首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The decomposition of organic matter of source-separated biowaste during composting was followed during 18 months. Compost samples were fractionated into three parts: (i) hot water soluble extract (HWE) (ii) bitumen fraction and (iii) humic substances (humic acids (HA) and fulvic acids (FA)). Original compost samples and the HA and FA fractions were hydrolyzed with sulfuric acid for hexoses and pentoses. Quantitative spectrophotometric and qualitative GC/MS analyses of monosaccharides as trimethylsilyl ethers of the corresponding alditols were carried out.

During composting, the amount of HA in the organic matter of the compost increased, the amounts of HWE and bitumen decreased and the amount of the FA fraction changed only a little. Carbohydrates were found to be important constituents of biowaste composts and their HA and FA fractions. Elemental analysis (C, N and H) of compost and HA samples showed an increase in the C:H ratio and in unsaturation of compounds during composting. The decrease in the C:N ratio was marginal.

The amounts of hexoses and pentoses in original compost samples and the HA and FA fractions decreased during composting. The sugar alcohols erythritol, xylitol, L-arabitol, ribitol, L-rhamnitol, L-fucitol, D-mannitol, D-glucitol and galactitol were identified in both the HA and FA fractions. 2-Deoxy-D-erythro-pentitol was identified in one HA fraction and inositol in two FA fractions. An analysis of gas chromatographic data for relative abundances showed that, in every sample except one and in every stage of composting D-glucitol was the main sugar alcohol. In general, the relative amount of D-glucitol decreased during composting, while the relative amounts of all other sugar alcohols increased.

As chemical indicators of compost maturity, carbohydrates would appear to be a important group of compounds. Most informative as a general indicator would be the ratio of the amount of HA to the amount of organic matter in the total compost samples.

According to our studies, the carbohydrates in composts are covalently bound to the structures of FA and HA. Carbohydrate determination clearly deserves more attention in the structural elucidation of FA and HA.  相似文献   

2.
Two types of compost, consisting of sweet sorghum bagasse with either sewage sludge or a mixture of pig slurry and poultry manure, were studied in a pilot plant using the Rutgers system. The total degradation of the piles as determined by the weight loss of organic matter during the bio-oxidative and maturation phases accounted for 64% of the organic matter applied and followed a first-order kinetic function. Concentrations of total and organic N increased during the composting process as the degradation of organic C compounds reduced the compost weight. Losses of N through NH3 volatilization were low, particularly in the compost with sewage sludge due to pH values of <7.0 and the low temperatures reached in the compost during the first 2 weeks. The C:N ratio in the two composts decreased from 24.0 and 15.4 to values between 12 and 10. Increases in cation exchange capacity and in fulvic and humic acid-like C revealed that the organic matter had been humified during composting. The humification index, the C:N ratio, fulvic:humic acid-like C, and cation exchange capacity proved to be the most suitable parameters for assessing the maturity of these composts.  相似文献   

3.
菌剂对鸡粪堆肥腐殖质含量品质的影响   总被引:4,自引:4,他引:4  
腐殖质是评价堆肥品质的重要因素,该文利用鸡粪和秸秆为原料进行高温好氧堆肥,设计接种菌剂和不接种菌剂(对照)2个处理,研究菌剂添加对堆肥腐殖质形态、含量、品质的影响。结果表明:与对照相比,接种菌剂可以加快有机物的降解,矿质化时间缩短14d,菌剂具有良好的保碳效果,总有机碳含量提高了16.1%,同时总腐殖酸、游离腐殖酸以及水溶态腐殖酸及胡敏酸的含量,分别提高了38.7%,45.7%、39.0%及54.9%。接种菌剂可以提高腐殖酸的活性,堆肥结束后,接种菌剂处理的游离腐殖酸和水溶性腐殖酸含量均增加,而对照处理的含量均降低;堆肥可以提高腐殖酸质量,堆肥结束后两个处理总腐殖酸含量均下降但是缩合度、腐殖化率、腐殖化指数及胡敏酸百分比均提高,特别是添加菌剂的处理腐殖化程度明显高于对照。说明了菌剂可以增加堆肥腐殖质含量,提高腐殖质缩合度、芳构化程度及活性。  相似文献   

4.
Stabilization of the organic matter of a static pile of compost from municipal solid wastes (MSW) under a forced-pressure ventilation composting system was followed for 55 days during winter season. The materials were analyzed according to the official methodologies required by Italian regulations regarding the quality of composts from MSW. The stabilization process of the organic matter was monitored using both the degree of humification (DH), i.e. the ratio between the humified fractions (HA + FA) and the total extractable carbon (TEC), and the electrofocusing technique (EF). The DH increased steadily in compost during stabilization process and converged asymptotically at the end of the period of composting. The EF analyses of the organic extracts of compost from MSW showed a definite trend in the humification process and confirmed the actual evolution of the organic matter composted.  相似文献   

5.
A composting experiment was carried out to study changes in physical [color, odor, temperature, organic matter (OM) loss], chemical [C:N ratio, water-soluble organic carbon (Cw):organic N (Norg) ratio, NH4 +-N and NO3 ?-N, humic acid (HA):fulvic acid (FA) ratio, humification index (HI) and cation-exchange capacity (CEC):total organic carbon (TOC) ratio)] and biological [seed germination index (GI)] parameters to assess compost maturity and stability over a period of 150 days. Five composts were prepared using a mixture of different farm wastes with or without enrichment of N, rock phosphate (RP) and microorganism (MO) inoculation. All the composts appeared to change to a granular and dark grey color without foul odor, and attained a constant temperature with no measurable changes (ambient level) at 120 days of composting. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss > 42%, C:N ratio < 15, HA:FA ratio > 1.9, HI > 30%, CEC:TOC ratio > 1.7 and Cw:Norg ratio < 0.55. Composts enriched with N + RP or N + RP + MO matured at 150 and 120 days, respectively, whereas composts without any enrichment or enrichment with N or RP + MO did not mature even at 150 days of composting.  相似文献   

6.
This work is aimed at characterizing compost maturity and, organic matter transformation during this process, by the use of nondestructive spectroscopic and thermal techniques, together with some chemical analysis. Composting was conducted in a laboratory over a period of one year using the organic fraction of domestic wastes, fresh farmyard manure, spent coffee and sawdust as the raw materials. Samples were retired after different periods of composting and were analyzed by differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) spectroscopy as well as by routine chemical parameters including temperature, pH, C/N, ash content and humic-like substances content. Results showed that in case of domestic wastes, spent coffee and farmyard manure, the C/N ratios, ash and humic acid content showed a typical high rate of change during the first 197 days of composting and tended to stabilize thereafter, probably as a result of the maturity of the produced composts. In contrast, sawdust underwent only a very limited transformation even after one year of composting. Thermoanalytical and spectroscopic data confirms these finding and gives useful and complementary information with respect to the structure, the heterogeneity and the relative stability of the compost products. In particular, as the decomposition proceeded, there was an increase in aromatic to aliphatic structure ratio and a decrease in the importance of peptide structures of composts. Besides, both the spectroscopic and the thermal behavior of compost samples, retired beyond 197 days of composting, tended to be regular, less dependent on the raw material and close to that characterizing mature composts, with the exception of sawdust samples. We concluded that the spectroscopic and thermal techniques used are complementary to one another and to chemical tests and could be a powerful and fast approach for the study of compost maturity.  相似文献   

7.
Abstract

The evolution of the organic matter during the maturation of solid samples of pig sludges and pig manure composted with straw was followed. A sample of pig sludge about 15 years old also was characterized for comparison. The organic matter of the composts and sludges was extracted and the humic (HA) and fulvic acids (FA) were separated. The organic carbon in the total extract (TEC) in the fulvic fraction and in the humic fraction was determined in order to evaluate the stabilization level of the organic matter using some humification parameters. The nature of the organic extract also was evaluated by characterization with analytical isoelectric focusing (IEF). The results confirm that the degree of humification (DH) decreases during the first period of maturation of the organic matter, because of the degradation of humic and fulvic‐like compounds contained into the raw organic materials, while then it increases progressively for all the maturation period. The data collected in this study confirm that the FA fraction could be the main cause of the lack of regularity in the trend of increasing DH as maturation progresses. The FA/TEC ratio infact decreases progressively for all the maturation period, while the HA/TEC ratio increases. The results obtained in the IEF characterization confirm the validity of this analytical technique. Moreover, the results do not appear to be affected by the presence of the humic‐like compounds. The presence of the bands focused at the higher pH values appear to be directly related to the stabilization of the organic material.  相似文献   

8.
Because of proposed bans on the landfilling and incineration of leaves, grass and brush, large-scale composting is fast becoming the primary disposal option for yard trimmings in many states. Few systematic studies have been done to compare the effects of turning regime, feedstock mix ratio, or windrow vs. pile configuration on composting and the characteristics of finished compost. In this study, various ratios of leaves, grass and brush were mixed and composted in two series of windrows; and one set of static piles. One windrow series (#1) was turned seven times every four weeks, while the other windrow series (#2), and the piles, were turned once every four weeks. The effects of the different treatments were examined by measuring compost temperature, oxygen concentration, pH, organic matter and moisture content, volatile fatty acid content, bulk density, stability, humification and seed germination indices, total and available nutrient levels, and particle size distribution. Results showed that turning frequency had little impact on oxygen concentrations, VFA content and temperatures during the composting of yard trimmings in windrows, however, in piles temperatures were substantially higher and oxygen concentrations fluctuated greatly. The composts from all the treatments were stable, (oxygen uptake rates < 0.1 mg O2/g OM/hr) after 60 days of composting regardless of the turning frequency, mix ratio or configuration. The bulk density inereased much more rapidly in frequently turned windrows than in the other treatments and particle sizes were smaller in these windrows. In most respects however, the final composts (day 136) were remarkably similar and none inhibited Cress seed germination or root elongation. The pH of all the composts, and the soluble salts and nitrate levels in composts made with high levels of grass, exceeded guidelines for greenhouse growth media.  相似文献   

9.
Is the composition of soil organic matter changed by adding compost? To find out we incubated biowaste composts with agricultural soils and a humus‐free mineral substrate at 5°C and 14°C for 18 months and examined the products. Organic matter composition was characterized by CuO oxidation of lignin, hydrolysis of cellulosic and non‐cellulosic polysaccharides (CPS and NCPS) and 13C cross‐polarization magic angle spinning nuclear magnetic resonance (CPMAS 13C‐NMR) spectroscopy. The lignin contents in the compost‐amended soils increased because the composts contained more lignin, which altered little even after prolonged decomposition of the composts in soil. A pronounced decrease in lignin occurred in the soils amended with mature compost only. Polysaccharide C accounted for 14–20% of the organic carbon at the beginning of the experiment for both the compost‐amended soils and the controls. During the incubation, the relative contents of total polysaccharides decreased for 9–20% (controls) and for 20–49% (compost‐amended soils). They contributed preferentially to the decomposition as compared with the bulk soil organic matter, that decreased between < 2% and 20%. In the compost‐amended agricultural soils, cellulosic polysaccharides were decomposed in preference to non‐cellulosic ones. The NMR spectra of the compost‐amended soils had more intense signals of O–alkyl and aromatic C than did those of the controls. Incubation for 18 months resulted mainly in a decline of O–alkyl C for all soils. The composition of the soil organic matter after compost amendment changed mainly by increases in the lignin and aromatic C of the composts, and compost‐derived polysaccharides were mineralized preferentially. The results suggest that decomposition of the added composts in soil is as an ongoing humification process of the composts themselves. The different soil materials affected the changes in soil organic matter composition to only a minor degree.  相似文献   

10.
Characteristics in composts were determined during composting of chitinous source-amended compost (Cscom) and no chitinous source-amended compost (Ncom). At the end of the composting, moisture content, organic matter (OM), total nitrogen (T-N), and carbon to nitrogen ratio (C/N ratio) decreased in both the composts, whereas the phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) content increased. pH of the compost was adversely changed with electrical conductivity (EC). Enzyme activities declined until the end of composting except phosphatase. In the final-stage, Cscom has higher number of chitinolytic bacteria than in Ncom. One bacterium predominant was isolated and identified as Bacillus licheniformis. Growth of the plant pathogens were suppressed by Cscom and Ncom water extracts, with the suppression being higher in Cscom. Paenibacillus ehmensis, known for high antifungal potential, was isolated from Cscom. From our study, it can be concluded that amendment of chitin material improves the chemical, biological properties, and disease suppression ability of compost.  相似文献   

11.
菌渣垫料堆肥过程碳素物质转化规律   总被引:5,自引:0,他引:5  
好氧堆肥是一种有效处理农业废弃物的方法,有利于实现农业资源的循环利用。但堆肥也有它的缺点,堆肥过程中的碳素损失是造成温室气体形成的重要原因。因此研究碳素在堆肥过程中的转化规律对于如何减少堆肥潜在的负面环境影响十分重要。该研究以生猪养殖发酵床废弃垫料及秀珍菇菌渣为原料,利用强制通风静态堆肥技术研究垫料和菌渣不同配比及添加EM菌剂对堆肥过程碳素物质转化的影响。结果表明,堆肥过程中总有机碳呈逐渐下降趋势;胡敏酸呈逐渐增加的趋势;微生物量碳和可溶性碳呈先增后降的变化趋势。堆肥结束时,碳素降解率为5.7%~10.2%,胡敏酸增加了56.0%~131.0%,可溶性有机碳增加了54.5%~81.5%,微生物生物量碳增加了31.7%~73.4%。以垫料为主料的堆肥处理碳素损失高于以菌渣为主料的处理,添加EM菌剂可以加速有机质的矿化分解和提高腐殖质化指数。  相似文献   

12.
为明确黏土矿物的投加对畜禽粪便堆肥腐熟和稳定化的影响,该研究以猪粪和杨木木屑为原料,探究添加海泡石对堆肥基本理化性质、不同成分有机质含量以及溶解性有机质(Dissolved Organic Matter,DOM)结构的影响。结果表明,添加海泡石后堆体最高温度比对照有所下降且电导率上升9.69%,而C/N则降低2.81%,同时种子发芽指数提高11.96%,显示腐熟状况更好;DOM含量降低7.84%而胡敏酸占比提高9.71%,使得堆体有机质更加稳定。荧光光谱分析表明,添加海泡石堆体DOM的荧光谱图中,长波长的峰强在较短时间内出现了明显增加;三维荧光光谱-平行因子分析显示,添加海泡石增加了堆体中高芳香性组分的占比。相关性分析结果表明,添加海泡石后,高芳香性组分与总有机碳之间相关性更为显著,说明海泡石在碳素分解的同时促进了其聚合,从而出现了胡敏酸与高芳香性荧光组分的增长。添加海泡石既能促进堆体腐熟,又可转化调控碳素进而提高堆体稳定性,有利于堆肥的后续农田施用。  相似文献   

13.
 Four olive mill wastewater (OMW) composts, prepared with three N-rich organic wastes and two different bulking agents, were studied in a pilot plant using the Rutgers system. Organic matter (OM) losses during composting followed a first-order kinetic equation in all the piles, the slowest being the OM mineralisation rate in the pile using maize straw (MS). The highest N losses through NH3 volatilisation occurred in the mixtures which had a low initial C/N ratio and high pH values during the process. Such losses were reduced considerably when MS was used as the bulking agent instead of cotton waste (CW). N fixation activity increased during the bio-oxidative phase before falling during maturation. This N fixation capacity was higher in piles with a lower NH4 +-N concentration. Only the composts prepared with OMW, CW and poultry manure or sewage sludge reached water-soluble organic C (CW) and NH4 +-N concentrations and CW/Norg and NH4 +/NO3 ratios within the established limits which indicate a good degree of compost maturity. Increases in the cation-exchange capacity, the percentage of humic acid-like C and the polymerisation ratio revealed that the OM had been humified during composting. The germination index indicated the reduction of phytotoxicity during composting. Received: 14 June 1999  相似文献   

14.
Various composts contain a significant amount of humic substances including humic acid (HA) and fulvic acids (FAs). The FA fraction in soils is considered to be sensitive to agronomic and environmental factors. In this study, three fractions of humic substances, HA (MW > 1000 Da), FA (MW > 1000 Da), and FA (MW < 1000 Da) were extracted from swine manure-based compost and characterized, and then, their reactivities were correlated with heavy metals. Compositions of the three fractions of humic substances were characterized by elemental and total acidity analyses and electron spin resonance (ESR), Fourier transform infrared (FTIR), and 13C nuclear magnetic resonance with cross-polarization and magic-angle spinning spectroscopic techniques. Elemental analyses indicated that HA has higher contents of C, H, N, and S than those of FAs. However, FA (MW > 1000) and especially FA (MW < 1000) have higher contents of O than that of HA (MW > 1000). The g values of the ESR spectra of the three fractions showed that the organic free radical characteristics and the widths of the spectra and free radical concentrations of the three fractions are significantly different. The FTIR spectra indicated that HA (MW > 1000) is abundant in C=C bonds while FA (MW > 1000), especially FA (MW < 1000), are abundant in C=O bonds. In addition, 13C NMR spectra indicate that carboxyl contents of FA (MW > 1000), especially FA (MW < 1000), are higher than that of HA (MW > 1000). The sequence of the reactivity in terms of acidic functional groups was FA (MW < 1000) > FA (MW > 1000) > HA (MW > 1000). Elemental and functional group compositions of the three fractions significantly correlated with reported reactivities with heavy metals. The application of swine manure-based compost containing HA and FAs fractions to soil and associated environments may thus significantly affect the concerned reactions with organic and inorganic compounds including pollutants.  相似文献   

15.
Some recalcitrant organic wastes, which contain a large proportion of lignin or cellulose, are not changed much by composting, and thus the effectiveness of the compost as fertilizer is usua.lly low. In this study, incubation of unripe compost with ligno-cellulolytic microorganisms —Trichoderma viride orBacillus spp. — was investigated to increase the degree of humification of the organic matter present, and improve ils quality as a soil amendment. High-performance liquid chromatography (HPLC) analyses together with humification indices and electrofocusing patterns were used to monitor the evolution of the humic substances during the incubation process. Plant growth effects exerted by Azotobacter chroococcum on lettuce plants growing on the previously incubated compost were affected by the length of incubation and by changes in the composition of humic substances. Higher organic matter content and better humification seem to be important factors for predictingA. chroococcum hebaviour in the rhizosphere.  相似文献   

16.
The dynamics of incorporation of fresh organic residues into the various fractions of soil organic matter have yet to be clarified in terms of chemical structures and mechanisms involved. We studied by 13C‐dilution analysis and CPMAS‐13C‐NMR spectroscopy the distribution of organic carbon from mixed or mulched maize residues into specific defined fractions such as carbohydrates and humic fractions isolated by selective extractants in a year‐long incubation of three European soils. The contents of carbohydrates in soil particle size fractions and relative δ13C values showed no retention of carbohydrates from maize but rather decomposition of those from native organic matter in the soil. By contrast, CPMAS‐13C‐NMR spectra of humic (HA) and fulvic acids (FA) extracted by alkaline solution generally indicated the transfer of maize C (mostly carbohydrates and peptides) into humic materials, whereas spectra of organic matter extracted with an acetone solution (HE) indicated solubilization of an aliphatic‐rich, hydrophobic fraction that seemed not to contain any C from maize. The abundance of 13C showed that all humic fractions behaved as a sink for C from maize residues but the FA fraction was related to the turnover of fresh organic matter more than the HA. Removal of hydrophobic components from incubated soils by acetone solution allowed a subsequent extraction of HA and, especially, FA still containing much C from maize. The combination of isotopic measurements and NMR spectra indicated that while hydrophilic compounds from maize were retained in HA and FA, hydrophobic components in the HE fraction had chemical features similar to those of humin. Our results show that the organic compounds released in soils by mineralization of fresh plant residues are stored mainly in the hydrophilic fraction of humic substances which are, in turn, stabilized against microbial degradation by the most hydrophobic humic matter. Our findings suggest that native soil humic substances contribute to the accumulation of new organic matter in soils.  相似文献   

17.
Some recalcitrant organic wastes, which contain a large proportion of lignin or cellulose, are not changed much by composting, and thus the effectiveness of the compost as fertilizer is usua.lly low. In this study, incubation of unripe compost with ligno-cellulolytic microorganisms —Trichoderma viride orBacillus spp. — was investigated to increase the degree of humification of the organic matter present, and improve ils quality as a soil amendment. High-performance liquid chromatography (HPLC) analyses together with humification indices and electrofocusing patterns were used to monitor the evolution of the humic substances during the incubation process. Plant growth effects exerted by Azotobacter chroococcum on lettuce plants growing on the previously incubated compost were affected by the length of incubation and by changes in the composition of humic substances. Higher organic matter content and better humification seem to be important factors for predictingA. chroococcum hebaviour in the rhizosphere.  相似文献   

18.
ABSTRACT

The objectives of the present study were to determine the promotional effect of chemical additives on quality of peanut straw decomposition products and to evaluate the influence of the resulting products on soil biological properties. Straw was mixed with or without chemical additives, such as iron(II) sulfate (FeSO4), alkali slag, or FeSO4 combined with alkali slag, and decomposed for 50 days. The decomposition products were used as organic fertilizer and added to red soil for an incubation experiment. The chemical additives increased total organic carbon (C), total nitrogen (N), and available N content but decreased the C:N ratios in decomposition products compared to controls. Adding FeSO4 gave the highest humic acid content (HA, 30.34 g kg?1) and ratio of humic to fulvic acid (HA/FA, 0.53) and the lowest ratio of HA absorption value at 465 nm to that at 665 nm (E4/E6, 6.05), suggesting high humification of decomposition products. Application of the resulting products to soil increased soil urease and invertase activities. BIOLOG analysis showed that microbial C utilization ability, Shannon–Weaver diversity, and McIntosh evenness indexes were improved by the organic fertilizer promoted by chemical additives. Principal component analysis indicated that microbial community structures were also influenced by different amendments in decomposition products. Our study provides a reference point for acquiring high quality straw compost and improving soil biological functions by organic fertilizer.  相似文献   

19.
Composting has become a widely used method of recycling yard wastes such as leaves and grass. However, very little information is available on the chemical changes that occur during the composting of different mixtures of leaves and grass. In this study, three different mixes of leaves and grass were composted at approximately 60% moisture in a temperature controlled laboratory scale system. The mixes, which consisted of all leaves (Mix 1); 2/3 leaves + 1/3 grass (Mix 2); and 1/3 leaves + 2/3 grass (Mix 3), had initial C:N ratios of 48, 30 and 22, respectively. The compost process was monitored by measuring the rate of CO2 evolution, pH, stability, the degree of humification and changes in polysaccharide, carbon, nitrogen and organic matter content. Results showed that the greater the grass content of the mix, the higher the initial pH and the faster the rate of CO2 evolution, organic matter loss and nitrogen loss. After 43 days of composting, Mixes 1, 2 and 3, lost, respectively 61%, 74% and 78% of the cellulose, 57%, 79% and 82% of the hemicellulose and 40%, 49% and 42% of the acid-insoluble organic matter. Humification indices and stability tests indicated that composts produced from the three mixes were well humified and stable.  相似文献   

20.
An industrial-scale composting plant has been designed for producing organic fertilizers from olive mill waste using the windrow pile system. Materials to be composted, two phase olive mill waste (TPOMW) and sheep litter (SL), were characterized and made into three piles consisting of different proportions of each. Throughout the composting process, temperature (T), moisture (M), organic matter (OM), total organic carbon (Corg), total nitrogen (NT), germination index (GI), pH and electrical conductivity (EC) were monitored. The potential agronomic value of the final composts was ascertained by analyzing the bulk density, OM and Corg concentration, pH, EC, macro and micronutrient content (N, P, K, Ca, Mg, Fe, Cu, Mn, Zn, B), the concentration of humic and fulvic acids and inorganic nitrogen (NH4+,NO2?,NO3?). Each compost was applied to an area of one hectare within a six year-old olive plantation. Four months after application, the soils showed an increased OM concentration and cationic exchange capacity (CEC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号