首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 433 毫秒
1.
液电式馈能半主动悬架控制特性仿真分析与能量回收验证   总被引:3,自引:3,他引:0  
为了回收车辆悬架系统在行驶过程中产生的振动能量,提出了一种液电式馈能半主动悬架(hydraulic-electrical energy regenerative semi-active suspension,HERSS)系统方案,并深入研究了HERSS半主动控制特性及馈能特性.根据HERSS系统原理,明确了其独特的单行程可控特点,推导了HERSS四分之一悬架系统方程,设计了线性最优LQG (linear quadratic Gaussian)控制器,利用MATLAB/Simulink搭建了基于LQG控制的HERSS仿真模型,通过仿真试验对比分析了HERSS、被动悬架、传统半主动悬架的性能差异.最后,进行了HERSS的馈能特性台架试验.研究结果表明:针对簧载质量加速度、悬架动行程、车轮动位移3个指标而言,由于HERSS仅伸张行程阻尼力可调的特点,其综合性能介于被动悬架、传统半主动悬架之间.针对馈能特性,当控制电流达到30A时,HERSS回收能量功率最高为51.94 W,对应的能量回收效率为12.86%,并且试验数据整体呈现出HERSS回收到的振动能量及能量回收效率随着控制电流的升高而增大的规律.其他悬架形式无法回收振动能量,因此,HERSS在馈能特性指标上具有明显优势.综上所述,HERSS能够满足汽车对半主动悬架系统的功能要求,并具有能量回收功能,在新能源汽车领域具有一定应用价值.该文研究成果可为液电式馈能悬架的实际应用提供参考.  相似文献   

2.
针对液电式馈能悬架在被动模式下无法实现车辆全局工况最优,该文以路面激励频率作为切换阈值,设计了一种具有舒适、运动和综合3种模式的液电式馈能悬架,在改善车辆乘坐舒适性及操纵稳定性的同时回馈振动能量。提出了将DC-DC变换器引入悬架馈能电路中,通过实时调节DC-DC变换器中MOS管开关信号占空比以改变液电式馈能减振器阻尼力,并制定了天棚-地棚控制结合模糊PID控制的双环半主动控制方案。仿真结果表明,引入路面频率自适应的液电式馈能悬架相比单一天棚-地棚控制悬架在车身共振区的车身加速度幅值减小22.92%,在车轮共振区的轮胎动载荷幅值减小24.27%,并回收66.70 W振动能量,实现了悬架动力学性能和馈能特性的协调控制。台架试验结果表明,各时段内车身加速度试验与仿真结果峰峰值的相对误差分别为1.36%、15.72%、4.86%和13.6%,轮胎动载荷的相对误差分别为9.34%、13.62%、7.82%和15.47%;各频段内车身加速度试验与仿真结果峰值的相对误差分别为7.55%、10.18%、10.56%、和6.35%,轮胎动载荷的相对误差分别为9.64%、11.72%、10.39%和11.27%。时域和频域的相对误差均在16%之内,验证了仿真结果的正确性和系统的可行性。研究结果可为液电式馈能悬架的产品升级提供参考。  相似文献   

3.
铰接车辆转向系统液压管路动态特性   总被引:1,自引:1,他引:0  
对于铰接车辆转向系统,管路特性对转向系统性能影响较大,其影响因素不能被忽略。基于功率键合图-方块图方法及SIMULINK控制仿真软件,建立了铰接车辆转向系统液压管路至油缸及负载的通用数学模型。定量地研究分析了铰接车辆转向系统液压管路的动态特性以及液压管路参数对转向系统动态特性的影响。研究结果表明:对于小管径管路,液阻和液感较大,液容较小,系统振荡幅度小,响应速度快;随着管路长度的增加,液阻、液感和液容皆逐渐增大,系统振荡次数逐渐减少,振荡幅度逐渐减小,但是系统动态响应较慢;提高油液的等效体积弹性模量有利于改善系统的动态响应速度和稳定性。  相似文献   

4.
电子液压制动系统的安全设计与匹配分析   总被引:1,自引:1,他引:1  
针对电子液压制动系统的设计缺乏理论指导的问题,在建立电子液压制动系统数学模型的基础上,提出基于安全特性的电子液压制动系统匹配设计方法;通过试验验证所建立的数学模型的有效性,分析电子液压制动系统在普通制动和硬件失效下的制动性能。研究表明:基于安全特性考虑应保证在电机泵失效的情况下蓄能器仍能使车辆完成数次大强度制动;而电机泵的设计应兼顾期望的充液时间以及蓄能器失效下的保持车辆制动性能;备用制动回路作为电子液压制动系统系统的硬件冗余,要求其在蓄能器和电机泵均失效的情况下提供一定的制动能力。仿真分析表明:基于安全特性的电子液压制动系统匹配设计方法能够在正常情况和硬件失效的情况下均能保证车辆的制动安全性。  相似文献   

5.
双定子摆动液压马达泄漏与容积效率分析及密封改进   总被引:1,自引:1,他引:0  
为了详细分析双定子摆动液压马达的泄漏和容积效率,获得合理的间隙密封尺寸和密封结构改进方案,基于双定子摆动液压马达内部结构的分析,归纳出内、外马达的几何排量计算式,分析出该马达的主要泄漏途径。通过建立各泄漏途径的流量数学式,得到马达在不同连接形式下总泄漏量的一般公式。对不同连接形式下马达的容积效率进行了理论计算,针对马达的端面泄漏提出了密封结构改进方案,同时搭建试验台对改进前后的双定子摆动液压马达样机进行了容积效率测试。结果表明,随着马达进出口压差从1 MPa逐渐升高到10 MPa,马达的容积效率随之降低;且在不同的连接方式下,马达的容积效率也不相同,当进出油口压差一定时,外马达单独工作容积效率最高,内、外马达差动工作容积效率最低。如当马达行程时间为3 s,进出油口压差为4 MPa时,马达容积效率最大值约为92%,最小值约为86%。并且对该马达端面密封的改进可使其容积效率在一定程度上有所提高。该研究为双定子摆动液压马达的设计和应用提供参考。  相似文献   

6.
为研究参数变化对连通式油气悬架刚度与阻尼特性的影响,该文建立了连通式油气悬架非线性数学模型,并考虑了液体的压缩和运动过程中摩擦力的影响。通过搭建试验台并建立仿真模型,将理论、试验、仿真数据进行对比,误差在10%以内,验证了数学模型的正确性。基于该数学模型讨论了初始充气压力、激励频率与初始相位差变化对连通式油气悬阻尼刚度特性的影响,分析结果表明:初始充气体积增大连通式油气悬架刚度减小;激励频率与左右两侧悬架缸相位差增大系统刚度、阻尼均增大;初始充气压力变化对其性能影响较小。  相似文献   

7.
农用车辆驾驶室减振器节流阀片应力特性分析及相关问题研究普遍依赖于有限元法,尚缺少有效的解析算法,给工程应用带来诸多不便。针对该问题,该研究建立驾驶室减振器节流阀片区段受压力学模型,推导基于阀片应力影响系数的周向、径向及复合应力解析表达式,进而提出一种简洁实用的减振器节流阀片区段均布压力作用下应力特性解析算法,该算法确切计及了区段压力、阀片片数、各片厚度、阀口半径、上垫片半径及下垫片半径等参数。实例计算分析和有限元仿真对比结果显示在减振器工作压力下,各片阀片不同半径位置处周向应力、径向应力及复合应力解析值与仿真值的相对偏差均在1.5%以内,表明了所提算法的正确性和可靠性。在此基础上,建立了基于该解析算法的驾驶室减振器叠加节流阀片应力快速校核方法、节流阀片厚度拆分设计方法及优化设计准则,并进行实例设计和减振器台架试验,结果显示所设计减振器与原减振器阻尼力最大相对偏差仅为4.6%,且100.0万次以上仍可正常工作。该算法避免了有限元法的诸多局限,可有效应用于揭示减振器叠加节流阀片结构参数与应力内在物理联系、结构参数对应力影响规律,为相关工程技术人员提供了更为实用、便捷的有效工具。  相似文献   

8.
拖拉机液压机械无级变速器的速比控制   总被引:8,自引:6,他引:2  
为了实现无级调速拖拉机工作时的速比调节与动力换段,该文对其液压机械无级变速器的速比控制进行了研究。根据变速器的速比特性和液压系统辨识试验,确定了变量泵励磁电流、泵-马达速比与变速器速比三者之间的稳态和动态数学模型。基于该模型,设计了基于单神经元网络的神经PID控制器,在Matlab/Simulink下研究了其参数整定规律,得到了一组可行参数并通过了试验验证;在此基础上提出了开环与闭环相结合的继电控制模式,使神经PID控制器工作于特定的区间和条件之下,有效避免了频繁的换段和马达换向问题;并通过台架试验证实了该算法的正确性及可行性。试验中,每个偏向的开环调节时间为5~6 s,调速过程平稳、无静差,变速器能在包含换段点在内的任意速比条件下可靠运行。该研究可为变速器的后续设计及动力匹配提供参考。  相似文献   

9.
液压冲击下五星式径向柱塞马达配流轴疲劳分析   总被引:2,自引:2,他引:0  
为探明某内五星式径向柱塞马达在液压冲击下的疲劳损伤机理,应用AMESim软件研究分析了液压马达油路中因阀门突然关闭而产生的液压冲击波及其最大压强值,将液压冲击的冲击压强作为马达配流盘中流体分析的压强边界,计算得出高压流体作用在配流盘上的冲击压强,由此得到配流盘与上壳体之间的正压力,进而得到配流轴的工作负荷,分析配流轴的疲劳损伤形式。液压系统仿真分析表明,当马达转速由400 r/min迅速降低至0的过程中,系统最大压强可达36 MPa,配流盘上的冲击反压强可达34.9 MPa,配流盘与壳体之间的摩擦阻力矩可达60.02 N·m,在此负载条件下,配流轴疲劳寿命最低至2 197.6次,发生在配流轴与配流盘相接触区域,极易发生疲劳损伤。实际马达的损伤情况与所分析结论相符合,证明采用该分析方法能有效预测马达疲劳损伤情况。该研究的开展为液压马达配流轴和配流盘结构设计提出了参考,同时为液压油路的设计提出了要求。  相似文献   

10.
液压机械全功率换段方法及功率过渡特性   总被引:3,自引:2,他引:1  
为了解决液压机械无级传动换段过程中存在的动力中断和换段冲击等问题,基于当前段与目标段双制动器结合重叠,提出全新的液压机械全功率换段方法,并深入探究全功率换段过程功率过渡机理及控制方法。该文以两段等差式液压机械为研究对象,在双制动器结合重叠的动力换段方式的基础上,提出了五阶段液压机械全功率换段方法,通过理论分析与试验相结合的方法,研究了换段过程中液压机械转矩特性和功率特性随液压回路压差的变化规律,液压回路压差随变排量液压元件排量的变化规律。结果表明,在双制动器结合重叠的动力换段中,通过调节变排量液压元件的排量比,能够控制液压回路的高低压侧压差改变、互换,进而控制当前段制动器转矩向目标制动器有序转移,在双制动器结合重叠中完成换段,实现换段过程传递全功率。输入转速保持1 000 r/min不变,进出换段时定排量液压元件转速无波动,输出扭矩波动量约为5 N·m(负载扭矩为60 N·m和150 N·m)。该研究揭示了液压机械全功率换段的功率过渡机理,可为全功率换段的后续研究及液压机械应用提供了参考。  相似文献   

11.
车辆钢板弹簧悬架系统减振器最佳阻尼匹配   总被引:2,自引:2,他引:0  
阻尼匹配是制约钢板弹簧悬架系统减振器设计的关键问题。根据1/4车辆二自由度行驶振动模型,利用随机振动理论,建立了悬架系统最优阻尼比及悬架动挠度和振动速度均方根值数学模型。在此基础上,通过分析、处理钢板弹簧加载-卸载试验所测得的载荷及变形数组数据,建立了在实际行驶工况下的钢板弹簧等效阻尼数学模型;根据悬架系统最优阻尼比及钢板弹簧的等效阻尼,得到了所需匹配减振器在悬架系统中应承担的最佳阻尼比;利用平安比及双向比,建立了钢板弹簧悬架系统最佳阻尼匹配减振器的速度特性,并通过仿真分析和实车行驶平顺性试验验证了钢板弹簧悬架系统减振器最佳阻尼匹配设计方法的正确性及有效性,利用该设计方法匹配减振器后的车身垂直振动加速度均方根值与传统经验法相比降低了6.72%,能够有效改善车辆的乘坐舒适性。该研究可为钢板弹簧悬架系统减振器的设计提供参考。  相似文献   

12.
为了解决采用串联型液压混合动力系统车辆节能控制问题,该文在对串联型液压混合动力系统工作原理进行分析的基础上,考虑到系统的动态特性和液压储能器气体温度与热传递对储能器工作状态的影响,建立了系统数学模型。根据车辆行驶理论,考虑到车辆制动能的回收与再利用和串联型液压混合动力系统与发动机的匹配问题,设计了一种串联型液压混合动力系统综合控制策略,该控制策略通过主控制单元、液压泵控制单元、二次元件控制单元和发动机控制单元相互配合实现。运用Matlab/Simulink进行了控制系统仿真分析,仿真结果表明所设计的控制策略能准确实现驾驶员行驶车速要求,液压储能器能有效回收车辆制动能,在减速结束时能及时释放储能器能量以节约发动机所消耗的燃油,并能够使储能器能量耗尽时发动机及时介入保证车辆正常行驶。研究结果可为静液压传动车辆节能减排设计提供参考。  相似文献   

13.
基于摩擦阻尼的高地隙农机底盘悬架减振特性   总被引:3,自引:3,他引:0  
根据高地隙自走式农业机械的行驶作业要求,设计了一种包含尼龙摩擦阻尼装置的独立式立轴空气悬架系统。在此基础上,考虑空气弹簧和橡胶轮胎自身阻尼对悬架减振的影响,建立了具有粘性屈服恢复力摩擦阻尼模型的悬架系统垂向动力学模型,并基于该模型进行了仿真分析。最后,将所设计的悬架系统装配到高地隙玉米去雄机上进行实车试验。仿真和试验结果表明,随着摩擦阻尼力的增大,簧载质量和簧下质量加速度均方根值呈现先减小后增大的趋势,且在1 800 N附近时达到最小;悬架动挠度均方根值在摩擦阻尼力增大的整个过程中都持续减小。在1 800 N的摩擦阻尼力下,对仿真和试验数据进行时域和频域分析可得,簧载和簧下质量共振频率分别为1.2、10.7 Hz和1.1、11.4 Hz;加速度均方根值分别为1.874、8.953 m/s2和1.604、9.653 m/s2。结论表明,试验结果和仿真结果具有很好的一致性,所设计的悬架系统可以较好地衰减振动,具有较高的实用性。  相似文献   

14.
为降低小型装载机负荷传感液压转向系统在流量方面的能量损失,提出用伺服电机独立驱动定量泵的电液流量匹配转向控制方法。该文首先在Simulation X中建立了装载机整机联合仿真模型,对采用负荷传感转向系统的装载机在原地转向工况下进行仿真。构建了装载机试验测试系统,通过对比仿真与试验结果,验证了仿真模型的准确性。进一步将电液流量匹配转向方法应运于此仿真模型。维持与负荷传感系统相同转向特性的条件下,该系统在低速空载工况下使液压泵能量消耗相对负荷传感系统降低36%,高速空载为37%,中速正载为39%,中速偏载为28%,电液流量系统平均降低了转向过程中泵输出能耗约30%。该文提出的研究方法对装载机转向节能研究提供了参考。  相似文献   

15.
为了研究机电耦合对电动轮系统的纵向振动特性的影响,该文首先建立了电动轮纵扭耦合动力学模型,基于该模型分析了考虑机电耦合前后电动轮系统模态特征的变化,并通过轮毂电机驱动电动轮系统的振动特性试验,验证了该动力学解析模型的准确性;其次分析了机电耦合对电动轮系统纵向振动的影响,指出转矩波动引起定转子发生相对运动,导致电机发生偏心,从而产生不平衡磁拉力。不平衡磁拉力的作用导致非簧载部分纵向振动出现不同程度的恶化,当轴承刚度为12.5 MN/m时,在定子纵向平移模态频率下电机的定转子、轮胎纵向振动加速度分别恶化113.35%、105.69%、27.15%,影响其使用寿命和结构安全,而对于簧载部分纵向振动的影响较小。  相似文献   

16.
针对泵站机组运行引起的供排水穿堤管道振动问题,该研究提出一种磁流变阻尼器(magnetorheological damper,MRD)-谐调质量阻尼器(tune mass damper,TMD)有机融合(magnetorheological-tune mass damper,MRTMD)的主被动混合控制体系。利用基于线性二次型(linear quadratic regulator,LQR)最优控制算法,以结构响应加速度取最小为目标函数,优化得到主被动混合振动控制体系相关参数,以提高减振效率和稳定性。通过模拟泵站运行荷载与冲击荷载激励下的结构动力响应控制效果分析,探讨混合控制装置输出阻尼力的鲁棒性和减振效果。将MRTMD应用于穿堤管道工程,从时频域角度分析了所提出的主被动混合控制体系减振效率与有效减振频带范围,结果表明:MRTMD对结构振动耗能能力强,减振频带范围广,效果优于单一的TMD和MRD控制;针对穿堤管道结构振动响应的控制效果良好,加速度响应减振效率达到37.56%~38.07 %,位移响应减振效率达到40.23%~41.38 %;对机组主轴转动引起的转频、倍频等机械振动均可有效减弱,特别是对水流冲击、叶轮内形成的轴向漩涡造成的中低振动频率减振效果显著。该方法可为穿堤管道结构减振控制提供参考,保障穿堤管道结构安全运行。  相似文献   

17.
摩托车车架的疲劳可靠性是摩托车整车最重要的性能之一,为了对摩托车车架的疲劳可靠性进行准确高效的分析和评价,提出了基于时频域误差加权和力-位移混合控制的摩托车车架多轴道路模拟试验方法,结合采集的实际行驶道路载荷谱和开发的车架多轴道路模拟试验台,采用时域和频域误差加权系数均为0.5的力-位移混合控制多轴道路模拟试验使摩托车车架实际行驶道路载荷谱模拟迭代精度达到93%,并提取了多轴道路模拟激励谱。基于摩托车车架多轴道路模拟试验系统,利用HYPERWORKS有限元分析软件和MSC.ADAMS多体动力学仿真软件,建立了摩托车车架刚柔耦合多轴道路模拟虚拟试验平台,以多轴道路模拟激励谱为输入进行了仿真分析,并采用多轴道路模拟试验进行了结果验证,从而建立了基于多轴道路模拟激励谱的摩托车车架虚拟试验方法。结果表明,仿真结果和试验结果在时频域中趋势和幅值都吻合很好,时域曲线几乎重合,只是频域曲线在13 Hz和24 Hz附近幅值略有差异,但频域曲线均方根值误差均在10%之内,基于多轴道路模拟激励谱的摩托车车架虚拟试验方法能够对摩托车车架疲劳可靠性进行高效准确的考核。  相似文献   

18.
农用无人机药箱防晃内腔结构优化设计   总被引:1,自引:1,他引:0  
针对农用无人机易受药液晃动造成失稳的问题,分别采用水平阻尼格栅和竖直阻尼格栅对药箱的内腔结构进行优化设计.以激励方向液体重心相对箱体的位移幅值和液体对箱体侧壁的冲击力为评价标准,采用Fluent软件中的流体体积(volume of fluid,VOF)多相流及非稳态k-epsilon湍流模型对无人机侧向急停激励下,10%、30%、50%、70%和90%的充液率,格栅布置高度为箱体高度的30%、50%和70%,采用不同槽数的水平和竖直阻尼格栅的防晃效果进行了仿真.仿真结果表明,2种阻尼格栅都减小了晃动液体在激励方向的重心变化.在液体对箱体冲击力方面,当液面高度和布置位置重合时水平阻尼格栅会造成液体对箱体的冲击力分别增加34.4%、24.5%和15.1%,其余位置的水平格栅可以减小液体对箱体的冲击力,并在槽数为6时趋于稳定;竖直阻尼格栅使30%、50%和70%充液率下液体对药箱的冲击力降低了42.6%、51.1%和61.7%,并在格栅槽数为9时趋于稳定.据此,选取在30%和70%的药箱高度位置布置6槽的水平阻尼格栅以及9槽竖直格栅作为最终药箱的内腔结构,并制作了实物进行台架试验,试验结果与软件仿真结果相符,优化改进后的药箱对液体的晃动有较好的抑制作用.  相似文献   

19.
考虑驱动电机激振的电动车油气悬架系统振动分析   总被引:5,自引:5,他引:0  
电传动车辆中轮边驱动电机壳体振动直接作用于悬架下端,为评价电机激振力对悬架系统的输出影响,在考虑电机—路面不平度耦合激励影响下构建系统运动微分方程组进行分析。应用气体状态方程和油液孔口出流方程建立了单气室油气悬架非线性数学模型,采用麦克斯韦应力法对异步电机竖直方向激振力进行求解,采用白噪声滤波法模拟时域内随机路面,将耦合激励信号作用于系统模型,将悬架输出力和电机激振力带入系统运动方程组联立求得数值解,改变参数可进行多工况下平顺性仿真,并通过实车试验与耦合振动模型进行了对比。结果表明在常见正弦路面激励下,在考虑电机激振影响下系统输出振幅约增大10%且达到稳定所需时间更长。高频激振力使系统加速度功率谱幅值变大,在激振力自身频率段影响明显,不可忽略。通过分析实测数据与仿真数据,验证了耦合激励模型在实车中的有效性;耦合激励模型对电动车悬架及整车平顺设计有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号