首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
橡胶履带轮静态接地压力测试与建模   总被引:3,自引:2,他引:1  
为快速有效预测橡胶履带轮接地压力,该文针对橡胶履带轮静态接地压力进行了试验研究和数学建模。首先对不同载荷下橡胶履带轮在坚实地面和松软地面的接地压力进行了测试。结果表明:在履带长度方向上,橡胶履带轮接地压力呈多峰值非均匀分布,同时其峰值呈钟罩型分布,且载荷越大,峰值分布越均匀。根据测试结果提出了一种橡胶履带轮静态接地压力分布数学模型,履带长度方向的接地压力采用二次余弦函数表示,履带宽度方向的接地压力采用线性函数表示。相较于其他模型,该模型采用地面硬度参数表征不同的地面条件,避免了进行土壤承压和剪切试验,提高了模型的实用性。最后,基于该模型对橡胶履带轮转向性能进行了仿真计算和试验验证。结果证明:仿真结果与试验数据最大误差约为4.71%,故该模型能够较好地适用于橡胶履带轮的转向性能分析。该文提出的模型可为橡胶履带轮的结构设计和其他性能研究提供参考。  相似文献   

2.
研究了步行轮式气垫车在软路面行驶转向时,插入土壤的车轮与土壤间相互作用以及围裙系统与地面干涉产生的转向阻力矩。提出了车辆转向时,车轮转向阻力矩及围裙转向阻力矩的数学模型。  相似文献   

3.
履带车辆转向时最大驱动力矩的计算   总被引:5,自引:2,他引:3  
履带车辆转向时不仅要克服行走阻力,还要克服转向阻力,该文对不考虑车体重心偏移时的转向驱动力矩进行了研究,并在此基础上着重研究了考虑重心偏移时的转向驱动力矩的计算方法,进行了实例计算和比较分析,可知横向偏心距对总的转向阻力矩没有影响,而纵向偏心距对其有影响,且随纵向偏心距的增加转向阻力矩减小;只考虑纵向偏心距,而不考虑横向偏心距时,转向时驱动力矩小于不考虑重心偏移时的驱动力矩;当只考虑横向偏心距,而不考虑纵向偏心距时,转向驱动力矩最大。当履带车辆原地转向,且只存在横向偏心距时靠近偏心一侧的履带的驱动力矩最大。  相似文献   

4.
双流传动履带车辆实现方向盘转向的控制策略   总被引:1,自引:1,他引:0  
履带车辆实现类似轮式车辆的转向操纵方式一直是广大科研工作者十分关注的课题.该研究在现有静液压双流差速转向装置的基础上,设计一套与之匹配的方向盘控制装置.内外侧履带速度随方向盘转角变化的仿真结果表明,履带车辆采用方向盘精确控制静液压双流差速转向装置,完全可以实现转向期间无动力切断自动无级降速,实现类似轮式车辆的转向操纵方式.研究结果为深入研究双流履带车辆提供理论依据.  相似文献   

5.
履带车辆液压机械差速转向系统参数优化   总被引:2,自引:2,他引:0  
液压机械差速转向系统是履带车辆的一种双功率流转向系统,其参数设计属于多参数、多目标、非线性优化问题。该文在对优化参数及评价目标进行理论分析的基础上,建立了包括履带车辆转向动力性、转向灵活性和转向快速性等液压机械差速转向系统参数优化数学模型,根据遗传算法的基本思想,采用层次化划分问题空间方法处理系统参数之间的相互约束和耦合问题,给出了一种基于遗传算法的履带车辆液压机械差速转向系统参数优化方法,结合实例样车设计需要优化出了履带车辆液压机械差速转向系统参数,与已得到实车验证的系统参数偏差最大不超过3.5%,表明所给出的优化方法可满足履带车辆液压机械差速转向系统参数实际工程设计需要。  相似文献   

6.
农用轮式机器人四轮独立转向驱动控制系统设计与试验   总被引:1,自引:8,他引:1  
针对一般农用轮式机器人转向方式单一、难以适应田间复杂作业环境以及推广应用成本较高等问题,该文设计了一种农用轮式机器人四轮独立转向驱动控制系统,采用模块化设计方法构建了该控制系统的底层硬件部分,结合控制器局域网络(controller area network,CAN)总线、串口通讯和传感器技术实现了该机器人移动轮转角、转速等数据的采集功能且应用了有效的硬件电路隔离保护方案;基于低速阿克曼四轮转向模型与比例积分微分(proportion,integration,differentiation,PID)控制算法分析并验证了该机器人四轮独立转向驱动控制策略的有效性。试验结果表明:该机器人能够通过上位机或遥控器实现其四轮独立转向与转速控制功能,移动轮在0~360°转向过程中,控制效果鲁棒性强、稳定且转角控制的最大平均绝对误差为0.10°,通过上位机设定转速后经0.5~1 s左右,移动轮转速达到稳态,并具有较高转速控制精度。该研究为农用轮式机器人的四轮独立转向驱动控制方法提供了参考。  相似文献   

7.
基于弹性迟滞理论的轮胎滚动阻力解析模型构建   总被引:3,自引:3,他引:0  
为了降低轮胎滚动能量损失,该文提出一种新型轮胎滚动阻力解析模型。分析轮胎滚动阻力产生的机理,考虑材料的弹性迟滞特点,定义非线性弹性力和非线性阻尼力构建轮胎垂向复合回复力公式,搭建特定试验进行模型参数辨识。根据刷子模型将轮胎接地部分化简为两部分:一部分为接地中心到刷毛单元开始接触地面的加载区域;另一部分为接地中心到刷毛单元离开地面的卸载区域。然后分别对参数辨识得到的加载和卸载曲线在相应区域内积分并求和,获得轮胎滚动阻力矩解析模型。根据ISO 28580标准对轮胎滚动阻力进行测试,结果表明:轮胎滚动阻力随速度(10~120 km/h)和垂向负载(6~25 kN)的增大而增大;试验结果与解析值在相同的工况条件下变化趋势基本一致,从而验证了模型的有效性。新型滚动阻力模型的提出有助于轮胎的结构优化。  相似文献   

8.
为了准确实现驾驶员转向意图,解决履带车辆液压机械差速转向系统转向行驶控制问题,该文在对液压机械差速转向系统工作原理进行分析的基础上,运用动力学理论和模块化方法,推导了液压机械差速转向系统动力学方程,建立了系统数学模型。根据履带车辆转向行驶理论和转向安全要求,结合系统数学模型,设计了一种履带车辆液压机械差速转向系统控制策略,通过控制单元与液压泵排量控制器相互配合实现转向控制。仿真结果表明,所设计的液压机械差速转向系统控制策略安全有效,能准确实现驾驶员转向意图。  相似文献   

9.
履带车辆差速转向时载荷比受土壤下陷的影响   总被引:2,自引:2,他引:0  
为进一步探究履带车辆双功率流动力差速转向机构的转向性能,需要对载荷比的影响因素进行全面分析。该文主要考虑下陷量及土壤参数的影响,对试验样机进行差速转向试验,得到了下陷量与实际载荷比的关系、下陷量与转向半径的关系以及载荷比与转向半径的关系,根据载荷比公式计算的数值与试验测得的数值接近,误差范围在0.16~1.74。试验中,载荷比从1.65增加到6.08,下陷量从3.60 mm增加到10.42 mm,转向半径从1.00 m减小到0.29 m。试验结果表明:履带车辆在松软地面进行差速转向时,下陷量随着实际载荷比的增加而增大,但随着转向半径的减小而增大。该文试验所得结果与理论分析相吻合,可以进一步完善履带车辆差速转向理论。  相似文献   

10.
液压双流转向机构实现转向期间自动无级降速的策略   总被引:7,自引:2,他引:7  
该文论述了履带车辆液压双功率流机械差动传动装置转向期间车辆实现自动无级降速的方法,对其优越性进行了分析。介绍了实现转向期间自动无级降速的控制原理及由仿真得到的理论数据。结果认为通过该装置可以在同一转向角速度的条件下减小转向半径,降低消耗的总功率。并且在任意车速下都可以实现原地转向,且操作方式与轮式车辆相同,转向时不切断动力,可充分利用整机附着重量,行走系统仍可输出发动机的全功率,提高作业机动性。  相似文献   

11.
松软地面履带车辆差速转向实际载荷比的研究   总被引:2,自引:2,他引:0  
为了更好地分析动力差速转向机构的转向性能,对试验样机在松软土壤上进行了试验,得到了实测载荷比与转速比、打滑率、转向半径、转向系数等影响因素的定量关系。试验结果表明,小半径差速转向时,低速侧履带的滑转程度大于高速侧履带的滑转程度,但载荷比和滑转率的变化关系不明显;大半径转向时,载荷比越大,低速侧履带的滑移越大,高速侧履带的滑转越大。转向时的实测载荷比随着实测转向半径的增加而减小,载荷比和转向系数亦满足理论射线关系。该文通过理论与试验研究为履带车辆差速转向机构的设计和转向性能的改进提供了一定的理论依据。  相似文献   

12.
履带式行走机构压实作用下土壤应力分布均匀性分析   总被引:1,自引:1,他引:1  
履带式行走机构因具有较小的接地压力而被逐渐应用在大型农业车辆上,以减小对土壤的压实。然而由于履带下应力分布的不均匀,导致农业车辆对土壤的最大应力并未有效减小,对土壤较长的压力作用时间反而增加了土壤被压实的风险。应力分布的不均匀还会造成履带沉陷量的增大,降低车辆在软土地面的通过性能。为了研究履带式行走机构压实作用下土壤内的应力分布规律以及如何提高应力分布的均匀性,以缓解履带车辆对土壤压实作用、提高履带车辆软地通过能力,该文采用侧断面水平钻孔埋设压力传感器的方法,测得了履带式行走机构压实作用下履带中心线横截面内0.35 m深度土壤内沿履带长度方向上的垂直及水平应力分布;同时研究了履带张紧力大小对应力分布均匀性的影响。结果表明,履带式行走机构下的垂直应力在各负重轮的轴线处呈现一个应力峰值;水平应力在各负重轮轴线的前、后方分别呈现一个应力峰值,且最小应力在轴线处。各负重轮下的应力峰值大小不同。最大垂直应力出现在履带式行走机构后端的导向轮处;最大水平应力出现在后支重轮与导向轮之间。适当减小履带张紧力能够提高垂直及水平应力分布的均匀性。履带张紧力由1.8×10~4k Pa减小至1.6×10~4k Pa时,履带下的最大垂直及水平应力分别减小了约37.3%和21.7%;平均最大垂直及水平应力分别减小了约26.4%和20.4%。研究结果可为履带式行走机构结构的优化提供理论依据,以期提高履带下应力分布的均匀性。  相似文献   

13.
针对四轮独立电驱动高地隙喷雾机因轮毂电机控制器遇到较大扰动无法及时响应而导致的转向不稳定问题,该研究提出了一种液压辅助转向方法。通过对四轮独立电驱动高地隙喷雾机的自转向底盘结构原理的分析,设计了液压辅助转向系统,在此基础上建立了简化二自由度车辆转向模型,用于对辅助转向系统转角控制进行分析,并通过仿真分析和试验验证自转向和辅助转向协调控制性能。四轮电驱动喷雾机分别在自转向系统单独作业以及自转向系统和辅助转向系统协同作业的工况下,以1 m/s的速度分别进行了坡度为15°的下坡转向对比试验和水田转向对比试验。试验结果表明:在下坡试验中,单独自转向系统作业的最大跟踪偏差为6.1°,自转向和辅助转向协同作业的最大跟踪偏差为0.9°;水田试验中,单独自转向系统作业的最大跟踪偏差为10.3°,自转向和辅助转向协同作业的最大跟踪偏差为1.5°。研究结果表明该文所设计的液压辅助转向系统具有可行性和较好的稳定性,能够满足实际作业需求。  相似文献   

14.
为提高轮式拖拉机自动导航过程中转向控制的精度与稳定性,该研究以雷沃欧豹M704-2H拖拉机作为试验平台,采用电动方向盘作为转向执行机构,分析转向机械间隙对控制精度的影响,针对转向间隙特性设计转向控制算法。首先,为了获得准确的转向角,利用GNSS(global navigation satellite system)与二轮车模型快速标定虚拟轮转角,标定结果表明:虚拟轮转角的最大误差为1.3°,平均误差为0.11°。然后,对转向系统的机械间隙进行分析,设计一种带有间隙补偿的模糊PD(proportional derivative)转向控制算法,并在Simulink中验证算法的可行性。实车试验结果表明,该算法跟踪方波转角信号的响应时间为1.1 s,最大稳态误差为0.65°,平均稳态绝对误差为0.132°。跟踪正弦波转角信号的平均延时为0.5 s,最大误差为1.91°,平均绝对误差为1.09°。与无间隙补偿算法相比,有间隙补偿算法跟踪方波信号最大稳态误差减小了0.022°,平均稳态绝对误差减少了0.112°,角度误差在±0.2°内的时间提升了71%;跟踪正弦波信号最大误差减小了0.68°,平均绝对误差减小0.23°。田间直线导航转向控制试验结果表明,转角跟踪的绝对平均误差为0.61°,最大跟踪误差为2.82°,转向控制跟踪精度较高,稳定性好,满足导航作业需求。  相似文献   

15.
履带车辆差速转向机构转向过程动态特性的试验方法   总被引:4,自引:2,他引:2  
该文研究了履带车辆在不同转向半径下转向的两侧履带功率流动特性及液压无级差速转向机构的工作原理。在此基础上,确定了用试验台模拟履带车辆转向过程的试验方案,提出了用试验台驱动装置模拟发动机特性以及加载装置模拟转向过程动态负载的方法,完成液压无级差速转向机构转向过程的动态特性试验。结果表明:履带车辆转向过程中内侧履带由输出功率到输入功率以及外侧履带输出功率进一步增大的变化特点,能够在液压二次调节实验台上予以完成。此试验方法成功解决了履带车辆转向特性试验的台架实现问题。  相似文献   

16.
双流传动履带式车辆实现方向盘转向的台架试验   总被引:1,自引:0,他引:1  
为了使履带车辆的转向操作简便,并降低发动机的功率储备,在现有静液压双流差速转向装置的基础上,设计了一套与其匹配的采用方向盘操纵的控制装置,利用方向盘转角来控制两个定量马达的转速,再通过可差速传动的机械式变速箱分配到两侧驱动轮上,从而实现履带车辆双流传动装置转向期间车辆自动无级降速.通过台架空载试验测得车辆两侧驱动轮输出轴转速与方向盘转角之间的对应关系,并与理论计算仿真结果进行比较.结果表明:使用方向盘转向来实现履带车辆转向期间自动无级降速是可行的,为进一步研究方向盘操纵双流传动履带车辆转向装置提供充分可靠的理论依据.  相似文献   

17.
拖拉机自动转向系统容错自适应滑模控制方法   总被引:1,自引:1,他引:0  
为提高拖拉机自动转向系统的可靠性,该文提出了一种具有前轮转角容错检测能力的径向基函数(radial basis function,RBF)网络自适应滑模控制方法。综合考虑拖拉机姿态信息和控制输出,基于卡尔曼滤波算法推导得出拖拉机前轮转角的两个估计值,并结合角度编码器实际测量值设计了前轮转角容错检测输出算法;以容错输出算法的输出值作为状态量,提出一种利用RBF网络进行干扰补偿的前轮角度自适应滑模控制方法,并通过仿真试验验证了算法的有效性。开展了拖拉机前轮转角容错检测和自动控制试验,结果显示:基于侧向加速度的转角预估值最大误差为2.94?,均方根误差为0.81?;基于横摆角速度的转角预估值的最大误差为1.73?,均方根误差为0.12?;当人为施加故障干扰时,算法可以提供容错的转角输出;拖拉机转向控制系统可以快速跟踪期望前轮角度且超调量较小,最大控制误差为0.21?,均方根误差为0.07?。试验结果表明,容错自适应滑模控制方法提高了自动转向控制系统的可靠性和准确性,有助于解决拖拉机前轮转角测量装置故障率高的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号