首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
7种不同树种凋落叶对模拟酸雨缓冲性能的研究   总被引:1,自引:0,他引:1  
采用浸提法,研究杉木、火力楠、木荷、楠木、马尾松、格氏栲和闽粤栲7种树种凋落叶对模拟酸雨的缓冲性能。结果表明:各树种凋落叶对模拟酸雨的缓冲能力中,火力楠凋落叶最强;楠木、木荷、杉木和马尾松凋落叶的缓冲能力相仿,处于中间的位置;格氏栲和闽粤栲凋落叶的缓冲能力最弱。在pH 2.7和pH3.5的模拟酸雨中,7种树种凋落叶均提高模拟酸雨溶液的pH值;在pH 5.0的模拟酸雨中,除火力楠外,其余6种树种凋落叶均未能提高模拟酸雨溶液的pH值。7种树种凋落叶在模拟酸雨作用下溶液pH值的上升幅度随着模拟酸雨酸度的增加而增加。除了pH 2.7模拟酸雨中格氏栲凋落叶盐基离子浸提总量大于木荷外,3个酸度梯度模拟酸雨盐基离子浸提总量的关系均是火力楠闽粤栲木荷格氏栲楠木杉木马尾松。7种树种除火力楠和木荷凋落叶外,各树种凋落叶盐基离子浸提总量均随着模拟酸雨酸度的增加而增加;各盐基离子的浸提量则随模拟酸雨酸度变化呈现出不同的变化趋势。通过综合分析得知,7种不同树种凋落叶对模拟酸雨的缓冲能力与凋落叶的pH值密切相关;盐基离子的淋溶虽然对缓冲模拟酸雨产生了重要作用,但是凋落叶对酸雨的缓冲性能是凋落叶与酸雨通过多种途径综合作用的结果。  相似文献   

2.
凋落叶多样性对其持水性能的影响   总被引:1,自引:0,他引:1  
将新鲜的尚未分解的木荷、火力楠、乳源木莲、楠木、杉木凋落叶组合为杉乳楠(SRN)、杉火楠(SHN)、杉火乳(SHR)、杉火乳楠(SHRN)、杉火乳楠荷(SHRNM)凋落叶多样性组合,以杉木凋落叶(S)为对照,采用室内浸水法,探究6组凋落叶多样性组合之间持水能力的差异。结果表明:各组凋落叶多样性组合的最大持水率大小关系为SRNSSHRSHRNSHRNMSHN,最大吸水速率的大小关系为SSRNSHRSHRNMSHRNSHN;各组凋落叶多样性组合的失水率均随时间的增加而提高,失水速率随着时间的变化不断减小,最大失水率的大小关系是SSRNSHRNSHRSHRNMSHN,最大失水速率大小关系为SRNSSHRNSHN=SHRNMSHR;失水试验24h后,各组凋落叶多样性组合的含水率由大到小为SHRSRNSHRNMSHRNSSHN;凋落叶多样性组合中各树种凋落叶之间对水分的吸收与流失均无促进作用。通过分析发现,持水率、失水率与时间的关系可用对数函数表示,吸水速率和失水速率符合幂函数关系。综合比较6组凋落叶多样性组合的持水性能,SHR与SRN凋落叶多样性组合的持水性能较好,可以更好的涵养水源。  相似文献   

3.
6种不同沿海防护混交林凋落叶持水性能比较   总被引:1,自引:0,他引:1  
[目的]了解并比较沿海地区6片木麻黄与竹子防护混交林凋落叶持水性能状况,为沿海防护林树种选择提供理论依据。[方法]通过设置标准地,样方搜集和室内浸水试验,测量凋落叶自然含水率、持水率、吸水速率、失水率和失水速率,比较分析混交林凋落叶持水性能。[结果]木麻黄与花吊丝竹混交林凋落叶的最大持水率较高,其次为吊丝单竹+木麻黄、勃氏甜龙竹+木麻黄、绿竹+木麻黄、麻竹+木麻黄和大头典竹+木麻黄;而自然含水率从高到低依次为勃氏甜龙竹+木麻黄花吊丝竹+木麻黄绿竹+木麻黄大头典竹+木麻黄吊丝单竹+木麻黄麻竹+木麻黄;从凋落叶的吸水和自然风干过程来看,6种混交凋落叶的持水率、吸水速率、失水率和失水速率在浸泡或自然风干的0~2h有一个迅速变化的趋势,2h后凋落叶持水率和吸水速率逐步变缓,16h后逐渐趋于平稳。[结论]回归分析结果表明,持水率和浸泡时间及失水率和风干时间之间的关系均为对数函数关系,而吸水速率与浸泡时间及失水速率与风干时间的关系均为幂函数关系。  相似文献   

4.
三种阔叶林凋落物的持水特性   总被引:19,自引:1,他引:19  
对火力楠、荷木和黎蒴的凋落物的储量、持水量、持水率和吸水速率进行了研究。结果表明,火力楠、荷木和黎蒴林地的凋落物干重分别为10488,5159,5583kg/hm^2。浸泡2h前凋落物持水量呈现火力楠林地〉黎蒴林地〉荷木林地,浸泡2h后为黎蒴林地〉火力楠林地〉荷木林地。3种林分中黎蒴林地的凋落物最大持水量在居首位,达17709kg/hm^2,火力楠林地居中,为16576kg/hm^2,荷木林地较小,为13374kg/hm^2。不同浸泡时间段的凋落物持水率均呈现黎蒴林地〉荷木林地〉火力楠林地。火力楠、荷木和黎蒴林地的凋落物最大持水率分别为158%,258%和309%。凋落物持水量和凋落物持水率随着浸泡时间的增加按照对数关系增加。凋落物吸水速率呈现黎蒴林地〉荷木林地〉火力楠林地。各林分的凋落物的吸水速率随浸泡时间的增长按反曲线关系下降。  相似文献   

5.
不同发育阶段杉木人工林凋落物的生态水文功能   总被引:6,自引:4,他引:2  
对福建三明莘口教学林场不同发育阶段杉木人工林进行凋落物现存量、持水特性及失水特性研究。结果表明:不同发育阶段杉木人工林凋落物的现存量表现为老龄林(3.47t/hm2)>中龄林(2.24t/hm2)>幼龄林(1.53t/hm2)。凋落物持水量表现为老龄林>中龄林>幼龄林;最大持水量表现为老龄林(11.8t/hm2)>中龄林(7.73t/hm2)>幼龄林(4.24t/hm2);最大持水率表现为中龄林(477.48%)>幼龄林(376.57%)>老龄林(291.98%);最大失水量表现为老龄林(4.29t/hm2)>中龄林(2.91t/hm2)>幼龄林(1.71t/hm2);最大失水率表现为中龄林(129.90%)>老龄林(124.15%)>幼龄林(112.04%)。凋落物层吸水速率均表现在前0.5h内最快,说明凋落物层具有快速拦截地表径流的作用。凋落物的持水量、持水率、失水量、失水率与时间之间的最佳拟合关系式为W=a+bln t;吸水速率、失水速率与时间之间的最佳拟合关系式为V=atb。老林龄杉木凋落物层具有现存量大、持水量大、吸水速率强等特点,具有较强的生态水文功能。  相似文献   

6.
选取赣江中游典型水源涵养林中常见的3种常绿针叶树、3种落叶阔叶树、4种常绿阔叶树和5种蕨类植物的凋落叶,通过室内浸泡试验和失水试验研究了植物凋落物的持水和失水特征。结果表明:(1)凋落物的吸水速率均显示出随浸泡时间增加而降低的趋势,到8 h基本趋于平缓,24 h达到饱和状态,而失水速率随着失水时间的增加逐渐减少,到12 h后趋于稳定;(2)蕨类植物凋落物的饱和持水量(202.5%)显著高于落叶阔叶树(173.0%)、常绿阔叶树(124.6%)和常绿针叶树(86.5%),而24 h内蕨类植物的失水量(65.4%)与落叶阔叶树(65.4%)之间没有显著差异,但均高于常绿阔叶树(53.6%)和常绿针叶树(42.8%);(3)凋落物饱和持水量和平均失水速率与其初始密度呈显著负相关(R~2分别为0.428和0.266),而与初始比叶面积呈显著正相关(R~2分别为0.488和0.398),这表明叶密度和比叶面积是决定物种间凋落物持水和失水特征差异的重要因素。研究结果揭示了蕨类植物凋落物在森林水源涵养功能中的重要作用,为赣江中游水源涵养林生态系统服务功能评估和林业管理措施制定提供科技支撑。  相似文献   

7.
为揭示森林生态系统养分循环和水分循环对氮沉降的响应机制,以滇中高原华山松(Pinus armandii)和云南松(Pinus yunnanensis)为研究对象,开展野外氮添加下凋落叶、枝原位分解研究试验,设置对照、低氮、中氮和高氮共4个处理,利用尼龙网袋法和室内浸泡法,探究凋落叶、枝养分元素残留率、持水量和持水率及吸水速率对氮添加的响应。结果表明:(1)随着分解时间的持续,2种林分凋落叶、枝碳(C)、氮(N)、磷(P)分别呈释放、富集—释放、富集过程,凋落叶C、N、P残留率显著小于凋落枝(p<0.05);(2)凋落叶最大持水量和最大吸水速率显著大于凋落枝(p<0.05),分解24个月时,与CK相比,LN处理下2种林分凋落叶、枝C,华山松凋落叶N残留率降低1.98%~7.27%,10.79%,HN处理下2种林分凋落叶、枝C,华山松凋落叶、枝和云南松凋落枝N,华山松凋落枝P残留率则增加4.26%~9.08%,11.94%~44.51%,42.42%;(3)分解24个月时,与CK相比,LN、MN和HN处理华山松凋落叶、枝和云南松凋落叶最大持水量和最大吸水速率分别降低11.44%~25.24%,5.81%~32.23%,云南松凋落枝则增加15.48%~24.26%,17.97%~23.74%。 (4)2种林分凋落叶、枝持水量随浸泡时间延长而增加,而吸水速率则为降低,持水量与浸泡时间的关系均呈对数函数关系(m=a+bln t),吸水速率与浸泡时间的关系呈幂函数关系(v=at-b)。(5)C与云南松凋落枝持水性呈正相关关系(p<0.05),N与华山松凋落枝、P与华山松和云南松凋落叶持水性呈负相关关系(p<0.05)。综上,氮添加通过改变凋落物分解过程中C、N、P养分元素残留特征进而影响其持水性。  相似文献   

8.
南亚热带杉木林改造对土壤及凋落物持水能力的影响   总被引:1,自引:0,他引:1  
对杉木林进行改造,是提高林分质量和生态效能的重要措施。该文研究了杉木林改造前期对土壤及凋落物持水能力的影响。结果表明,在杉木林改造前期,不同林龄段试验林间土壤容重、孔隙度和土壤持水量差异不显著(P > 0.05),但随林龄的增加呈上升趋势,土壤涵养水源能力有所增加。凋落物量及其持水能力随改造林龄的增加呈上升趋势,9~11 a林龄试验林凋落物及持水能力显著高于3~5 a林龄试验林(P < 0.05),而其凋落物持水能力与5~7 a林龄试验林差异不显著(P > 0.05)。浸水试验表明,凋落物持水率随浸泡时间的增加呈对数曲线增长,吸水速率与浸泡时间呈反函数关系。凋落物最大持水量远小于土壤最大持水量,仅为土壤的0.18%,0.11%和0.08%,土壤为森林涵养水源的主体。通过分析试验林土壤和凋落物持水能力发现,杉木+米老排+阴香+山杜英+枫香、杉木+火力楠+米老排+阴香+红荷和杉木+木荷+山杜英+香椿+山黄麻改造模式对土壤和凋落物持水能力影响效果较好,其水文功能较高。  相似文献   

9.
采用野外实地观测和室内浸水法对川西亚高山地区针阔混交林与针叶纯林林下苔藓凋落物的持水能力进行了对比研究.结果表明:(1)混交林林下苔藓凋落物层储量为10.02 t/hm~2,最大平均持水量为54.96 t/hm~2,最大平均持水率为839.70%;苔藓储量为2.43 t/hm~2,最大平均持水量为11.47 t/hm~2,最犬平均持水率为472.23%,吸水速率经过24 h从7 683.2 g/(kg·h)下降为256.5 g/(kg·h);凋落物储量为7.59 t/hm~2,最大平均持水量为24.07t/hm~2.最大平均持水率为317.22%.吸水速率经过24 h从8 530.1 g/(kg·h)下降为321.4 g/(kg·h).(2)针叶纯林林下苔藓凋落物层储量为9.37t/hm~2,最大平均持水量为45.70 t/hm~2,最大平均持水率为766.05%;苔藓储量为2.13 t/hm~2,最大平均持水量为9.68 t/hm~2,最大平均持水率为454.85%.吸水速率经过24 h从6 444.4 g/(kg·h)下降为231.4 g/(kg·h);凋落物储量为7.24 t/hm~2,最大平均持水量为21.20 t/hm~2,最大平均持水率为292.68%,吸水速率经过24 h从7 004.9 g/(kg·h)下降为251.4 g/(kg·h).因此,无论是持水量、持水率,还是吸水速率,混交林都强于针叶纯林.两种林分下,苔藓、凋落物持水率随浸泡时间的增加而增加,持水率与浸泡时间呈对数关系;苔藓、凋落物的吸水速率随浸泡时间的增加而降低,吸水速率与浸泡时间呈幂函数关系.  相似文献   

10.
以161个公里网格样地为基础,对尖峰岭热带雨林原始林和不同采伐方式(径级择伐和皆伐)下天然更新的次生林凋落物储量、持水量、持水率和吸水速率进行了研究。结果表明,原始林、径级择伐林和皆伐林的凋落物储量分别为6.42,6.29和6.66t/hm2;最大持水量分别为9.55,10.49和11.17t/hm2。3类型森林凋落物最大持水率大小依次为皆伐林(169.2%)>径级择伐林(168.0%)>原始林(155.6%),经Kruskal—Wallis H检验表明,原始林、径级择伐林和皆伐林凋落物最大持水率间差异显著。凋落物持水量和凋落物持水率随着浸泡时间的增加符合W=alnt+b模型而变化,凋落物吸水速率随着浸泡时间的增加依W=at-b模型下降。  相似文献   

11.
湖南省紫鹊界梯田区人工林凋落物持水特性   总被引:1,自引:0,他引:1  
通过对湖南省紫鹊界梯田区竹林与杉树混交林、竹林、草地、杉树林及板栗林5种植被凋落物样地调查,采用浸水实验和释水实验测定了各种类型凋落物的持水率、吸水速率、释水量和释水速率。结果表明,5种植被凋落物均具有较强的持水能力,最大持水率依次为420%(竹林与杉树林混交林),310%(竹林),283%(草地),252%(杉树林)和226%(板栗林);凋落物的持水率与浸泡时间之间呈对数函数关系,吸水速率与浸泡时间之间呈幂函数关系,释水量与释水时间之间呈对数函数关系,释水速率与释水时间之间呈幂函数关系,且以上函数拟合的相关系数R2均达到0.9以上。  相似文献   

12.
研究模拟氮沉降下凋落物分解特征对其持水性的影响,旨在为氮沉降背景下森林生态系统养分循环和水分循环相关研究提供理论依据。以滇中高原常绿阔叶林和高山栎林为研究对象,在野外开展模拟氮沉降下凋落叶、枝原位分解研究试验,设置0(对照CK),10(低氮LN),20(中氮MN),25(高氮HN) g/(m2·a)N共4种处理,利用尼龙网袋法和室内浸泡法,探究不同处理下凋落叶、枝质量残留率、持水量和持水率及吸水速率变化特征。结果表明:(1) 2种林分凋落叶、枝质量残留率随分解时间延长而减少;与CK质量残留率相比,LN处理2种林分凋落叶、枝无显著影响(p>0.05),MN和HN处理使常绿阔叶林凋落叶分解第16,19,23,24个月和HN处理高山栎林凋落叶分解第16个月分别增加5.05%~7.45%,7.88%~8.62%,4.72%。(2)与CK分解95%所需时间相比,LN处理使常绿阔叶林凋落叶、枝和高山栎林凋落枝分别增加0.549,0.366,0.402年,高山栎林凋落叶则减少1.011年,MN和HN处理使2种林分落叶、枝增加0.236~3.638年。(3)分解时间和氮沉降...  相似文献   

13.
三峡库区不同类型马尾松林枯落物层持水特性比较   总被引:4,自引:3,他引:1  
为了研究三峡库区不同林分类型马尾松林的枯落物持水性能,采用野外调查和室内浸泡法,对马尾松纯林(Ⅰ)、马尾松+香椿混交林(Ⅱ)、马尾松+檫木混交林(Ⅲ)、马尾松+盐肤木混交林(Ⅳ)、马尾松+槲栎+檫木混交林(Ⅴ)、马尾松+光皮桦混交林(Ⅵ)、马尾松+木姜子混交林(Ⅶ)7种马尾松林分类型枯落物持水特性进行了研究。结果表明:三峡库区不同林分类型马尾松林枯落物储蓄量为5.39~11.77t/hm~2,枯落物总厚度变化范围为2.14~3.73cm,枯落物总蓄积量排列顺序为ⅢⅣⅥⅡⅤⅠⅦ,最大持水量变化范围为11.94~23.42t/hm~2,最大持水率变化范围为198.53%~266.17%,7种类型马尾松林枯落物有效拦蓄量范围为8.34~15.90t/hm~2,有效拦蓄率范围为135.79%~195.81%,不同类型马尾松林枯落物有效拦蓄量排序与最大持水量排序相一致,均表现为ⅢⅤⅣⅠⅡⅥⅦ。而枯落物有效拦蓄率排序除了类型Ⅶ和类型Ⅱ,其他类型大小顺序与最大持水率保持一致。7种类型马尾松林枯落物持水量随着浸泡时间延长呈对数形式增加,浸泡5min时,不同林分类型枯落物吸水速率最大,浸泡1h后,不同层次枯落物吸水速率均呈现缓慢下降。吸水速率V与浸泡时间t以幂函数拟合效果较好,吸水速率随着浸泡时间延长以幂函数形式降低。  相似文献   

14.
马缨杜鹃不同花叶比例凋落物的分解程度和持水性能研究   总被引:3,自引:2,他引:1  
为揭示马缨杜鹃花叶凋落物对百里杜鹃保护区生态水文功能的影响,采用凋落物分解袋法及室内浸泡法对马缨杜鹃花、叶凋落物分解过程中的持水性能进行研究。结果表明:(1)马缨杜鹃花叶混合凋落物的累积分解率随分解时间及花比例的增加而增加,各花叶混合凋落物累积分解率在纯花及纯叶凋落物之间变化。(2)马缨杜鹃花叶混合凋落物的持水率与浸水时间呈对数函数关系(R=aln t+b,R~20.80),浸水初期2 h内迅速增加,2~8 h时缓慢增加,8 h后趋于平缓并逐渐达到饱和;而凋落物的持水速率均随着浸泡时间的增加而下降,持水速率与浸泡时间呈幂函数关系(V=kt~n,R~20.99),持水速率在浸水初期4 h最大,后逐渐趋于一致;(3)马缨杜鹃花叶混合凋落物最大持水率随着分解时间及花比例的增加逐渐升高,但不同花叶比例凋落物持水率的差异逐渐减小;(4)马缨杜鹃花叶凋落物最大持水量受分解率和最大持水率的共同调控,在分解0~360天时随花比例增加而增加,分解450天后花叶比例不再影响马缨杜鹃林下凋落物层的最大持水量。整体来看,马缨杜鹃花凋落物对叶凋落物分解及花叶凋落物持水功能有很大的影响,对花凋落物进行回收利用不宜超过现存量的50%。  相似文献   

15.
龙门山断裂带主要森林类型凋落物累积量及其持水特性   总被引:2,自引:1,他引:1  
采用野外实地调查与室内控制浸提相结合的方法,对龙门山断裂带常绿阔叶林、落叶阔叶林、针阔混交林、常绿针叶林4种森林类型的凋落物储量、持水量、吸水速率进行了研究。结果发现,不同森林类型凋落物总储量大小顺序为:常绿针叶林(8.26t/hm2)落叶阔叶林(6.80t/hm2)针阔混交林(5.52t/hm2)常绿阔叶林(4.61t/hm2),且未分解层累积量所占比例均小于半分解层。不同森林类型不同分解程度凋落物的持水量和持水率与浸泡时间均呈对数关系,其吸水速率与浸泡时间呈幂函数关系。研究区4种森林类型半分解层凋落物的持水能力均强于分解层,而落叶阔叶林和针阔混交林持水能力较强,其次是常绿针叶林,常绿阔叶林最低。研究表明,在该区森林植被恢复和重建过程中,应充分考虑半分解层凋落物对水土保持的作用,且宜优选落叶阔叶林和针阔混交林模式进行森林植被恢复。  相似文献   

16.
滨海沙地不同人工林凋落物现存量及其持水特性   总被引:5,自引:3,他引:2  
为了研究滨海沙地沿海防护林凋落物水源涵养功能,采用野外调查和室内浸泡相结合,对滨海沙地4种典型人工林(木麻黄林、湿地松林、尾巨桉林和纹荚相思林)不同分解阶段的凋落物现存量、持水率、持水量和吸水速率进行研究。结果表明:相同林龄的4种人工林凋落物现存量表现为木麻黄林(19.12 t/hm~2)湿地松林(17.51 t/hm~2)尾巨桉林(10.90 t/hm~2)纹荚相思林(10.13 t/hm~2),半分解层凋落物储量占比高于未分解层;4种人工林最大持水率在140.55%~206.47%,为尾巨桉林纹荚相思林木麻黄林湿地松林,最大持水量在20.75~30.85 t/hm~2,为木麻黄林湿地松林尾巨桉林纹荚相思林,4种人工林凋落物最大持水率和最大持水量均为半分解层大于未分解层,不同分解阶段凋落物持水率和持水量与浸水时间呈对数关系;4种人工林不同分解阶段凋落物平均吸水速率在前0.25 h内差异较大,未分解层中尾巨桉林最大为2.05 mm/h,半分解层中湿地松林最大为4.32 mm/h,不同分解阶段凋落物吸水速率与浸水时间均存在幂函数关系;凋落物有效拦蓄深为木麻黄林(2.45 mm)湿地松林(2.04 mm)尾巨桉林(1.87 mm)纹荚相思林(1.72 mm)。综合来看,木麻黄林凋落物的持水能力最强,湿地松林次之,之后是尾巨桉林和纹荚相思林,说明从凋落物水源涵养能力来看,木麻黄林和湿地松林更利于滨海沙地的水源涵养。  相似文献   

17.
韶关地区6种阔叶树种幼林的凋落物持水特性研究   总被引:3,自引:0,他引:3  
对3年生樟树(Cinnamomum camphora)、大叶女贞(Ligustrum Lucidum)、观光木(Tsoongioden-dron odorum)、山杜英(Elaeocar pus sylvestris)、乳源木莲(Manglietia yuyuanensis)和乐昌含笑(Michelia cha pensis)的幼林凋落物持水特性进行了研究.结果表明,各林地的凋落物最大持水量为乳源木莲林地>乐昌含笑林地>大叶女贞林地>观光木林地>樟树林地>山杜英林地.林地凋落物的最大持水率呈现观光木林地>乳源木莲林地>乐昌含笑林地>樟树林地>山杜英林地>大叶女贞林地.凋落物持水量和浸泡时间的关系及凋落物持水率与浸泡时间的关系按照对数方程变化,凋落物吸水速率与浸泡时间的关系按照负指数方程变化.  相似文献   

18.
重庆市几种常见经济林凋落物持水性能研究   总被引:1,自引:0,他引:1  
2017年7—9月采用野外观测与室内浸提法相结合的方法,对重庆市5种常见经济林凋落物的蓄积量、自然含水率、最大持水率、吸水速率及有效拦蓄水量进行了研究。结果表明:不同经济林的凋落物蓄积量有一定差异,总体表现为柑橘林>花椒林>核桃林>脆红李林>雷竹林;柑橘林、核桃林、花椒林、脆红李林、雷竹林的凋落物最大持水量分别为14.56、7.56、7.84、1.93、5.26 t/hm2,最大持水率分别为325.98%、286.88%、240.01%、242.86%、170.06%; 5种经济林凋落物的持水量和持水率均随着浸泡时间的延长而呈对数函数增加,吸水速率则呈幂函数下降,所有凋落物的吸水过程均经历快速(0~1 h)、缓慢(1~10 h)、停滞(24 h) 3个阶段; 5种经济林按凋落物对降雨的有效拦蓄量排序为柑橘林>花椒林>核桃林>脆红李林>雷竹林,相关性分析表明凋落物对降雨的有效拦蓄量与凋落物蓄积量和最大持水率成显著正相关关系,而与自然含水率相关性不显著。  相似文献   

19.
南亚热带5种典型人工林凋落物水文效应   总被引:2,自引:0,他引:2  
以广西国有高峰林场的5种不同人工林(马尾松林、杉木林、桉树林、米老排林、红锥林)为研究对象,结合野外调查和室内浸水法,对各人工林凋落物层的水文效应进行定量分析。结果表明:(1)5种林分凋落物蓄积量范围在1.96~9.05 t/hm~2,大小顺序为红锥林杉木林马尾松林桉树林米老排林。(2)5种林分凋落物中,杉木林最大持水量最大,为14.23 t/hm~2,马尾松林最小,为6.26 t/hm~2;米老排林凋落物最大持水率最大,为577.98%,红锥林最小,为135.46%。(3)杉木林凋落物的有效拦蓄量最大,为10.18 t/hm~2,马尾松林最小,为4.07 t/hm~2;米老排林凋落物有效拦蓄率最大,为463.35%,红锥林最小,为92.38%。(4)回归分析表明,凋落物持水量与浸水时间的关系符合对数函数关系(Q=aln t+b(R~20.773)),凋落物吸水速率和浸水时间的关系符合幂函数关系(V=kt~n(R~20.997))。持水过程中,各林分凋落物均表现为在1 h内持水量迅速增加,1 h后增加速度变慢,在10~12 h之后,吸水基本停止。综上,杉木林、米老排林凋落物层水源涵养功能较强。  相似文献   

20.
贺兰山4种典型森林类型凋落物持水性能研究   总被引:6,自引:0,他引:6  
采用野外实地观测与室内浸提法,对贺兰山4种典型森林类型(油松青海云杉混交林、油松山杨混交林、油松纯林和青海云杉纯林)林地凋落物的储量、持水量、持水率和吸水速率进行了研究。结果表明:4种类型的林分凋落物储量大小依次为青海云杉纯林>油松云杉混交林>油松纯林>油松山杨混交林;油松纯林、油松云杉混交林、青海云杉纯林和油松山杨混交林的凋落物最大持水量分别为38.46,40.11,46.78,36.35t/hm2;最大持水率分别为152.56%、150.79%、144.43%和184.14%,各林分凋落物的持水量和持水率都随着浸泡时间的增加按照对数方程增加;吸水速率呈现油松山杨混交林>油松云杉混交林≥油松纯林>青海云杉纯林,且各林分的凋落物吸水速率随浸泡时间的增长按幂函数方程下降。有效拦蓄量林型间变化范围为10.7~15.73t/hm2,油松山杨混交林最大,为15.73t/hm2,油松纯林(14.05t/hm2)和油松云杉混交林(11.98t/hm2)次之,青海云杉纯林最小,仅为10.7t/hm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号