首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Acidic soil is widely distributed in terrestrial ecosystems, which causes large challenges to crop production. Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance to acidic soil; however, the effects of acidic soil on the functionality of AMF and arbuscule formation are far from being thoroughly understood. In this study, we inoculated tomato plants with Rhizophagus irregularis at pH 4.5 (original acidic soil) or pH 6.5 (limed soil), and monitored the mycorrhizal colonization, alkaline phosphatase (ALP) activity, and expression of SlPTs (which encode phosphate transporters) and EXO70s (which encode subunits of exocysts) in the roots. We aimed to characterize the arbuscule development in colonized roots in response to acidic soil and to investigate how acidic soil affects the functionality of AMF. Our results revealed that acidic soil sharply reduced arbuscule abundance by approximately 90%, and greatly impeded arbuscule development such that no mature arbuscules were observed. The negative effect of acidic soil on arbuscule formation was supported by EXO70A1-like expression. The functionality of AMF, e.g., ALP activity in arbuscules and the expression of SlPT4 and SlPT5, was simultaneously greatly inhibited in acidic soil in the same manner as that of arbuscule formation. The close relationship between the functionality of AMF and arbuscule abundance in this study indicates that acidic soil strongly inhibits AMF function mainly via a reduction in arbuscule formation. Considering the coupling of arbuscule formation and periarbuscular membrane construction, the fine-tuning of both processes in response to acidic soil merits additional in-depth investigations.  相似文献   

2.
基于孢子形态学鉴定,通过研究土壤活性有机碳(ASOC)质量分数对丛枝菌根真菌(AMF)物种多样性及侵染效应的影响,为基于土壤环境调控的菌根生物技术的应用探寻新的途径和方法。结果表明,ASOC质量分数在0.30~0.80、0.81~1.40、1.41~4.00 g/kg范围内,Glomus属真菌对AMF的种群构成均具重要作用,且其影响随ASOC质量分数的增加而提高;由Glomus属真菌构成的优势种,特别是一些共有优势种对AMF的种群发育具有主导作用;ASOC质量分数与孢子密度呈显著正相关,较低的ASOC质量分数极显著促进了菌根侵染。从综合影响看,调控ASOC质量分数至较低(0.81~1.40 g/kg)水平,可能充分发挥AMF在高寒草原中的重要作用,这为探寻适度的农业工程调控措施,以强化ASOC对AMF物种多样性及菌根侵染的重要影响,促进多菌种以及多优势种的协同作用,稳定高寒草原环境提供了重要信息。  相似文献   

3.
Controls on the colonization and abundance of arbuscular mycorrhizal fungi (AMF) in ecosystems are little understood and may be related to host factors, the fungal community, and soil physio-chemical properties; and changes in these variables during soil development may affect succession between mycorrhizal groups. Here we investigated the effects of litter, litter leachates, and common soluble phenolic compounds on AMF colonization of roots. In previous studies, we observed a negative correlation between increases in black cottonwood (Populus trichocarpa) litter and AMF abundance and inoculum potential along a riparian chronosequence in northwest Montana. From this, we hypothesized that litter inputs negatively affect the native AMF community and may contribute to the shift between AMF and ectomycorrhizas. We tested the effects of cottonwood foliage and litter extract additions on the colonization of AMF of both cottonwood and Sudan grass (Sorghum sudanese) seedlings. Addition of 5% (v/v) dried cottonwood leaves completely inhibited AMF colonization of S. sudanese. AMF colonization of S. sudanese was significantly reduced by litter extract of P. trichocarpa foliage, and colonization was negatively correlated with litter extract concentrations. Additions of aqueous litter extract significantly reduced AMF colonization of cottonwood seedlings as well. The effect of the litter extract on AMF colonization of S. sudanese did not appear to be mediated by changes in soil pH or plant biomass. Available phosphorus was higher in soil receiving highest concentration of litter extract, but not at a level expected to be inhibitory to AMF colonization. Litter additions significantly increased total soil phenolics, but with a range similar to natural soils of the Nyack floodplain. We tested pure soluble phenolic compounds common to Populus for their effect on AMF colonization by native fungi from the Nyack floodplain. All tested compounds significantly reduced AMF colonization but did not affect colonization by non-AMF root-colonizing fungi. This suggests secondary compounds present in cottonwood litter can affect colonization ability of a native AMF community. The potential mechanisms of inhibition and the relevance of these findings to AMF succession within both a single host and soil are discussed.  相似文献   

4.
Approximately 70,150 dry Mg of biosolids from over 450 wastewater treatment facilities are applied to the semi-arid rangelands of Colorado every year. Research on semi-arid grassland responses to biosolids has become vital to better understand ecosystem dynamics and develop effective biosolids management strategies. The objectives of this study were to determine the long-term (∼12 years) effects of a single biosolids application, and the short-term (∼2 years) effects of a repeated application, on plant and microbial community structure in a semi-arid grassland soil. Specific attention was paid to arbuscular mycorrhizal fungi (AMF) and linkages between shifts in plant and soil microbial community structures. Biosolids were surface applied to experimental plots once in 1991 (long-term plots) and again to short-term plots in 2002 at rates of 0, 2.5, 5, 10, 21, or 30 Mg ha−1. Vegetation (species richness and above-ground biomass), soil chemistry (pH, EC, total C, total N, and extractable P, NO3-N, and NH4-N), and soil microbial community structure [ester-linked fatty acid methyl esters (EL-FAMEs)], were characterized to assess impacts of biosolids on the ecosystem. Soil chemistry was significantly affected and shifts in both soil microbial and plant community structure were observed with treatment. In both years, the EL-FAME biomarker for AMF decreased with increasing application rate of biosolids; principal components analysis of EL-FAME data yielded shifts in the structure of the microbial communities with treatment primarily related to the relative abundance of the AMF specific biomarker. Significant (p≤0.05) correlations existed among biomarkers for Gram-negative and Gram-positive bacteria, AMF and specific soil chemical parameters and individual plant species' biomass. The AMF biomarker was positively correlated with biomass of the dominant native grass species blue grama (Bouteloua gracilis [Willd. ex Kunth] Lagasca ex Griffiths) and was negatively correlated with western wheatgrass (Agropyron smithii Rydb.) biomass. This study demonstrated that applications of biosolids at relatively low rates can have significant long-term effects on soil chemistry, soil microbial community structure, and plant community species richness and structure in the semi-arid grasslands of northern Colorado. Reduced AMF and parallel shifts in the soil microbial community structure and the plant community structure require further investigation to determine precisely the sequence of influence and resulting ecosystem dynamics.  相似文献   

5.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

6.
In south-eastern Australia, strips of planted native trees and shrubs (shelterbelts) are frequently established to restore ecosystem services altered by agriculture. Despite their wide use, little is known about the effects of establishing shelterbelts on soil macro invertebrates, especially earthworms, which are of major importance in soil processes. We assessed earthworm composition, diversity and biomass in three land use systems: native shelterbelts dominated by Acacia and Eucalyptus species, agricultural pastures and native remnant woodland fragments dominated by Eucalyptus blakelyi and/or Eucalyptus melliodora. Earthworm communities differed significantly among systems, with abundance, biomass and diversity greatest under pasture. Within shelterbelts we saw a shift from high earthworm biomass and density to low with increasing time after establishment. Soil edaphic variables did not correlate strongly with earthworm biomass or density, but were correlated with earthworm community composition. Overall the introduction of native woody vegetation was associated with a decline in density and biomass of earthworms, including a decrease in the relative abundance of exotic species. As such shelterbelts can be used to promote native earthworm relative abundance, which may be important for local diversity, soil function and landscape connectivity.  相似文献   

7.
Soil salinity and arbuscular mycorrhizal fungi (AMF) influence the soil hydrophobicity. An experiment was performed to determine the effects of soil salinity and AMF species on soil water repellency (SWR) under wheat (Triticum aestivum L.) crop. Six AMF treatments, including four exotic species (Rhizophagus irregularis, Funneliformis mosseae and Claroideoglomus claroideum, a mix of three species), one mix native AMF species treatment and an AMF-free soil in combination with four salinity levels (1, 5, 10, and 15 dS m?1) were used. The soil repellency index (RI) increased with salinity increment ranging from 2.4 to 10.5. The mix of three exotic and native AMF treatments enhanced the RI significantly compared to AMF-free soil in all salinity levels with one exception for native treatment at 1 dS m?1. Among individual AMF species, the C. claroideum treatment at 10 dS m?1 increased the RI by 67% compared to AMF-free soil. The native AMF treatment was more efficient in root colonization, glomalin production and SWR development at 10 and 15 dS m?1, compared to exotic species. In addition to the net positive effect of salinity on SWR, the AMF influences on the RI were greatly dependent on salinity levels.  相似文献   

8.
In sustainable agriculture, arbuscular mycorrhizal (AM) fungal inoculation in agronomical management might be very important, especially when the efficiency of native inocula is poor. Here, we assessed the effect of native and exotic selected AM fungal inocula on plant growth and nutrient uptake in a low input Trifolium alexandrinum-Zea mays crop rotation. We evaluated the effects of four exotic AM fungal isolates on T. alexandrinum physiological traits in greenhouse. Then, the field performances of T. alexandrinum inoculated with the exotic AMF, both single and mixed, were compared to those obtained with a native inoculum, using a multivariate analysis approach. Finally, we tested the residual effect of AM fungal field inoculation on maize as following crop. Multivariate analysis showed that the field AM fungal inoculation increased T. alexandrinum and Z. mays productivity and quality and that the native inoculum was as effective as, or more effective than, exotic AM fungal isolates. Moreover, the beneficial effects of AMF were persistent until the second year after inoculation. The use of native AMF, produced on farm with mycotrophic plants species, may represent a convenient alternative to commercial AM fungal inocula, and may offer economically and ecologically important advantages in sustainable or organic cropping systems.  相似文献   

9.
Earthworms and arbuscular mycorrhizal fungi (AMF) are important macrofauna and microorganisms of the rhizosphere. The effect of the inoculation of soil with earthworms (Aporrectodea trapezoides) and mycorrhiza (Rhizophagus intraradices) on the community structure of mycorrhizal fungi and plant nutrient uptake was determined with split plots in a maize field. Maize plants were inoculated or not inoculated with AMF, each treated with or without earthworms. Wheat straw was added as a feed source for earthworms. Inoculating AMF significantly increased maize yield (p?<?0.05), and the yield was further enhanced by the addition of earthworms. Alkaline phosphomonoesterase activities, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) increased with the addition of both earthworms and AMF. Soil inorganic N and available K were positively affected by earthworms, while available P showed a negative relationship with AMF. Treatment with both AMF and earthworms increased shoot and root biomass as well as their N and P uptake by affecting soil phosphomonoesterase and urease activities, SMBC, SMBN, and the content of available nutrients in soil. The applied fungal inoculants were successfully traced by polymerase chain reaction with novel primers (AML1 and AML2) which target the small subunit rRNA gene. The amplicons were classified by restriction fragment length polymorphism and sequencing. Moreover, field inoculation with inocula of non-native isolates of R. intraradices appeared to have stimulated root colonization and yield of maize. Adding earthworms might influence native AMF community, and the corresponding abundance increased after earthworms were inoculated, which has positive effects on maize growth.  相似文献   

10.
The significance of arbuscular mycorrhizal fungi (AMF) in soil remediation has been widely recognized because of their ability to promote plant growth and increase phytoremediation efficiency in heavy metal (HM) polluted soils by improving plant nutrient absorption and by influencing the fate of the metals in the plant and soil. However, the symbiotic functions of AMF in remediation of polluted soils depend on plant–fungus–soil combinations and are greatly influenced by environmental conditions. To better understand the adaptation of plants and the related mycorrhizae to extreme environmental conditions, AMF colonization, spore density and community structure were analyzed in roots or rhizosphere soils of Robinia pseudoacacia. Mycorrhization was compared between uncontaminated soil and heavy metal contaminated soil from a lead–zinc mining region of northwest China. Samples were analyzed by restriction fragment length polymorphism (RFLP) screening with AMF-specific primers (NS31 and AM1), and sequencing of rRNA small subunit (SSU). The phylogenetic analysis revealed 28 AMF group types, including six AMF families: Glomeraceae, Claroideoglomeraceae, Diversisporaceae, Acaulosporaceae, Pacisporaceae, and Gigasporaceae. Of all AMF group types, six (21%) were detected based on spore samples alone, four (14%) based on root samples alone, and five (18%) based on samples from root, soil and spore. Glo9 (Rhizophagus intraradices), Glo17 (Funneliformis mosseae) and Acau3 (Acaulospora sp.) were the three most abundant AMF group types in the current study. Soil Pb and Zn concentrations, pH, organic matter content, and phosphorus levels all showed significant correlations with the AMF species compositions in root and soil samples. Overall, the uncontaminated sites had higher species diversity than sites with heavy metal contamination. The study highlights the effects of different soil chemical parameters on AMF colonization, spore density and community structure in contaminated and uncontaminated sites. The tolerant AMF species isolated and identified from this study have potential for application in phytoremediation of heavy metal contaminated areas.  相似文献   

11.
Little is known about the characteristics of arbuscular mycorrhizal fungi (AMF) community in the roots of host plants growing on heavy metal contaminated sites. The objectives of this study were to examine the community structure of AMF associated with the roots of a copper (Cu) tolerant plant—Elsholtzia splendens in a Cu mining area in southeastern Anhui Province, China. Molecular techniques were used to analyze AMF community composition and phylogenetic relationship in E. splendens roots sampled from three Cu mine spoils and two adjacent reference areas. Results obtained showed that root colonization and AMF diversity were very low and negatively correlated with total and extractable Cu concentrations. All the DNA sequences recovered belonged to the genus of Glomus. The principal component analysis (PCA) revealed that the AMF community composition varied remarkably among different sites and was related closely to soil properties, especially Cu concentrations. The distribution pattern of AMF species in various sites suggested the degree of AMF tolerance to Cu contamination. The unique AMF species that presented exclusively in heavily contaminated sites need to be further examined for potential application in phytoremediation of metal contaminated soils.  相似文献   

12.
Clear-cutting,a management practice applied to many beech forests in the North of Spain,modifies microclimate and,consequently,the composition of the understory plant community in the disturbed areas.The objectives of this study were to assess if changes in the understory vegetation caused by altered light microclimate after clear-cutting affect the infectivity of arbuscular mycorrhizal fungi(AMF) on herbaceous plant species in beech(Fagus sylvatica L.) forests naturally regenerating from clear-cutting and to test if the use of bioassays for studying the infectivity of native AMF could provide useful information to improve the management of clear-cut areas.Three nearby beech forests in northwest Navarra,Spain,a region in the northwest part of the Pyrenees,were selected:an unmanaged forest,a forest clear-cut in 1996,and another forest clear-cut in 2001.High stem density in the forest clear-cut in 1996(44 000 trees ha -1) attenuated photosynthetic active radiation(PAR) and impaired the growth of herbaceous species within the ecosystem.The percentage of AMF colonization of plants in bioassays performed on soil samples collected from the forest clear-cut in 1996 was always lower than 10%.In the forest clear-cut in 2001,where soil was covered by perennial grasses,PAR was high and the infectivity of native AMF achieved minimum values in spring and autumn and a maximum value in summer.In contrast,the infectivity of native AMF in the unmanaged forest remained similar across the seasons.Our results demonstrated that changes in the composition of understory vegetation within beech forests strongly affected the infectivity of native AMF in clear-cut areas and suggested that the assessment of the infectivity of native AMF through bioassays could provide helpful information for planning either the removal of overstory when the tree density is so high that it impairs the correct development of herbaceous species or the plantation of new seedlings when high light intensity negatively affects the establishment of shade species.  相似文献   

13.
The productivity and diversity of plant communities are affected by soil organisms such as arbuscular mycorrhizal fungi (AMF), root herbivores and decomposers. However, it is unknown how interactions between such functionally dissimilar soil organisms affect plant communities and whether the combined effects are additive or interactive. In a greenhouse experiment we investigated the individual and combined effects of AMF (five Glomus species), root herbivores (wireworms and nematodes) and decomposers (collembolans and enchytraeids) on the productivity and nutrient content of a model grassland plant community as well as on soil microbial biomass and community structure. The effects of the soil organisms on productivity (total plant biomass), total root biomass, grass and forb biomass, and nutrient uptake of the plant community were additive. AMF decreased, decomposers increased and root herbivores had no effect on productivity, but in combination the additive effects canceled each other out. AMF reduced total root biomass by 18%, but decomposers increased it by 25%, leading to no net effect on total root biomass in the combined treatments. Total shoot biomass was reduced by 14% by root herbivores and affected by an interaction between AMF and decomposers where decomposers had a positive impact on shoot growth only in presence of AMF. AMF increased the shoot biomass of forbs, but reduced the shoot biomass of grasses, while root herbivores only reduced the shoot biomass of grasses. Interactive effects of the soil organisms were detected on the shoot biomasses of Lotus corniculatus, Plantago lanceolata, and Agrostis capillaris. The C/N ratio of the plant community was affected by AMF.In soil, AMF promoted abundances of bacterial, actinomycete, saprophytic and AMF fatty acid markers. Decomposers alone decreased bacterial and actinomycete fatty acids abundances but when decomposers were interacting with herbivores those abundances were increased. Our results suggests that at higher resolutions, i.e. on the levels of individual plant species and the microbial community, interactive effects are common but do not affect the overall productivity and nutrient uptake of a grassland plant community, which is mainly affected by additive effects of functionally dissimilar soil organisms.  相似文献   

14.
The exploitation of minerals from coastal dunes in northeastern Brazil requires subsequent revegetation for ecosystem recovery. In mined dunes areas, we have compared the growth of Guazuma ulmifolia and Tabebuia roseo-alba seedlings using substrates containing 10 or 15% of cattle manure, uninoculated or inoculated with a mixture of native arbuscular mycorrhizal fungi (AMF) or exotic AMF (Acaulospora longula). The inoculated plants had a higher percentage of colonization than those that were uninoculated. Plants of G. ulmifolia had the highest growth when inoculated with native AMF and fertilized with 10% manure or inoculated with A. longula and fertilized with 15% manure. In general, fertilization with 15% manure did not produce greater seedling development and had a negative effect on the effectiveness of the symbiosis. Twenty one AMF species were recorded in the planting areas at the end of the experiments, with a predominance of species that form acaulosporoid spores in areas with T. roseo-alba and gigasporoid spores in areas with G. ulmifolia plants. The incorporation of 10% cattle manure and native AMF in the substrate of T. roseo-alba and G. ulmifolia seedlings contributes to the initial establishment of plants in the field and to the incorporation of AMF propagules in the soil of the revegetated mined dunes.  相似文献   

15.
Interactions between plants and microorganisms can significantly affect plant health and productivity as well as ecosystem functioning. Detailed knowledge of the tripartite relationships between plants, fungi, and bacteria, and their environment is still limited. In the present study, the soils adjacent to three plant species (Cruciata laevipes, Mentha piperita, Equisetum arvense) in the Ljubljana Marsh and the bulk, plant-free soil were analyzed for their bacterial community structure in June and October 2006. The terminal restriction fragment length polymorphism analysis indicated a different bacterial community structure in the rhizosphere and in bulk soil, however, with almost no seasonal changes between late spring and autumn samples and no apparent impact of the three plant species. In addition, root colonization of the three plant species by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was microscopically assessed monthly from May until October 2006. A presumably accidental correlation between monthly precipitation and the degree of arbuscule formation, with the latter lagging 1 month, was noted for M. piperita, the most heavily colonized of the three plant species. With all three plants, the phosphorus content in roots correlated positively with most AMF structures. Microsclerotia of DSE were mainly abundant in autumn samples. Fungal diversity in roots was estimated using temporal temperature gradient gel electrophoresis separation of the fungal polymerase chain reaction products obtained for both 18S-rDNA and the 5.8S-ITS2-28S rDNA segments. No specific effects of either plant species or seasonal changes on mycorrhizal community structure were discernible.  相似文献   

16.
【目的】蚯蚓和丛枝菌根真菌处于不同的营养级,但在促进植物生长和提高土壤肥力等方面却都发挥着积极作用。研究蚯蚓菌根互作及其对玉米吸收土壤中的氮、磷养分的影响,可为提升土壤生物肥力及促进农业的可持续发展提供理论依据。【方法】本研究采用田间盆栽方式,以玉米为供试作物,研究蚯蚓(Eisenia fetida)与丛枝菌根真菌(Glomus intraradices)互作及其对玉米养分吸收的影响。试验设置P 25和175 mg/kg两个水平。每个磷水平进行接种与不接种菌根真菌以及添加与不添加蚯蚓,共8个处理。调查了玉米生长、养分吸收以及真菌浸染和土壤养分的有效性。【结果】两个磷水平下,蚯蚓和菌根在增加玉米地上部和根系生物量方面有显著正交互作用(P0.05)。接种菌根真菌的各处理显著增加了玉米的侵染率及泡囊丰度、根内菌丝丰度等菌根指标。同时添加蚯蚓和接种菌根真菌的处理(AM+E)显著提高了菌根的侵染率、菌丝密度、丛枝丰度和根内菌丝丰度但是泡囊丰度有所下降。两种磷水平下,AM+E处理玉米地上部和地下部含氮量和含磷量均显著高于其他三个处理。在低磷条件下,地上部氮磷总量的增加分别是添加蚯蚓和接菌的作用;而地下部磷总量的增加主要是菌根真菌的作用。在高磷条件下,单加蚯蚓显著增加玉米氮磷的总量,而接种菌根真菌对玉米氮磷吸收的影响未达显著性水平。在高磷条件下,单加蚯蚓的处理显著提高玉米地上地下部生物量(P0.05),而单接菌的处理效应不显著,蚯蚓菌根互作通过提高土壤微生物量碳、氮实现对玉米生长和养分吸收的调控。在低磷条件下,单接菌显著提高了玉米的生物量(P0.05),单加蚯蚓的处理具有增加玉米生物量的趋势。菌根真菌主要促进玉米对磷的吸收,蚯蚓主要矿化秸秆和土壤中的氮磷养分增加土壤养分的有效性,蚯蚓菌根互作促进了玉米根系对土壤养分的吸收并形成氮磷互补效应。【结论】无论在高磷还是低磷水平下,蚯蚓菌根相互作用都提高了玉米地上地下部生物量、氮磷吸收量同时提高了土壤微生物量碳、氮。蚯蚓菌根相互作用对植物生长的影响取决于土壤养分条件。在高磷条件下(氮相对不足),蚯蚓菌根互作通过调控土壤微生物量碳、氮调控玉米生长和养分吸收。低磷条件下,菌根主要发挥解磷作用,蚯蚓主要矿化秸秆和土壤中的氮素,蚯蚓和菌根互补调控土壤中氮、磷,从而促进植物的生长和养分吸收。  相似文献   

17.
  【目的】  磷极易被土壤吸附和固定,导致土壤中磷有效性较低。研究接种丛枝菌根真菌 (arbuscular mycorrhizal fungi, AMF) 和低磷处理两者交互对紫花苜蓿生长和磷吸收的影响,为提高碱性土壤中磷肥利用率提供理论依据。  【方法】  以黄绵土和紫花苜蓿 (Medicago sativa) 为试验材料进行盆栽试验。在施磷0、5、20 mg/kg (P0、P5、P20) 3个水平下,分别设接种和不接种丛枝菌根 Glomus mosseae BGC YN02 (+AMF、–AMF) 处理。植物生长120天后测定植株生物量、磷吸收量、AMF侵染率以及根际和非根际土壤的pH、土壤碱性磷酸酶活性、土壤有效磷含量、土壤微生物生物量磷,分析根际有机酸的组成与含量。  【结果】  +AMF处理中植物根系被AMF侵染,且施磷水平对侵染率没有显著影响;施磷和+AMF处理显著提高了植株地上部、地下部生物量以及磷含量,其中P20+AMF处理生物量和磷含量最高;根际有机酸总量随施磷水平上升而显著降低,但+AMF处理有机酸总量高于–AMF处理,其中柠檬酸和乙酸含量的变化较为明显;施磷和+AMF显著降低土壤碱性磷酸酶活性,增加土壤有效磷含量和微生物生物量磷,且低磷环境 (P0、P5) 下根际土壤碱性磷酸酶活性和微生物生物量磷均显著高于非根际土;P20处理显著降低磷利用效率和磷肥利用率,+AMF处理显著提高磷肥利用率。  【结论】  碱性土壤 (黄绵土) 中,AMF和紫花苜蓿根系能建立较好的共生关系,低施磷水平 (施磷量 ≤ 20 mg/kg) 对AMF侵染率没有显著影响。施磷和接种AMF均可以显著促进紫花苜蓿生长和磷吸收。低磷环境下,接种AMF可以扩大植物根系吸收范围,同时增强根际土壤碱性磷酸酶活性,促进根系分泌有机酸,特别是乙酸和柠檬酸,从而提高磷肥利用率。  相似文献   

18.
Earthworms and arbuscular mycorrhizal fungi (AMF) are known to independently affect soil microbial and biochemical properties, in particular soil microbial biomass (SMB) and enzymes. However, less information is available about their interactive effects, particularly in soils contaminated with heavy metals such as cadmium (Cd). The amount of soil microbial biomass C (MBC), the rate of soil respiration (SRR) and the activities of urease and alkaline phosphatase (ALP) were measured in a calcareous soil artificially spiked with Cd (10 and 20 mg Cd kg−1), inoculated with earthworm (Lumbricus rubellus L.), and AMF (Glomus intraradices and Glomus mosseae species) under maize (Zea mays L.) crop for 60 days. Results showed that the quantity of MBC, SRR and enzyme activities decreased with increasing Cd levels as a result of the elevated exchangeable Cd concentration. Earthworm addition increased soil exchangeable Cd levels, while AMF and their interaction with earthworms had no influence on this fraction of Cd. Earthworm activity resulted in no change in soil MBC, while inoculation with both AMF species significantly enhanced soil MBC contents. However, the presence of earthworms lowered soil MBC when inoculated with G. mosseae fungi, showing an interaction between the two organisms. Soil enzyme activities and SRR values tended to increase considerably with the inoculation of both earthworms and AMF. Nevertheless, earthworm activity did not affect ALP activity when inoculated with G. mosseae fungi, while the presence of earthworm enhanced urease activity only with G. intraradices species. The increases in enzyme activities and SRR were better ascribed to changes in soil organic carbon (OC), MBC and dissolved organic carbon (DOC) contents. In summary, results demonstrated that the influence of earthworms alone on Cd availability is more important than that of AMF in Cd-polluted soils; and that the interaction effects between these organisms on soil microorganism are much more important than on Cd availability. Thus, the presence of both earthworms and AMF could alleviate Cd effects on soil microbial life.  相似文献   

19.
A comprehensive knowledge on the relationship between soil salinity and arbuscular mycorrhizal fungi (AMF) is vital for a deeper understanding of ecosystem functioning under salt stress conditions. The objective of this study was to determine the effects of soil salinity on AMF root colonization, spore count, glomalin related soil protein (GRSP) and community structure in Saemangeum reclaimed land, South Korea. Soil samples were collected and grouped into five distinct salt classes based on the electrical conductivity of soil saturation extracts (ECse). Mycorrhizal root colonization, spore count and GRSP were measured under different salinity levels. AMF community structure was studied through three complementary methods; spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Results revealed that root colonization (P < 0.01), spore count (P < 0.01) and GRSP (P < 0.01) were affected negatively by soil salinity. Spore morphology and T-RFLP data showed predominance of AMF genus Glomus in Saemangeum reclaimed land. T-RFLP and DGGE analysis revealed significant changes in diversity indices between non (ECse < 2 dS/m) and extremely (ECse > 16 dS/m) saline soil and confirmed dominance of Glomus caledonium only in soils with ECse < 8 dS/m. However, ribotypes of Glomus mosseae and Glomus proliferum were ubiquitous in all salt classes. Combining spore morphology, T-RFLP and DGGE analysis, we could show a pronounced effect in AMF community across salt classes. The result of this study improve our understanding on AMF activity and dominant species present in different salt classes and will substantially expand our knowledge on AMF diversity in reclaimed lands.  相似文献   

20.
Understanding how urban land-use structure contributes to the abundance and diversity of riparian woody species can inform management and conservation efforts. Yet, previous studies have focused on broad-scale (e.g., urban to exurban) land-use types and have not examined more local-scale changes in land use (e.g., the variation within “urban”), which could be important in urban areas. In this paper we examine how local-scale characteristics or fine-scale urban heterogeneity affect(s) the diversity, composition, and structure of temperate woody riparian vegetation communities in the highly urbanized area of Cincinnati, Ohio, USA. We use an information-theoretic approach to compare vegetation models and canonical correspondence analyses to compare species responses to urban variables. We found that urban riparian areas can harbor a high diversity of native canopy and shrub species (38 and 41, respectively); however, native and exotic woody plant species responded differently to urbanization. Exotic canopy species increased with the level of urbanization while native canopy and understory species declined. Understory species diversity displayed a greater response to urbanization than did canopy diversity, suggesting temporal lags in canopy response to disturbances associated with present and recent land-use changes. Certain native and exotic woody species represent ecological indicators of different levels of urbanization. Native species characteristic of pre-European settlement conditions were restricted to the wide riparian forests with little urban encroachment. Several native early-successional species appear tolerant to urbanization. Two exotic species, the tree Ailanthus altissima and the shrub Lonicera maackii, were the most abundant and ubiquitous woody species and appear to exploit urban disturbances. These exotic species invasions have the potential to modify forest composition and ecological function of urban riparian systems. In addition, altered hydrology may be a contributing factor as canopy and understory stem density of high-moisture-requiring species decreased with an increase in impervious surface and grass cover and with proximity to roads and railroads. In the face of urbanization, maintaining wide riparian forests and limiting building, road and railroad development within these areas may help reduce the invasion of exotic species and benefit hydrological function in temperate riparian areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号