首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
The suitability as growing media of composts made from pine bark or pine bark cocomposted with goat manure or sewage sludge and either inoculated or not inoculated with effective microorganisms, was evaluated under greenhouse conditions with and without fertilization using cabbage as the test crop. The treatments were replicated three times and arranged in a randomized complete block design in a fibre glass covered greenhouse. Cabbage seedlings were grown in cavity trays for five weeks, after which plants were harvested and fresh and dry weights determined. Samples were also analyzed for N, P, K and selected heavy metal concentrations. Results revealed that pine bark-goat manure cocomposts supported good seedling growth and could thus be good substitutes for pine bark alone as a growing medium where goat manure or similar manures are available. The results also showed that despite the superior nutritional value of these alternative growing media, nutrient supplementation may still be necessary where seedlings are kept in the nursery for extended periods due to nutrient exhaustion through plant uptake and leaching. Pine bark-sewage sludge compost also had positive effects on seedling growth but could only be recommended as a growing medium for nonfood plants because its composting did not reach the thermophillic temperatures necessary for adequate pathogen kill. Inoculation with effective microorganisms improved seedling growth in sewage sludge and goat manure based composts but the mechanisms involved remain to be established.  相似文献   

2.
Composting broiler litter (a mixture of manure, bedding material, and wasted feed) with commonly available high-C substrates may be a viable alternative to reduce current land disposal practices for litter. Broiler litter with wood shavings as a bedding material and broiler litter with peanut hulls as a bedding material were composted with wheat straw, peanut hulls, pine bark and paper mill sludge in 0.33 m3 batch reactors. Litters and C substrates were mixed to achieve C:N ratios of approximately 30:1. Dry weight, total N, total C, temperature, electrical conductivity and pH were determined at regular intervals. Maximum temperatures peaked near 70°C within 2.25 d after mixing peanut hulls with litter and within 2.58 d for pine bark and litter. Composts made from paper mill sludge approached 50°C within 3.71 d. Wheat straw composts never exceeded 40°C which could present potential health problems associated with pathogenic microorganisms. Mass loss and C:N ratio gradually declined and stabilized approximately 84 d after mixing. Mass loss averaged 73 percent for wheat straw compost, 33 percent for peanut hull composts, and 16 percent for the other mixes. Wheat straw compost C:N ratios stabilized near 14:1 and other mixes remained above 20:1, indicating N limited conditions for complete composting. Compost pH was 5.8 after 84 d from pine bark composted with wood shaving litter and was significantly lower than pH from paper mill sludge compost with an average pH of 6.9 but similar to all other compost mixes (pH 6.7). Electrical conductivity ranged from 0.35 S m?1 for paper mill sludge composted with wood shaving litter to 0.91 S m?1 from wheat straw composted with peanut hull litter. Composting temperature varied considerably among C sources and all required at least 72 d of curing to stabilize the C:N ratio. Composts made from wheat straw were most effective for waste reduction but temperatures were below the 50°C level generally considered necessary to kill pathogens.  相似文献   

3.
Two types of compost, consisting of sweet sorghum bagasse with either sewage sludge or a mixture of pig slurry and poultry manure, were studied in a pilot plant using the Rutgers system. The total degradation of the piles as determined by the weight loss of organic matter during the bio-oxidative and maturation phases accounted for 64% of the organic matter applied and followed a first-order kinetic function. Concentrations of total and organic N increased during the composting process as the degradation of organic C compounds reduced the compost weight. Losses of N through NH3 volatilization were low, particularly in the compost with sewage sludge due to pH values of <7.0 and the low temperatures reached in the compost during the first 2 weeks. The C:N ratio in the two composts decreased from 24.0 and 15.4 to values between 12 and 10. Increases in cation exchange capacity and in fulvic and humic acid-like C revealed that the organic matter had been humified during composting. The humification index, the C:N ratio, fulvic:humic acid-like C, and cation exchange capacity proved to be the most suitable parameters for assessing the maturity of these composts.  相似文献   

4.
Assessment of compost maturity is important for successful use of composts in agricultural and horticultural production. We assessed the “maturity” of four different sawdust-based composts. We composted sawdust with either cannery waste (CW), duck manure (DM), dairy (heifer) manure (HM) or potato culls (PC) for approximately one year. Windrows were turned weekly for the first 60 days of composting, covered for four winter months and then turned monthly for six more months. We measured compost microbial respiration (CO2 loss), total C and N, C:N ratio, water soluble NO3-N and NH4-N, dissolved organic carbon (DOC), pH and electrical conductivity at selected dates over 370 days. Compost effects on ryegrass biomass and N uptake were evaluated in a greenhouse study. We related compost variables to ryegrass growth and N uptake using regression analysis. All composts maintained high respiration rates during the first 60 days of composting. Ammonium-N concentrations declined within the first 60 days of composting, while NO3-N concentrations did not increase until 200+ days. After 250+ days, DM and PC composts produced significantly more ryegrass biomass than either CW or HM composts. Total C, microbial respiration and water-extractable NO3-N were good predictors of compost stability/maturity, or compost resistance to change, while dissolved organic carbon, C:N ratio and EC were not. The compost NO3-N/CO2-C ratio was calculated as a parameter reflecting the increase in net N mineralization and the decrease in respiration rate. At ratio values >8 mg NO3-N/mg CO2-C/day, ryegrass growth and N uptake were at their maximum for three of the four composts, suggesting the ratio has potential as a useful index of compost maturity.  相似文献   

5.
Seafood processing generates a substantial volume of wastes. This study examined the feasibility of converting the fish waste into useful fertilizer by composting. Groundfish waste and chitin sludge generated from the production of chitin were composted with red alder or a mixture of western hemlock and Douglas-fir sawdust to produce four composts: alder with groundfish waste (AGF); hemlock/fir with groundfish waste (HGF); alder with chitin sludge (ACS); and hemlock/fir with chitin sludge (HCS). The resulting AGF had a higher total N and a lower C:N ratio than the other three composts. A large portion of the total N in the AGF, HGF, and HCS composts was in inorganic forms (NH4+-N and NO3?-N), as opposed to only two percent in the ACS compost. Alder sawdust is more quickly decomposed, which favored N retention and limited nitrification during the composting period. It was less favorable than the hemlock/Douglas fir sawdust for composting with chitin sludge. Corn growth on soil amended with compost was dependent upon both compost type and rate. Nitrogen and P availabilities in all composts except the ACS were high and compost addition enhanced corn yields, tissue N and P concentrations, and N and P up-take. Neither the total N concentration nor the C:N ratio of the composts was an effective measure of compost N availability in the soil. Because soil inorganic N test levels correlated well with the corn biomass, tissue N and N uptake, they should be an effective measure of the overall compost effects on soil N availability and corn growth response. Phosphorus concentration, which increased linearly with increasing compost rates, was related to soil P availability from compost additions and correlated well with corn biomass, tissue P concentration and P uptake under uniform treatments of N and K fertilizers. Composting groundfish waste with alder or hemlock/Douglas-fir sawdust can produce composts with sufficient amounts of available N and P to promote plant growth and is considered to be a viable approach for recycling and utilizing groundfish waste.  相似文献   

6.
将鸡粪与稻草混合均匀后接种芽孢杆菌菌剂,接种发酵菌剂处理发酵温度显著提高,堆体温度≥50℃的时间比对照增加3 d.发酵前期接种处理的pH值高于对照,第7 d接种处理和对照的pH值分别为9.23和8.87.发酵后期接种处理的pH值低于对照,发酵结束时,接种处理和对照的pH值分别为8.22和8.31.接种处理和对照的电导率和碳氮比总体变化趋势相同,都呈现下降趋势,但是接种处理的电导率和碳氮比在堆肥后期显著低于对照.发酵结束时,接种处理和对照的电导率值分别为1.78和2.12 mS/cm,碳氮比分别为14.2和16.9.  相似文献   

7.
Color change of city refuse during composting process was investigated according to the methods of measurement for color of materials based on the CIE 1931 Standard Colorimetric System. Stimulus value Y (the degree of lightness) and chromaticity coordinates (x, y) were determined with Color Analyzer by measuring relative spectral reflectance. Stimulus value Y of city refuse decreased during composting process, but chromaticity coordinates (x, y) scarcely changed.

Color of various composts, which were produced from city refuse, straw, hog fecal wastes, tree bark, and tree bark mixed with activated sludge, were also investigated by measuring relative spectral reflectance. The shapes of the reflection spectra of city refuse were different from those of the other composts. Colors of the various composts were similar to each other when specified according to their three attributes: value, hue, and chroma (Munsell renotation).

While city refuse was rotting and maturing, stimulus value Yand C/N ratio equally decreased. A positive correlation was found between stimulus value Y and C/N ratio. It was concluded that stimulus value Y can be used as a criterion for determining the degree of maturity of city refuse compost.

The correlation between stimulus value Y and C/N ratio of various composts was also investigated. According to the position on the two coordinates having stimulus value Y and C/N ratio as axe s, various composts were classified into three groups: (i) city refuse compost group, (ii) straw compost group, and (iii) tree bark compost group.  相似文献   

8.
Washington State University produces a manure-based compost of high pH (>8) and low N content (1 percent) by windrow composting campus wastes. Annual production at the four-acre facility is 18-20,000 cubic yards. In the interest of producing compost of higher N content and lower pH, ten experimental piles were constructed to investigate the effects of different feedstocks on the composting process, end quality and agronomic performance. Biosolids and manure were compared at two rates of bedding both with and without coal ash. Compost temperature and inorganic N content during 96 days of active composting are reported along with end product nutrient analysis and metal concentration. The composts behaved differently based on the N feedstock and level of bedding in the mix. Compost quality was influenced by the characteristics of the feedstocks. Applying the composts to an eroded hilltop (50 Mg/ha) increased winter wheat yield, but there were no differences among the ten composts.  相似文献   

9.
 Four olive mill wastewater (OMW) composts, prepared with three N-rich organic wastes and two different bulking agents, were studied in a pilot plant using the Rutgers system. Organic matter (OM) losses during composting followed a first-order kinetic equation in all the piles, the slowest being the OM mineralisation rate in the pile using maize straw (MS). The highest N losses through NH3 volatilisation occurred in the mixtures which had a low initial C/N ratio and high pH values during the process. Such losses were reduced considerably when MS was used as the bulking agent instead of cotton waste (CW). N fixation activity increased during the bio-oxidative phase before falling during maturation. This N fixation capacity was higher in piles with a lower NH4 +-N concentration. Only the composts prepared with OMW, CW and poultry manure or sewage sludge reached water-soluble organic C (CW) and NH4 +-N concentrations and CW/Norg and NH4 +/NO3 ratios within the established limits which indicate a good degree of compost maturity. Increases in the cation-exchange capacity, the percentage of humic acid-like C and the polymerisation ratio revealed that the OM had been humified during composting. The germination index indicated the reduction of phytotoxicity during composting. Received: 14 June 1999  相似文献   

10.
为探究C/N、菌剂、木酢液3因子及菌剂与木酢液交互作用对堆肥腐熟效果的影响,寻求最佳堆肥效果的因子水平组合。本研究以园林绿化废弃物为主要原料,通过L9(34)正交设计以鸡粪为C/N调理剂,菌剂和木酢液为添加剂进行堆肥试验。分析比较了各处理堆肥过程中温度、总有机碳、全氮、C/N、pH值、EC值、堆体体积等指标的变化情况,并以种子发芽率试验测定堆肥效果。结果表明,调节C/N比和添加适量菌剂与木酢液均能促使堆肥初温上升,高温期提前并延长,堆肥积温提高,发酵周期缩短,总有机碳降解量和总氮相对含量增加。适当调节C/N和添加适量菌剂均有利于堆肥pH值升高,防止EC值过高,而添加木酢液能明显降低堆肥pH与EC值。C/N、菌剂、木酢液、菌剂与木酢液交互作用对堆肥发芽指数的影响均达极显著水平,且影响效果表现为C/N菌剂木酢液。因素效应的差异显著性检验结果表明,C/N为30效果最好,0.4%菌剂与稀释500倍木酢液的交互作用最大,稀释50倍的木酢液对堆肥微生物活性存在一定的抑制作用。可见,基于种子发芽指数的园林绿化废物堆肥适宜参数组合为C/N30+0.4%菌剂+稀释500倍木酢液。  相似文献   

11.
Composting has become an increasingly popular manure management method for dairy farmers. However, the design of composting systems for farmers has been hindered by the limited amount of information on the quantities and volumes of compost produced relative to farm size and manure generated, and the impact of amendments on water, dry matter, volume and nitrogen losses during the composting process. Amendment type can affect the free air space, decomposition rate, temperature, C:N ratio and oxygen levels during composting. Amendments also initially increase the amount of material that must be handled. A better understanding of amendment effects should help farmers optimize, and potentially reduce costs associated with composting. In this study, freestall dairy manure (83% moisture) was amended with either hardwood sawdust or straw and composted for 110-155 days in turned windrows in four replicated trials that began on different dates. Initial C:N ratios of the windrows ranged from 25:1 to 50:1 due to variations in the source and N-content of the manure. Results showed that starting windrow volume for straw amended composts was 2.1 to 2.6 times greater than for sawdust amendment. Straw amended composts had low initial bulk densities with high free air space values of 75-93%. This led to lower temperatures and near ambient interstitial oxygen concentrations during composting. While all sawdust-amended composts self-heated to temperatures >55°C within 10 days, maintained these levels for more than 60 days and met EPA and USDA pathogen reduction guidelines, only two of the four straw amended windrows reached 55°C and none met the guidelines. In addition, sawdust amendment resulted in much lower windrow oxygen concentrations (< 5%) during the first 60 days. Both types of compost were stable after 100 days as indicated by CO2 evolution rates <0.5 mg CO2-C/g VS/d. Both types of amendments also led to extensive manure volume and weight reductions even after the weight of the added amendments were considered. However, moisture management proved critical in attaining reductions in manure weight during composting. Straw amendment resulted in greater volume decreases than sawdust amendment due to greater changes in bulk density and free air space. Through composting, farmers can reduce the volume and weights of material to be hauled by 50 to 80% based on equivalent nitrogen values of the stabilized compost as compared to unamended, uncomposted dairy manure. The initial total manure nitrogen lost during composting ranged from 7% to 38%. P and K losses were from 14 to 39% and from 1 to 38%, respectively. There was a significant negative correlation between C:N ratio and nitrogen loss (R2=0.78) and carbon loss (R2=0.86) during composting. An initial C:N ratio of greater than 40 is recommended to minimize nitrogen loss during dairy manure composting with sawdust or straw amendments.  相似文献   

12.
The composting of wood fiber waste from the manufacture of newsprint is described, with a mixture of wood fiber waste:sewage sludge at a ratio of 1:1 giving best results in a trial of shoot growth of Pinus radiata. An alternative chemical nutrient amendment (initial C:N ratio of 60:1) gave a plant response which was not significantly different to that of sewage sludge. Over a five month period volume reductions of up to 39 percent were observed in the composts, providing potential savings in subsequent transport operations. Use of uncomposted materials or addition of fly- or screen-ash compost amendment (12.5 percent or 25 percent v /v) was inhibitory to plant growth. Concentrations of some heavy metals in Hobart city sewage (particularly of chromium) were high, precluding its long-term use as a soil nutrient supplement. In view of the high heavy metal content of sewage sludge and its high volume to nutrient ratio, it was concluded that composting with chemical amendment was the preferred option for future investigation. Such composts would require ash amendment (or lime equivalent) at concentrations lower than those used in this study to counter acidity produced during composting.  相似文献   

13.
In this study, medlar pruning waste (MPW) was composted with and without cattle manure (CM). Two piles were prepared: one contained only MPW (pile 1) and one contained MPW augmented with CM (pile 2). Both piles were composted in an enclosed composting vessel with passive aeration and aeration by turning. During the composting process, temperature, pH, electrical conductivity (EC), organic matter (OM), OM losses, total organic carbon (Corg), total nitrogen (NT), Corg/NT ratio, and germination index (GI) were measured. Pile 2 produced a faster increase of the temperature and had a longer thermophilic phase than pile 1. However, the rate of OM degradation was faster in pile 1 than in the pile containing CM (pile 2). The addition of CM also resulted in an increased pH and salt content. In both piles, C/N ratio decreased throughout the process, presumably as a result of the faster organic carbon degradation compared to N mineralization. However, only pile 2 had a final C/N ratio <20, the limit accepted for compost by the Spanish legislation on fertilizer. Also, both composts had GI > 50 percent, indicating an absence of phytotoxicity.  相似文献   

14.
Sewage sludge management is a major challenge in environmental protection. Composting is an organic waste treatment method that is cost effective and leads to resource recovery. Composting is considered an environmentally and agriculturally friendly method of sewage sludge utilisation. The objective of this study was to evaluate maturity of three composts prepared on the basis of sewage sludge mixed with structure-forming waste materials, such as pine bark, sawdust and wheat straw. The germination index (GI) was used to assess the maturity and phytotoxicity of composts at particular composting stages (initial, mesophilic, thermophilic, cooling, maturation). Cress seeds were used to determine the GI. The logistic model, which belongs to a broad class of generalized linear models, was used to analyze experimental data. Using this model the interesting probabilities (from the point of view of the experimenter) for the occurrence of a specific root length were determined. In addition, a model was constructed providing a dependence of probability on temperature.

This work indicates a marked dependence between root length produced by cress seeds and the temperature of the composting process, which was closely related to the GI values. The longest plant roots, similarly as the highest GI values, were found at the lower temperature, which took place at the beginning and at the end of the composting process. Our findings suggest that the practical applicability of GI in the evaluation of compost maturity is limited. Additionally, the role of additional wastes being structure-forming agents in composted mixtures with sewage sludge was stressed as a sorption matrix for harmful substances released from sewage sludge.  相似文献   


15.
碳氮比对鸡粪堆肥腐熟度和臭气排放的影响   总被引:4,自引:2,他引:2  
为确定鸡粪堆肥最优碳氮比(C/N比),该研究以新鲜鸡粪为堆肥原料,添加玉米秸秆调节初始C/N比为14、18和22进行好氧堆肥,研究不同C/N比对鸡粪堆肥腐熟度和臭气排放(NH3和H2S)的影响。结果表明:C/N比为14的处理堆肥产品未腐熟,C/N比为18和22的处理均达到腐熟。C/N比为18的处理NH3累积排放量和总氮(TN)损失率最高;C/N比为18~22时,C/N比越高,NH3累积排放量和TN损失率越低。C/N比为14的处理H2S累积排放量和总硫(TS)损失率最高;C/N比为18和22的两个处理,H2S累积排放量显著降低,且无显著差异。此外,C/N比为18处理的微生物群落多样性在整个堆肥过程中显著高于C/N比为14和22处理。堆肥的理化指标、臭气排放与微生物群落之间的相关性分析表明,高温、高pH和缺氧环境会增加Firmicutes丰度,进而促进NH3和H2S的排放,相反地,低温、低pH和氧气充足的环境更有利于Actinobacteria增殖,有利于减少NH3和H2S的排放。综合考虑堆肥产品腐熟度和臭气减排效果,建议低C/N比鸡粪堆肥的初始C/N比为18~22。当秸秆资源不足时,建议初始C/N比为18;秸秆资源充足时,建议初始C/N比为22。  相似文献   

16.
以鸭粪为主要材料,添加芦苇皮、水草等不同调理剂进行高温堆肥试验,研究了不同配比条件下堆肥体系的温度、pH、C/N、种子发芽指数(GI)的动态变化及其对废弃物堆肥品质的影响。结果表明,鸭粪与芦苇皮混合堆肥效果最好,堆体升温快,4d达到50℃,高温维持时间为15d,最高温度达70℃,堆肥30d后,油菜种子发芽指数高达90.48%;鸭粪与水草混合堆肥效果较差,高温维持阶段仅8d,最高温度为57℃;纯鸭粪单独堆肥效果最差,16d达到50℃,高温维持时间为6d,最高温度仅为53℃,到堆肥结束44d,油菜种子发芽指数刚达到80.67%。4种混合配料堆肥产品全氮、全磷、全钾含量都有所增加,其中鸭粪与芦苇皮配比增加率最大,分别为15.90%、11.53%和29.94%。综合以上结果,说明添加秸秆类有机质含量较高的调理剂可加快堆肥的腐熟进程,同时减少营养元素的流失,利于养分的保存,保证了堆肥产品的品质。  相似文献   

17.
添加不同辅料对污泥堆肥腐熟度及气体排放的影响   总被引:2,自引:1,他引:2  
选择玉米秸秆和木本泥炭两种辅料添加至脱水污泥中进行联合好氧堆肥,研究了秸秆和木本泥炭作为添加剂对污泥堆肥腐熟度和堆肥过程中气体排放(NH_3、CH_4和N_2O)的影响。两种辅料添加量均为初始物料的15%,堆肥在60 L的密闭反应器中共持续35 d。研究结果表明,秸秆作为添加剂与污泥联合堆肥,堆肥产品可以达到卫生标准和腐熟标准。添加秸秆处理整个堆肥过程中累积NH_3、CH_4和N_2O排放量分别为2.2、0.14和0.09 g/kg,NH_3和CH_4排放主要发生在堆肥的升温期和高温期,N_2O排放主要发生在堆肥的后腐熟阶段。添加木本泥炭作为添加剂不能成功启动堆肥,整个堆置过程中未检测到NH_3和CH_4排放,但是在堆肥前期有大量N_2O产生。对于添加秸秆的处理,CH_4、N_2O和NH_3对总温室气体排放的贡献率分别为45%,36%和19%,CH_4所占比重最高。  相似文献   

18.
We studied the effects of applying different composts (urban organic waste, green waste, manure and sewage sludge), mineral fertilizer and compost plus mineral fertilizer on chemical, biological and soil microbiological parameters over a 12‐year period. The organic C and total N levels in soils were increased by all compost and compost + N treatments. Microbial biomass C was significantly (P ≤ 0.05) increased for some compost treatments. In addition, basal respiration and the metabolic quotient (qCO2) were significantly higher in all soils that had received sewage sludge compost. The Shannon diversity index (H), based on community level physiological profiling, showed a higher consumption of carbon sources in soils treated with compost and compost + N compared with the control. The utilization of different guilds of carbon sources varied amongst the treatments (compost, compost + N or mineral fertilizer). Cluster analysis of polymerase chain reaction‐denaturing gradient gel electrophoresis patterns showed two major clusters, the first containing the mineral fertilization and compost treatments, and the second, the composts + N treatments. No differences in bacterial community structure could be determined between the different types of compost. However, the results suggest that long‐term compost treatments do have effects on the soil biota. The results indicate that the effects on the qCO2 may be due to shifts in community composition. In this study, it was not possible to distinguish with certainty between the effects of different composts except for compost derived from sewage sludge.  相似文献   

19.
利用香蕉茎秆与鸡粪为底料进行了C/N分别为15.2、21.5、25.5、31.8、41.5的堆肥对比试验,定量化研究了堆肥过程中堆体的温度、水分、pH和EC、全碳、全氮及C/N、养分有效含量随时间的变化规律。结果表明,堆体初始C/N在20~40范围内,均能成功地进行好氧堆肥。当C/N低于15.2时,堆体温度上升快,但高温持续时间短,pH高,水溶性盐分的含量高,有机质和总养分含量较低,而且由于加入鸡粪太多,增加了堆肥的成本;当C/N大于41.5时,堆体温度上升慢,进入高温期所需时间长,堆体含水率过高。综合考虑各方面因素,堆肥初始C/N控制在20~30为宜,以25.5为最佳;腐熟期为27d左右,对应适宜的C/N判断值为18。  相似文献   

20.
The fate of organic matter during composting is poorly understood. Therefore, we analysed composts of sewage sludges and green wastes (44 samples representative of 11 stages of biodegradation) by conventional chemical methods: pH, humic (HA) and fulvic acid (FA) content, C, N and organic matter (OM) content, and by 13C CPMAS NMR to assess the decomposition process of the organic matter. Chemical changes clearly occurred in two phases: first, decomposition of OM during the first 2 months was characterized by decreased C/N ratios, OM content and increased pH; and second, a humification process with increased HA/FA ratios. NMR spectrum changes confirmed this pattern, with an increase in aromaticity and a decrease in alkyl C. A decrease of syringyl to guaiacyl ratio (S/G), a sign of lignin transformation, also indicated humification during composting. NMR spectroscopic properties of composts were also studied by means of principal components analysis (PCA) and revealed changes according to the degree of compost maturation. The factorial map presents a chronological distribution of composts on the two first principal components. The influences of eight chemical factors on the PCA ordination of composts as monitored by their evolution by NMR were also studied by multivariate analyses. PCA clearly indicated two phases: the rapid decomposition of organic matter followed by the formation of humic‐like substances. The first phase, that is ‘new’ composts, was strongly correlated with OM contents, pH and C/N ratios whereas the second phase, corresponding to ‘old’ compost, was correlated with pH, HA content and HA/FA ratio. These results confirm that knowledge of the formation of humic substances is indispensable to suitable monitoring of the composting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号