–0.60). However, the magnitude of the correlation between the yield and the cumulative precipitation since 1990 was lowest in the Andosols (r = –0.22), highest in the Brown Lowland soils (r = –0.58) and intermediate in the other soil types (r = –0.44 to –0.45). These results suggest that the present soil water environment in the Andosols is superior to that in the other soil types.  相似文献   

12.
Paddy soil management is generally thought to promote the accumulation of soil organic matter (SOM) and specifically lignin. Lignin is considered particularly susceptible to accumulation under these circumstances because of the recalcitrance of its aromatic structure to biodegradation under anaerobic conditions (i.e ., during inundation of paddy fields). The present study investigates the effect of paddy soil management on SOM composition in comparison to nearby agricultural soils that are not used for rice production (non‐paddy soils). Soil types typically used for rice cultivation were selected, including Alisol, Andosol and Vertisol sites in Indonesia (humid tropical climate of Java) and an Alisol site in China (humid subtropical climate, Jiangxi province). These soil types represent a range of soil properties to be expected in Asian paddy fields. All upper‐most A horizons were analysed for their SOM composition by solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy and for lignin‐derived phenols by the CuO oxidation method. The SOM composition was similar for all of the above named parent soil types (non‐paddy soils) and was also not affected by paddy soil management. A substantial proportion (up to 23%) of the total aryl‐carbon in some paddy and non‐paddy soils was found to originate from condensed aromatic‐carbon (e.g ., charcoal). This may be attributed to the burning of crop residues. On average, the proportion of lignin was low and made up 20% of the total SOM, and showed no differences between straw, particulate organic matter (POM), and the bulk soil material. The results from CuO oxidation are consistent with the data obtained from solid‐state 13C NMR spectroscopy. The extraction of lignin‐derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils in a range (4 to 12 g kg−1 OC) that was typical for agricultural soils. In comparison to adjacent non‐paddy soils, the data do not provide evidence for a substantial accumulation of phenolic lignin‐derived structures in the paddy soils, even for those characterized by higher organic carbon (OC) contents (e.g ., Andosol‐ and Alisol (China)‐derived paddy soils). We conclude that the properties of the parent soil types are more important for the lignin content of the soils than the effect of paddy management itself.  相似文献   

13.
三种黑土中有机碳、氮、磷的形态分布与肥力的关系   总被引:2,自引:0,他引:2  
土壤腐殖质是土壤的重要组分。土壤的许多属性都直接或间接地与腐殖质的性质有关。我们曾指出[2]黑土的腐殖物质及其组分与土壤的物理、化学及生物化学有显著的相关性,这表明它们对氮、磷等营养物质的转化、供应及贮存起着重要的作用。  相似文献   

14.
We investigated the optical absorption properties (A 400/C and A 600/C values), elemental composition, weight-averaged molecular weight (Mw), and liquid-state carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy of DAX-8 adsorbed fulvic acid fractions (DAX-8 FAs) in various soils (n?=?36) to establish the general trends in their chemical characteristics. We also compared our results with those of humic acids (HAs) obtained from the same soils used in this study and other published data to discuss the differences between them. Our results clearly indicate that DAX-8 FAs with high carboxyl C content have small Mw and low hydrogen to carbon (H/C) ratio. In addition, DAX-8 FAs with high carbonyl C and alkyl C content have high A 400/C values and H/C ratios, respectively. These results strongly suggest that DAX-8 FAs with high aliphatic chemical properties have low carboxyl C content, large Mw and high H/C ratio. There are significant differences in chemical characteristics among the various soil types in almost all data; e.g., DAX-8 FAs from Podzols showed significantly higher A 400/C values, larger Mw, higher carbonyl C and O-aryl C content than those obtained from Andosols. However, these two C functional groups are relatively low values in the total C content among all soil types, suggesting that DAX-8 FAs may exhibit only small differences in chemical properties among the various soil types. The comparison with published data regarding soil HAs shows that DAX-8 FAs are characterized by smaller Mw; lower C, H, and nitrogen (N); higher oxygen (O) content; higher O/C; lower O/H ratios; higher carboxyl C content; and lower aryl C content in total C.  相似文献   

15.
Purpose

Biochar is one of the most widely used ameliorants for soil amendment, which is known as factor which rises crop yields and levels of soil biological activity. Nowadays, it is under investigated how biochar application affects the dynamics of the humic components and whole soil organic matter (SOM) and the processes of its alteration. This investigation is aimed to evaluate the influence of biochar on the content, composition, and transformation of humic acids (HAs) as the main component of the SOM.

Materials and methods

The incubation experiment was carried out on three Podzol Antric soils, with varying amounts of initial total organic carbon. The incubation time was 90 days, using biochar gravimetric doses of 0.1 and 1.0%. The biochar was produced by fast pyrolysis of birch and aspen wood at 550 °С. Humus composition was analyzed for the organic matter fractions extracted with 0.1 M NaOH (containing HAs 1 + fulvic acids (FAs) 1) and 0.1 M Na4P2O7 (containing HAs 1 + FAs 1 + HAs 2 + FAs 2). Isolated HAs were characterized for their elemental composition (C, N, H, and S) and molecular composition with the use of solid-state 13C nuclear magnetic resonance (13C-NMR) techniques.

Results and discussion

We found that 0.1% of biochar amendment does not influence SOM mineralization, but 1.0% of biochar increases the mineralization by 15–18%. This process is accompanied by changes in the composition and properties of the HS. The increased proportion of HA aromatic fragments in biochar indicates an increasing of their stability. However, in soils with high humus content and a significant amount of insoluble matter, the processes of mineralization and the growth of HAs are taking place simultaneously. The replenishment of HAs could be the outcome of both the intensification of the transformation processes (mineralization and humification) of the more sustainable insoluble matter compounds and the humification of the biochar itself.

Conclusions

The influence of biochar on humification in Podzol Antric soils was revealed on the basis of incubation experiment. Both negative and positive changes under biochar in HS system were demonstrated. The active decrease of humus total contents and also the labile HS ought to qualify as negative changes. The increase of HA chemical maturity that leads to the stability of humus in whole as well as the intensive new HA formation thought to qualify as positive changes.

  相似文献   

16.
In the presence of H2O2 as donor, horseradish peroxidase was used to catalyze the polymerization of seven monomeric phenols. Yields of humic acid (HA) polymers from meta phenols—resorcinol and phloroglucinol—were insignificant. Of the five ortho and para phenols—phenol, catechol, hydroquinone, pyrogallol and 1,2,4-trihydroxybenzene—all except hydroquinone inhibited the enzyme at high concentration. The kinetics of polymerization of the ortho and para compounds were complex and dependent on the concentration of both electron acceptor and donor.The percentage yield of HA before dialysis was far greater from pyrogallol than from catechol or hydroquinone. After dialysis, the yield of the catechol HA was higher than those of the hydroquinone and pyrogallol HAs. A higher molecular weight for the catechol HA over those of the hydroquinone and pyrogallol HAs was also indicated by the lowest E4/E6 ratio and highest free radical content.All of the synthetic HAs were relatively rich in free radicals, suggesting that their synthesis occurred via free radicals, i.r. and 13C NMR spectra showed that the HAs were molecularly complex polymers or mixtures of complex aromatic structures rich in phenolic OH groups and to a lesser extent in CO2H groups. The only HA which showed fine structure in the i.r. spectrum was the pyrogallol HA; the presence of aryl ethers was indicated. 13C NMR spectra showed that all synthetic HAs were highly aromatic, that aromatic rings of the initial phenols had been built into the HAs, but that molecular environments around phenolic OH groups had changed during the formation of the HAs.  相似文献   

17.
Microbial biomass C and soil respiration measurements were made in 17–20 yr old soils developed on sluiced and tipped coal‐combustion ashes. Topsoil (0–30 cm) and subsoil (30–100 cm) samples were collected from three soil profiles at two abandoned disposal sites located in the city area of Halle, Saxony‐Anhalt. Selected soil physical (bulk density and texture) and chemical (pH, organic C, total N, CEC, plant available K and P, and total Cd and Cu) properties were measured. pH values were significantly lower while organic C and total N contents and the C : N ratio were significantly higher in the topsoil than in the subsoil indicating the effects of substrate weathering and pedogenic C accumulation. Likewise, microbial biomass C, K2SO4‐extractable C, and soil respiration with median values of 786 μg biomass C g–1, 262 μg K2SO4‐C g–1, and 6.05 μg CO2‐C g–1 h–1, respectively, were significantly higher in the topsoil than in the subsoil. However, no significant difference was observed in metabolic quotient between the topsoil and the subsoil. Metabolic quotient with median values of 5.98 and 8.54 mg CO2‐C (g biomass C)–1 h–1 for the 0–30 cm and 30–100 cm depths, respectively, was higher than the data reported in the literature for arable and forest soils. Microbial biomass C correlated significantly with extractable C but no relationship was observed between it and total N, Cd, and Cu contents, as well as plant‐available K and P. We conclude that the presence of the remarkable concentration of extractable C in the weathered lignite ashes allowed the establishment of microbial populations with high biomass. The high metabolic quotients observed might be attributed to the heavy‐metal contamination and to the microbial communities specific to ash soils.  相似文献   

18.
Six hydroxyanthraquinones (chrysophanol, chrysotalunin, microcarpin, physcion, 7,7′-biphyscion, and hinakurin) present in the samples of 26 surface soils were quantitatively analyzed, and the contents of HAQs in soil types were compared. The soil samples had been collected from 19 Umbric Andosols and seven Distric Cambisols, and the Andosols were further subdivided into those with allophanic soil materials (exchange acidity (y 1<5 mL 100 g-l) and nonallophanic soil materials (y l≧5 mL 100 g-l). The following results were obtained. (1) It was determined quantitatively for the first time that chrysotalunin was the major hydroxyanthraquinone in many soils. (2) The amounts of major dime ric hydroxyanthraquinones (chrysotalunin, 7,7′-biphyscion, and microcarpin) in non-allophanic soil materials were significantly larger than those in allophanic soil materials. As the contents of chrysotalunin in Andosols were positively correlated with y l, which was reported to be positively correlated with aluminum toxicity and exchangeable aluminum in soil, it is suggested that toxic aluminum may be involved in the production of soil hydroxyanthraquinones.  相似文献   

19.
Abstract

Phosphorus status of Bangladesh paddy soils covering the major paddy soil types was assessed in terms of parent materials and physiography. Total P concentration ranged from 172 to 604 mg kg?1 in the topsoil and from 126 to 688 mg kg?1 in the subsoil, and varied with the physiography to which the soils belonged. In most soils, the available P concentration was much higher for the topsoil than for the subsoil. The inorganic P concentration was higher than the organic P concentration, except for one soil series from the Old Himalayan Piedmont Plain, and was significantly and positively correlated with the total P concentration. Among the inorganic forms, only the concentration of Al-bound P showed a significant correlation with that of available P based on the Bray P-2 method in both topsoil and subsoil. In general, the P status was critically low in paddy soils of the terrace area. Normal growth of paddy rice in this area is expected to be difficult without application of P fertilizer.  相似文献   

20.
Phenanthrene sorption by compost humic acids   总被引:4,自引:0,他引:4  
Nonlinear isotherms were observed for sorption of polycyclic aromatic hydrocarbons (PAHs) to humic materials, but the exact sorption mechanism is not clearly understood. This study aimed to investigate the sorption of PAHs by compost humic materials. Humic acids (HAs) were progressively extracted from two compost samples by a 0.1-M sodium pyrophosphate solution. Sorption of phenanthrene by the extracted HAs was studied with a batch equilibration technique. Competitive sorption between pyrene and phenanthrene in the HAs was also examined. Elemental analysis and solid-state 13C NMR were used to characterize HAs. All sorption isotherms were nonlinear although these samples contained little black carbons if any. Isotherm linearity increased with increasing number of extractions. Isotherm nonlinearity was negatively related to HA aliphaticity. Addition of pyrene to the phenanthrene-HA system increased isotherm linearity. Competition between phenanthrene and pyrene sorption was more pronounced in the first fraction of HAs with a higher content of aromatic moieties. This study showed that humic materials alone could lead to nonideal sorption for PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号