首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
利用作物生长模型模拟小麦区域生产力,分析气候变化对农业生产的影响是研究粮食安全的热点问题之一。拥有操作方便、计算快速特点的小麦区域生产力模拟系统,可有效提高作物生长模型区域应用能力。该研究在分解小麦生长模型WheatGrow算法基础上,利用Python语言构建了格网化小麦生长模型,实现了基于空间格网数据的小麦区域生产力模拟。验证试验结果表明:模拟产量的均方根误差为1 070 kg/hm~2,标准均方根误差小于20%,系统所集成的WheatGrow模型具有较好的预测性;同时,结合格网数据分块构建区域模拟的并行计算策略,优化了区域模拟的性能。在此基础上,采用GIS组件式开发模式,在.NET平台下开发格网化小麦生长模拟预测系统,实现作物生长模型与GIS耦合,为研究区域小麦产量潜力,评估气候变化对小麦生长影响,制定农业决策提供软件工具。  相似文献   

2.
为了尝试计算机模拟方法能否成为制定作物保险保费的辅助性工具,该研究运用计算机模拟模型预测冰雹对作物产量的影响。通过对现有EPIC(综合气候因素的环境政策)模型增加冰雹天气模块,即冰雹事件发生概率的数学模型,模拟冰雹对作物产量的影响。除此之外,该研究还模拟了干旱和霜冻等天气因素对美国Iowa,Illinoi和Indiana等3个玉米带州作物产量的影响。首先介绍数据来源及处理方法,讨论建立冰雹模拟模型过程以及对模型进行有效性检验;然后运用统计分析方法对模型模拟结果与实际观察结果进行比较,检验模型模拟结果的准确性。结果表明EPIC模型可以达到95%甚至更高的产量预测的准确性;同时,冰雹灾害模拟结果也可以达到一个较为合理的准确性(R2>0.7)。这些结果表明本研究所建立的增加冰雹模块的EPIC模型可以作为一个较为可靠的冰雹引起的作物产量损失的预测方法.该模型可以用来模拟冰雹事件发生的概率以及其对各种作物产量造成的损失。  相似文献   

3.
区域作物产量预测是国家粮食安全评估的重要内容。遥感虽能获取大面积地表信息,却难以反映作物生长发育的内在过程。作物生长模型已经在单点尺度能成功模拟作物的生长发育过程,但是区域尺度作物关键参数的获取仍很困难。遥感信息与作物模型结合的数据同化已经成为区域产量预测的最有效途径。该文选择河北省衡水地区冬小麦为研究对象,在WOFOST模型标定与区域化的基础上,利用WOFOST模型描述冬小麦生育期内叶面积指数(LAI)变化规律。针对MODIS数据的混合像元造成反演的LAI产品偏低的系统误差,利用实测LAI样本点融合MODIS-LAI趋势信息修正MODIS-LAI数据产品。采用集合卡尔曼(EnKF)算法同化冬小麦返青到抽穗期的MODIS-LAI与WOFOST模拟的LAI以获得时间序列最优的LAI,并以此重新驱动WOFOST模型估算区域冬小麦产量。结果表明,EnKF同化后的冬小麦产量比未同化的产量预测精度有显著提高,与县平均统计产量相比,在潜在模式下,决定系数由0.13提高到0.38,均方根误差由2480下降到880kg/hm2。研究表明,遥感信息与作物模型的EnKF同化是1种有效的作物产量预测方法,并在区域尺度应用上具有广阔的应用潜力。该研究可为区域尺度的作物估产提供参考。  相似文献   

4.
基于遥感和作物生长模型的作物产量差估测   总被引:18,自引:5,他引:18  
传统的作物生长模型很难模拟大田的实际产量,因为大量的数据、复杂的数学运算以及误差传递限制了作物生长模拟模型的运用。目前为止实际产量仅能通过观测和实地调查获得。该文将NOAA-14 AVHRR遥感获取的冠层温度信息引入作物生长模型,利用冠气温差计算作物水分胁迫系数,可以近似地估计区域作物实际生长速率和产量,进而建立了遥感-作物模拟复合模型PS-X,提出了估算区域作物实际产量的方法。PS-X模型可在不同层次模拟作物的生长和产量,在PS-1、PS-2、PS-X水平计算的分别是作物的光温生产潜力、水分限制下的生产力和实际产量。利用该模型,论文分别模拟了邯郸地区1998年夏玉米的光温生产潜力、水分限制下的生产力和实际产量,并通过比较不同模拟水平下产量和农户调查产量进行区域产量差分析。结果表明:PS-1和PS-2水平之间的产量差主要由水分和土壤质地差异造成;PS-2与PS-X水平间的平均产量差异较大,占总产量差(PS-1与PS-X水平之差)的81.4%,主要由田间管理差异造成;对于平原地区,夏玉米产量估测精度可达90%以上;砂质土壤区估算冠层温度和水分胁迫系数比壤质、粘质土壤区要高,因此砂质土壤区模拟作物产量较低,这与PS-2计算结果、农户调查数据一致。研究证实,区域上应用遥感瞬时温度信息建立遥感-作物模拟复合模型进行估产是可行的。  相似文献   

5.
国内外紫花苜蓿生长模型研究进展与展望   总被引:7,自引:2,他引:7  
作物生长模拟模型有助于理解和预测作物生长发育、产量形成及其对环境的反应,并可用于资源利用分析,为生产提供决策支持。本文介绍了紫花苜蓿生长模拟模型的国内外研究进展、现状及特点,剖析了新近开发的紫花苜蓿生长模型(APSIM Lucerne)的组成和结构,对紫花苜蓿生长模型研究的重点与前景进行了分析讨论。  相似文献   

6.
作物生长模型的应用研究进展   总被引:7,自引:0,他引:7  
作物生长模型不仅能够进行单点尺度上作物生长发育的动态模拟,而且能够从系统角度评价作物生长状态与环境要素的关系。本文通过梳理当前作物生长模型应用的诸多研究成果,剖析模型在气候变化对农业生产影响研究、作物生长模型区域应用中的关键问题,总结了当前以作物生长模型为核心的农业决策支持系统开发的研究情况,意在促进作物生长模型在生态、农业、区域气候资源和气候变化等研究中更广泛地应用。结果表明,作物生长模型在国内外的研究与应用广泛而深入,在气候变化背景下,应用作物生长模型进行历史时期气候条件和农业气象灾害对作物生产状况和产量的影响研究已相当广泛且相对成熟。利用全球气候模式(GCM)或区域气候模式(RCM)构建未来气候变化情景,再与作物生长模型耦合已发展成为评估未来气候变化对农业生产影响的重要手段。通过集成与整合多作物生长模型、多气候模式集合模拟、优化气候模拟数据订正方法可有效降低气候变化对农业生产影响评估的不确定性。遥感数据同化技术能够将站点模型运用到区域尺度上评价不同环境因子对农业生产的影响,拓宽了作物生长模型的应用尺度范围并有效提高作物产量估算的精度。以作物生长模型为核心的农业决策支持系统的研究与应用越来越多元化,是辅助农业生产管理和决策的重要工具。然而,由于作物生态系统的复杂性,作物生长模型模拟结果仍存在很大的不确定性,今后对作物生长机理及过程间耦合机制的探索还需加强,以便进一步完善和改进模型,促进作物生长模型更广泛地应用。  相似文献   

7.
农田水盐运移与作物生长模型耦合及验证   总被引:6,自引:3,他引:3  
合理定量描述土壤水盐动态及作物生长过程对于干旱灌区制定适宜的农业用水措施具有重要意义。该文以SWAP(soil water atmosphere plant)模型为基础,采用变活动节点法实现了对土壤融化期的水盐运移模拟,并在根系吸水计算中引入了基于S形函数的水盐胁迫计算方法,以修正原SWAP模型对根系吸水的模拟。进一步嵌入了参数与输入数据较少且可以模拟作物生长过程及实际产量的EPIC(environmental policy integrated calculator)作物生长模型,构建了改进的农田尺度土壤水盐动态与作物生长耦合模拟模型-SWAP-EPIC。分别采用宁夏惠农灌区春小麦和春玉米田间试验数据,对SWAP-EPIC模型田间适用性进行了检验。对比分析各层土壤水分与盐分浓度、作物生长指标(叶面积指数、地上部生物量)的模拟值与实测值,结果表明:春小麦和春玉米试验中土壤水分的平均相对误差MRE和均方根误差RMSE均接近于0且模型Nash效率系数NSE值趋近于1,水分模块模拟精度较高,盐分浓度模拟存在略微差异但总体上一致性较好,并且作物生长指标匹配良好;同时,模拟的产量和蒸散发均较为接近实际值,春小麦和春玉米产量模拟相对误差分别为4.9%和3.3%。综上,该文改进的SWAP-EPIC模型可良好地应用于寒旱区农田尺度土壤水盐运移与作物生长耦合模拟。  相似文献   

8.
土壤水氮动态及作物生长耦合EPIC-Nitrogen2D模型   总被引:2,自引:1,他引:1  
为计算农业区不同作物生长条件下土壤水氮迁移转化过程,该文基于Erosion/Productivity Impact Calculator(EPIC)作物模型建立了作物根系生长子模块,将其进行有限元数值离散,与土壤氮素迁移转化模型Nitrogen2D耦合,使模型能计算作物生长条件下土壤水氮迁移转化过程。该作物生长模块可计算多种胁迫下作物根系对土壤水分和氮素的动态吸收速率,及作物收获时的生物量和吸氮量。采用武汉大学灌溉排水试验场冬小麦生长条件下土壤水氮试验数据对模型进行了率定,并用于土壤水氮分布和作物生物量预测,土壤含水率、氮素的模拟值与实测值的一致性系数分别为0.86~0.97、0.52~0.98,Nash效率系数为0.59~0.90(含水率)、0.44~0.93(土壤氮素),说明模拟结果与实测值吻合度较高。同时,分别采用该文的作物生长模块和简单根系吸收模块计算根系吸氮过程,结果显示,简单根系吸收模型会显著高估作物吸氮量,而作物生长模型则由于考虑了根系生长和各环境因子的胁迫作用,计算结果更符合作物实际吸氮过程,计算的根系吸氮量相对均方根误差为3.4%~46%。  相似文献   

9.
遥感与作物生长模型数据同化应用综述   总被引:8,自引:6,他引:2  
遥感是获取大面积地表信息最有效的手段,在农业资源监测、作物产量预测中发挥着不可替代的重要作用;作物生长模型能够实现单点尺度上作物生长发育的动态模拟,可对作物长势以及产量变化提供内在机理解释。遥感信息和作物生长模型的数据同化有效结合二者优势,在大尺度农业监测与预报上具有巨大的应用潜力。该文系统综述了遥感与作物生长模型的同化研究,概述了遥感与作物生长模型数据同化系统的构建,在归纳国内外研究进展的基础上,总结了当前主流同化方法的特点以及在不同条件下的同化效果。进而具体分析影响同化精度的关键环节,明确了相关科学概念,并相应指出改善精度的策略或者方向。最后从多参数协同、多数据融合、动态预测、多模型耦合以及并行计算环境5个方面展望了遥感与作物生长模型数据同化的未来研究重点和发展趋势,同时结合农业应用现实需求,介绍一种数据同化与集合数值预报结合的应用框架,为大区域、高精度同化研究提供新的思路与借鉴。  相似文献   

10.
WOFOST模型的发展及应用   总被引:6,自引:0,他引:6  
作物生长模拟模型已经成为一门新兴的科学,可以为农业资源的管理利用、农业最大收益的获取提供科学的依据。WOFOST(W orld Food Stud ies)模型是荷兰瓦根宁农业大学和世界粮食研究中心共同开发研制的,是模拟特定的土壤和气候条件下一年生作物生长的动态的、解释性模型。WOFOST模型已经在欧洲、非洲以及亚洲的一些地区得到了运用和验证,可用于水稻、玉米、小麦等多种一年生作物的模拟。WOFOST模型可用来分析作物产量风险,不同年份产量的变化,土壤类型及气候变化对产量变化的影响;确定播种策略以及农业机械使用的关键时期;该模型还可用于估计某种作物最大潜在产量,提高灌溉和施肥的增产效益,对生长在不利条件以及地区的作物产量进行预测等。该模型对可持续农业的发展具有积极的指导作用。  相似文献   

11.
通过对作物光合、呼吸、蒸腾、营养等一系列生理生化过程的定量模拟,作物生长模型已经被成功应用于田间尺度的作物单产研究。为了进一步将作物模型扩展应用于区域尺度,提高区域作物单产的模拟精度,该文探讨了将作物模型与多时相叶面积指数(LAI)遥感影像同化以改善区域单产估测的方法。研究首先通过地理信息系统将美国农业部开发的“考虑气候的作物环境决策模型”——EPIC模型,扩展为空间模型。然后,通过基于Landsat TM影像差值植被指数DVI与田间观测叶面积指数构建的最优回归模型,反演了研究区域的多时相叶面积指数影像。最后通过优化算法实现了空间EPIC模型与影像信息的同化,并将系统应用于河北石家庄地区2004年冬小麦的单产估测。结果表明,通过数据同化校正部分关键参数后的空间作物模型的单产模拟精度得到有效提高,但要达到业务运行精度仍有待进一步改善。  相似文献   

12.
基于WOFOST模型的中国主产区冬小麦生长过程动态模拟   总被引:7,自引:4,他引:3  
大区域尺度WOFOST(world food studies)模型的动态模拟是作物模型区域应用的重要基础。该文以中国冬小麦主产区为研究对象,利用中国冬小麦主产区内174个农业气象站多年观测数据以及气象站点观测数据,重点优化WOFOST模型中与品种相关的积温参数,即出苗至开花有效积温与开花至成熟有效积温。在冬小麦主产区分区的基础上,以2012—2015年气象数据驱动WOFOST模型,在站点尺度进行冬小麦的物候期、叶面积指数(leaf area index,LAI)和单产动态模拟和精度分析。结果表明:WOFOST模型模拟出苗至开花天数的决定系数R2为0.89~0.94,均方根误差RMSE为7.87~11.52 d,模型模拟开花至成熟天数的R2为0.63~0.77,RMSE为2.99~4.65 d;模型模拟LAI的R2为0.70~0.83,RMSE为0.89~1.46 m2/m2;灌溉区WOFOST模拟的单产精度R2为0.45~0.59,RMSE为734~1 421 kg/hm2;雨养区WOFOST模拟的单产精度R2为0.48~0.61,RMSE为1 046~1 329 kg/hm2。结果表明,WOFOST模型在全国尺度取得了较高模拟精度,为区域尺度作物模型的农业应用提供了坚实的过程模型基础。  相似文献   

13.
作物生长模型与定量遥感参数结合研究进展与展望   总被引:4,自引:3,他引:1  
作物生长模型与定量遥感参数的结合,不仅满足前者实现区域应用的需求,也有助于提高后者的反演精度,在生态、农业、资源调查与全球气候变化等研究上意义重大。该文从作物生长模型空间应用拓展的角度,对国内外主流作物生长模型、定量遥感参数以及两者结合的参数与方法进行了概述,分析了典型作物生长模型的主要模拟过程及其驱动、初始化、输出等参数,总结了当前定量遥感正反演结果可为作物生长模型区域应用提供的参数数据;建立了作物生长模型模拟过程与定量遥感参数的对应关系,对比分析了作物生长模型与定量遥感参数的不同结合方式。基于以上内容,对作物生长模型面应用的限制因素及其与定量遥感参数的关系、作物生长模型面应用时参数尺度效应的影响、作物生长模型与定量遥感参数耦合方法的发展3个方面展开了讨论,以期为作物生长模型与定量遥感参数开展更好的结合研究提供参考。  相似文献   

14.
遥感信息与作物生长模型的区域作物单产模拟   总被引:10,自引:7,他引:3  
利用外部数据同化作物生长模型提高区域作物单产模拟精度是近年来的研究热点.该文以遥感反演的叶面积指数(LAI)作为结合点,以黄淮海粮食主产区典型县市夏玉米为研究对象,在区域尺度利用全局优化的复合形混合演化( SCE-UA)算法进行了遥感反演LAI信息同化EPIC (environmental policy integra...  相似文献   

15.
基于DSSAT作物模型的中美大豆主产区单产模拟与验证   总被引:1,自引:1,他引:0  
开展基于作物模型的大面积作物产量估测研究,可以为及时掌握全球重点地区农作物的生产情况提供数据支撑。该研究以大豆为监测作物,选取中国吉林省和美国爱荷华州作为研究区域,基于DSSAT作物估产模型中的SOYGRO大豆模型,利用分辨率为0.5°×0.5°的生育期气象要素以及500 m×500 m绿色叶绿素植被指数,进行遥感数据融合作物模型估测大豆单位产量的模拟与验证研究。结果显示,2008-2017年,美国爱荷华州大豆单位产量模拟值的平均误差为16.8%,均方根误差为762.8 kg/hm~2,平均偏差为107.2 kg/hm~2;中国吉林省大豆单位产量估测的平均误差为36.3%,均方根误差为1 088.4 kg/hm~2,平均偏差为-237.9 kg/hm~2。在县域尺度下,大豆单位产量模拟值与调查值的拟合度较好,尤其在产量较低的年份,其中美国爱荷华州的产量相关系数最高可达0.78,中国吉林省的相关系数偏小,为0.59,表明对美国爱荷华州大豆单位产量的估测精度优于中国吉林省。研究所建立的大豆单位产量估测技术路线,可以为中美两国主产区作物单位产量的大面积有效估测提供参考。  相似文献   

16.
基于作物生长模型和遥感数据同化的区域玉米产量估算   总被引:11,自引:7,他引:4  
为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结合,以叶面积指数(LAI)作为耦合作物生长模型(crop environment resource synthesis-Maize,CERES-Maize)和植被冠层反射率模型(scattering by arbitrarily inclined leaves,SAIL)的关键参数,提出了将耦合模型与时间序列遥感观测数据同化进行区域玉米产量估算的方案。该文选择吉林省榆树市为研究区,采用MODIS和LandsatTM2种尺度数据集,利用SCE-UA(shuffled complex evolution method developed at the University of Arizona)算法分别进行玉米产量同化估产研究,得到玉米单产空间分布的估计结果,结合遥感估算的种植面积求算榆树市玉米总产量。结果表明,与玉米统计总产量相比,2007、2008和2009年遥感数据同化估算的总产量误差分别为9.15%、14.99%和8.97%;与仅利用CERES-Maize模型模拟得到的产量误差相比,3a间遥感估算总产量的误差分别减小了7.49%、1.21%和5.23%,且采用MODIS和TM遥感数据估算的玉米产量表现了其空间差异性。利用榆树市3a间玉米产量的明显差异,分析了时序遥感数据对作物长势和产量变化信息的表达能力,同年份内时序归一化差值植被指数越大,对应的玉米产量越高;年际间遥感观测反射率的差异通过数据同化方法能够反映年际间玉米产量差的变化。该文提出的玉米估产方案为将来进一步结合多源遥感数据、植被冠层反射率模型与作物生长模型进行区域玉米估产研究提供了参考。  相似文献   

17.
河套灌区土壤水盐和作物生长的HYDRUS-EPIC模型分布式模拟   总被引:4,自引:11,他引:4  
土壤水盐是影响干旱灌区作物产量的主要因素。分布式模型可综合考虑土壤、水文和气象因子在灌区的时空变异特征,为评估区域尺度土壤水盐与作物生长状况提供有效工具。该文以河套灌区解放闸灌域为研究区,根据气象-土壤-作物-灌溉等因子的空间分布特征进行均质单元划分,建立基于一维农业水文模型HYDRUS-EPIC的灌区尺度分布式模型。利用2012年和2013年定点观测数据(土壤水分、盐分、叶面积指数和作物产量)进行模型率定与验证;进一步应用模型以求探明现状灌溉条件下研究区土壤水盐与作物生长状况及存在的问题。结果表明:生育期内灌区根区土壤(0~100 cm)有效饱和度为0.44~0.90,基本满足作物耗水需求;根区土壤溶液平均盐分浓度为3.1~13.5 g/L,相应地作物的相对产量为0.35~1.33,土壤盐分过高成为限制研究区作物产量的主因。为调控根区土壤水盐状况,对地下水深埋区(东北部)需进行灌水量的适宜补充,宜将浅埋区(西北、西南等)地下水平均埋深控制在1.3 m以下。  相似文献   

18.
作物模型和遥感技术以各自独有的优势在作物生产监测、评估及未来预测等方面发挥着关键作用。作物模型与遥感信息集成技术在大尺度、高精准的农业生产监测、评估与预测上具有明显的应用优势和广阔的发展前景。为了促进这些技术在区域尺度上的作物产量预测、农业气象灾害影响评估及农业应对气候变化决策等方面更加广泛地应用,本文采用文献综述的方法,系统归纳了欧洲、美国、澳大利亚及中国作物模型的发展与应用,总结了当前主流的数据集成方法的原理、特点和不足,概述了作物模型与遥感信息集成技术的实际应用,探讨了提升数据集成精度存在的问题,并对未来研究方向进行展望。结果表明,国内外对于作物模型及其与遥感数据集成的研究与应用广泛而深入,利用同化方法能够有效提高作物模型模拟精度,为作物模型实现区域尺度作物生长及产量评估、气候变化对产量影响、农田管理决策等提供技术支撑。作物模型模拟结果及遥感反演数据的不确定性、数据同化策略的多样性以及尺度效应是进一步提高集成系统精度与效率的限制因素。因此,遥感数据多源融合、同化过程多变量协同、作物模型多类型耦合以及数据高性能并行计算是未来作物模型与遥感数据集成研究的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号