首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
倒伏水稻的识别对灾后农业生产管理、灾害保险、补贴等工作有重要意义。为应用高分辨率遥感影像准确提取倒伏水稻面积,本文利用2019年9月27日获取的哨兵2号多光谱遥感影像,研究黑龙江省同江市倒伏水稻的光谱、纹理特征,并基于光谱与纹理特征建立倒伏水稻的遥感提取模型。研究结果表明水稻倒伏后可见光-近红外-短波红外等8个波段的反射率均升高,其中短波红外、红光和红边1等3个波段的反射率上升大于0.06。倒伏水稻的典型植被指数中,归一化植被指数、比值植被指数、增强植被指数和红边位置指数均降低,但差值植被指数升高。倒伏与正常水稻在红光、红边1和短波红外等3个波段的均值纹理数值差距明显,红光波段的纹理均值差异最大。利用归一化植被指数、地表水分指数、比值植被指数和差值植被指数以及红光波段的纹理均值构建决策树分类模型,监测结果表明农场内倒伏水稻分布较散,其西部和南部水稻受灾面积较大,北部受灾面积较小,中部偏北和东部基本未倒伏。将本文模型所提取的结果与实测面积对比,正常与倒伏水稻的面积识别误差分别为3.33%和2.23%。利用随机验证样本与模型验证结果进行混淆矩阵分析,倒伏水稻的用户精度和制图精度均为92.0%,Kappa系数为0.93。该方法能够适用于大区域倒伏水稻提取,可为高分辨率多光谱遥感数据调查水稻倒伏面积提供相关依据。  相似文献   

2.
开展粮食作物监测对于国家粮食安全具有重要意义。在传统像元尺度下,利用单一遥感数据进行粮食作物监测,识别精度往往较低,提取的作物地块破碎,难以满足应用需求。为此,该研究以山东省青岛市黄岛区为研究区,提出了一套地块尺度下综合多源卫星遥感数据(包括高分辨率数据、多时相数据、高光谱数据)与土地利用调查矢量数据的粮食作物信息识别方法。首先,对高分辨率数据进行分割获取耕地地块矢量数据;其次,基于多源卫星遥感数据提取地块级时空谱特征;再次,利用样本数据计算特征类间可分性,并进行特征优选;最后,构建基于二次多项式支持向量机的主要粮食作物(春玉米)识别方法。结果表明:1)该研究所提的方法可以有效进行粮食作物信息识别,基于地块数统计的识别精度为89.7%;2)利用光谱特征、植被指数、纹理特征组合得到的识别结果精度最优,基于像元数统计的精度为97.1%,与传统方法相比提高了24.2个百分点,且提取的地块信息更完整。该研究成果可支持粮食作物种植用地的调查与监测,也可为耕地非粮化时空演变与分析提供新的思路。  相似文献   

3.
基于HJ-1A/BCCD数据的玉米倒伏识别方法   总被引:2,自引:0,他引:2  
为快速获取大面积玉米倒伏灾情信息,以2012年台风"布拉万"过境导致大面积玉米倒伏的公主岭市为研究区,利用HJ-1A/BCCD数据,对受灾前后倒伏玉米和正常玉米之间的光谱差异进行分析,提取归一化植被指数(NDVI)、比值植被指数(RVI)、增强植被指数(EVI)、差值植被指数(DVI)及4波段光谱反射率主成分,结合地面调查构建基于二元Logistic回归的玉米倒伏识别模型,并进行精度评价和验证。结果表明:玉米倒伏后冠层光谱反射率在可见光-近红外波段均表现为增大,但植被指数减小;二元Logistic回归方法对玉米倒伏识别适用,所建模型中以4波段光谱反射率主成分构建的二元Logistic回归模型对玉米倒伏的识别效果最优,测试集上分类结果的准确率达到96.23%,NDVI和RVI模型次之,准确率为80%左右;将主成分模型应用于公主岭市倒伏玉米识别,结果与灾情实际情况基本一致。基于二元Logistic回归模型对玉米倒伏进行监测的思路和方法可为区域尺度玉米倒伏的多光谱遥感监测提供参考。  相似文献   

4.
基于GF-6卫星影像多特征优选的酿酒葡萄精准识别   总被引:2,自引:2,他引:0  
多源遥感信息和特征优选是提高农作物识别精度的重要支撑,高分六号(GF-6)卫星作为首次引入红边波段的国产卫星,其丰富的光谱信息为作物识别提供了新的思路和解决途径。该研究基于宁夏回族自治区银川市永宁县2018年6月-2019年3月的GF-6数据,充分利用红边优势提取光谱特征、纹理特征和植被指数特征,构建多种特征组合方案,并根据随机森林算法对特征重要性进行度量,选取最优特征组合对酿酒葡萄进行精准识别。结果表明,与单一特征相比,多源遥感特征的增加显著改善了酿酒葡萄分类效果,其中,植被指数贡献程度最大,光谱特征次之;基于随机森林的优选特征组合分类效果最佳,其中,总体分类精度为94.15%,酿酒葡萄用户精度为94.23%,制图精度为92.59%;以实地调查的4个酒庄为验证区,将酿酒葡萄提取结果与统计数据进行对比,面积相对精度均在70%以上,其中优选特征结果相对精度在90%以上,研究结果将为国产卫星红边波段在植被分类和识别方面的应用提供数据参考。  相似文献   

5.
充分挖掘遥感数据信息,改善作物识别环境,一直是农作物遥感监测的重要工作。以往研究表明最佳波段组合、纹理信息和植被指数信息可以在一定程度上提高分类精度,但这些手段是否一定可以提高作物识别的精度,不同分类器对不同特征信息组合的响应是否一致等都是值得探讨的问题,也是目前研究甚少的问题。为此,该文将平均值(Mean)、方差(Variance)、均一性(Homogeneity)、反差(Contrast)、相异性(Dissimilarity)、熵(Entropy)、角二阶矩(Angular Second Moment)、灰度相关(Correlation)7种纹理信息以及比值植被指数(RVI)、土壤调整植被指数(SAVI)、重归一化植被指数(RDVI)、植被液态水含量指数(NDWI)、有效叶面积植被指数(SLAVI)5种植被指数信息分别加入到TM多光谱数据中,同时还进行了最佳波段选择,利用最小距离、最大似然和支持向量机3种方法进行分类提取小麦,研究了不同特征信息对小麦测量精度的影响。结果表明:该试验区内最佳波段5、4、3组合,纹理信息和植被指数信息的加入,对小麦面积测量精度的提高没有贡献;同一个特征信息组合对不同的分类器影响不同。在实际小麦面积测量的操作中,作业员不应该盲目的加入特征信息。选用何种信息不仅仅和研究区本身的性质有关,还和使用的分类器有关。  相似文献   

6.
基于多光谱图像和数据挖掘的多特征杂草识别方法   总被引:11,自引:10,他引:1  
为满足变量喷洒对杂草识别正确率的要求,提出一种基于多光谱图像和数据挖掘的杂草多特征识别方法。首先对多光谱成像仪获取的玉米与杂草图像从CIR转换到Lab颜色空间,用K-means聚类算法将图像分为土壤和绿色植物,随后用形态学处理提取出植物叶片图像,在此基础上提取叶片形状、纹理及分形维数3类特征,并基于C4.5算法对杂草分别进行单特征和多特征组合的分类识别。试验结果表明,多特征识别率比单特征识别率高,3类特征组合后的识别率最高达到96.3%。为验证该文提出方法的有效性,将C4.5算法与BP算法以及SVM算法进行比较,试验结果表明C4.5算法的平均识别率高于另2种算法,该文提出的田间杂草快速识别方法是有效可行的。该文为玉米苗期精确喷洒除草剂提供技术依据。  相似文献   

7.
为快速获取台风过后玉米倒伏信息,该研究以生态无人农场大田玉米作为研究对象,利用无人机搭载多光谱相机获取玉米田块图像。采用主成分分析(Principal Component Analysis,PCA)变换多光谱图像,保留信息量最多的前3 个主成分波段;应用最小噪声分离变换(Minimum Noise Fraction Rotation,MNF)对48项纹理特征降维,保留信息量最多的前6项特征;计算选择10种植被指数;对多光谱图像进行低通、高通滤波,将以上特征作为全特征集。使用支持向量机递归(Support Vector Machines-Recursive Feature Elimination,SVM-RFE)、 ReliefF和套索算法(Least Absolute Shrinkage and Selection Operator,Lasso)筛选出3种特征子集,建立5种监督分类模型,对4种数据集进行训练。ReliefF特征子集训练的5种监督分类模型测试集最低分类准确率为89.02%,SVM-RFE和Lasso特征子集训练的5种监督分类模型测试集最低分类准确率均为95.38%,与全特征相比仅相差0.58%,表明通过特征筛选方法可在取得较高分类精度同时大幅减少特征输入数量;运用3种特征筛选方法与不同分类模型的最佳组合提取验证区域玉米倒伏信息,通过混淆矩阵验证结果可知,K最邻近模型结合SVM-RFE特征筛选方法分类精度最高,达93.49%,Kappa系数为0.9,表明了分类模型普适性较强。该研究使用最少特征数量参与分类,且获得最高分类识别精度,可为无人机多光谱技术快速、准确提取台风灾后玉米倒伏信息提供技术支持。  相似文献   

8.
基于Worldview-2影像的玉米倒伏面积估算   总被引:4,自引:5,他引:4  
为应用高分辨率遥感影像准确调查玉米倒伏面积,该文使用2012年9月14日获取的Worldview-2多光谱影像研究灌浆期倒伏玉米的光谱、纹理特征及其最优的面积估算方法。通过对影像进行大气校正后得到正常玉米和倒伏玉米的反射率,结果显示玉米倒伏后8个波段的反射率均升高,其中红边、近红外1和近红外2等3个波段的上升数值超过0.1。通过对反射率数据进行滤波得到正常、倒伏玉米的均值纹理特征,统计结果显示各波段纹理特征有差异,其中绿色、红边、近红外1及近红外2等4波段的均值纹理特征数值差距更明显。比较使用不同波段数量、特征及分类方法的倒伏面积估算值,结果表明基于最大似然分类法使用红边、近红外1和近红外2等3波段光谱反射率的倒伏面积估算方法最优,其最小误差为2.2%,最大误差为8.9%,平均误差为4.7%。该研究结果为应用高分辨率多光谱遥感数据调查玉米倒伏面积提供了相关依据。  相似文献   

9.
乡镇尺度的玉米种植面积遥感监测   总被引:6,自引:2,他引:4  
以快速、准确提取玉米种植面积为目标,以多时相HJ-1A/1B CCD影像和数字高程模型(DEM)为信息源,选取吉林省长春市为试验区,将试验区种植结构、物候特征、地形特征、光谱特征及植被指数等多元信息引入决策树分类模型,构建基于决策树分层分类的玉米种植面积遥感估算模型,并将空间化的农普数据作为参考值,以乡镇为基本评价单元对玉米种植面积遥感测量结果进行精度评价。研究表明:利用该方法可以有效提高玉米识别精度,满足作物种植面积估算大范围、多时相的需求,有助于解决作物种植面积遥感估算业务运行时空分辨率的矛盾,乡镇尺度的玉米种植面积总量提取精度可达92.57%。  相似文献   

10.
时空协同的地块尺度作物分布遥感提取   总被引:3,自引:3,他引:0  
地块尺度作物分布信息清晰直观地反映了农田位置、空间形态等空间细节和种植类型信息,对精准农业管理、种植补贴发放和农业资源调查等具有重要价值。虽然遥感时空协同思路为地块尺度作物分布提取提供了解决方案,但在农田地块提取和时序特征构建方面尚存在不足。该研究基于遥感时空协同的思路,以Google Earth高空间分辨率影像为底图,利用擅于学习影像视觉特征的D-LinkNet深度学习模型,快速、精准提取农田地块形态;以地块为观测单元,利用Landsat8和Sentinel-2多源遥感的"碎片化"无云数据构建地块时序数据集,基于加权Double-Logistic函数重建地块归一化植被指数(Normalized Difference Vegetation Index,NDVI)时序曲线;提取地块物候特征和多时相光谱特征,经过特征优选和随机森林分类模型构建,开展地块尺度作物分布制图。以广西扶绥县为研究区开展试验,共提取地块43.7万个,边界准确率为84.54%,相较于常规基于多尺度分割的地块提取,基于D-LinkNet的地块提取方法直接排除了非农田地物的干扰,地块形态与现实情况符合度更高;地块NDVI时间序列重建结果能够较好地捕捉作物开始生长、旺盛期、成熟收获期的动态变化趋势;分类特征重要性评价结果显示,红边特征、与时间相关的物候特征在分类中发挥重要作用,当联合物候特征和光谱特征时分类效果最佳;根据特征重要性分析不同特征数量情况下的分类精度,当特征数量大于40维时,作物分类精度和Kappa系数保持稳定,总体分类精度维持在88%左右;对扶绥县地块尺度作物分布进行制图,提取甘蔗地块277 421个、水稻地块33 747个、香蕉地块4 973个、柑橘地块102 055个,分别占农田地块总数的63.48%、7.72%、1.14%、23.35%,种植面积占比分别为69.78%、7.12%、1.71%、18.06%。该研究在理论上构建了遥感时空协同的地块尺度作物分类模型,为大范围、地块尺度作物分布遥感提取提供了实用化方案。  相似文献   

11.
基于无人机遥感多光谱影像的棉花倒伏信息提取   总被引:3,自引:1,他引:2  
为在棉花发生倒伏灾害后快速获取田块尺度下的受灾信息,该文以2017年8月21日强风暴雨导致大面积棉花倒伏的新疆生产建设兵团第八师135团的部分田块作为研究区,由无人机遥感试验获取倒伏后的多光谱影像,通过分析倒伏和正常棉花的光谱反射率差异提取了多种植被指数和主成分纹理特征,结合地面调查样本建立了3种花铃期倒伏棉花的Logistic二分类模型并进行了精度评价和验证。结果表明:棉花倒伏前后在可见光波段的反射率差异微小,而在红边和近红外波段的反射率明显降低0.12~0.20;以第一主成分均值(PCA1_mean)建立的Logistic二分类纹理模型效果最优,在测试集上分类结果的准确率为91.30%,ROC(receiver operating characteristic)曲线距左上角点最近,AUC(area under the roc curve)值为0.80。通过将该模型应用于试验区影像,分类制图效果良好且符合棉田倒伏症状特点。该研究可为无人机多光谱遥感棉花灾损评估提供参考。  相似文献   

12.
基于小型无人机遥感的玉米倒伏面积提取   总被引:18,自引:10,他引:8  
该文使用2012年小型无人机遥感试验获取的红、绿、蓝彩色图像研究灌浆期玉米倒伏的图像特征和面积提取方法。研究首先计算和统计正常、倒伏玉米的30项色彩、纹理特征,然后比较特征的变异系数和相对差异评选出适宜区分正常、倒伏玉米的特征;通过分析发现,与红、绿、蓝色灰度比较,多项色彩、纹理特征的变异系数更大或不同类别间的相对差异更小,不适用于准确区分正常、倒伏玉米,最适于区分正常和倒伏玉米的特征是3项基于灰度共生矩阵的红、绿、蓝色均值纹理特征。分别基于色彩特征和评选出的纹理特征提取倒伏玉米面积,对比2种方法的误差发现,基于红、绿、蓝色均值纹理特征提取倒伏玉米面积的误差最小为0.3%,最大为6.9%,显著低于基于色彩特征提取方法的。该研究结果为应用无人机彩色遥感图像准确提取倒伏玉米面积提供了依据和方法。  相似文献   

13.
高光谱遥感技术已广泛应用于植被类型制图。然而,稀疏植被冠层覆盖和土壤背景影响仍然是干旱区植被类型遥感分类的主要挑战,单独利用遥感数据光谱或纹理特征难以获得可靠的分类精度和稳定性。广义正态分布优化算法(Generalized Normal Distribution Optimization,GNDO)的特征优选结果在质量和稳定性方面相较传统优化算法具有优势,但目前还未应用于高光谱波段选取研究。为探索结合ZY-1 02D光谱与纹理特征进行干旱区植被类型遥感分类的可行性,验证GNDO方法应用于高光谱波段选取的有效性,同时探讨不同数量训练像元条件下,各特征选取方法的选择结果差异和对植被类型分类精度的影响,该研究以青海省都兰县宗加镇为例,在随机选取各分类类别不同数量训练像元(30、50、100、150、200)基础上,分别利用遗传算法(Genetic Algorithm,GA)、粒子群优化算法(Particle Swarm Optimization,PSO)、灰狼优化算法(Grey Wolf Optimization,GWO)以及GNDO算法进行高光谱波段选取并对比结果,同时利用灰度共生矩阵(Gray-Level Co-occurrence Matrix,GLCM)方法提取纹理特征,将提取的光谱特征和纹理特征组合成30组分类数据集,利用随机森林(Random Forest,RF)方法完成植被类型自动分类,对比不同分类数据集的分类精度。结果显示:蓝波段(400~450 nm)、红边波段(700~750 nm)和红波段(600~650 nm)对区分植被类型最敏感;基于光谱特征的分类数据集中,使用200个训练像元和GNDO方法进行特征优选获取的分类数据集(GNDO200)获得了最高的总体分类精度(80.44%);随着训练像元的增加,各分类数据集总体分类精度整体均呈上升趋势,不同的特征选择方法的分类精度对训练像元数量表现出不同的依赖程度;图像纹理特征的加入,明显提升了植被分类精度,将使用200个训练像元和GWO方法进行波段优选的结果与纹理特征结合的分类数据集(GWO200+TEX)获得了最高的总体分类精度(82.86%)。该研究验证了ZY1-02D国产高光谱卫星数据光谱纹理特征结合进行干旱区植被类型划分的潜力,证实了GNDO方法对高光谱波段选取的有效性,为高光谱植被类型制图中光谱、纹理特征选取提供了一种思路。  相似文献   

14.
制种玉米田在高空间分辨率遥感影像上呈现的明显条带状纹理,是有效区分光谱值相近的大田玉米和制种玉米的重要信息.该文在新疆维吾尔自治区奇台县玉米种植区以高空间分辨率的无人机遥感影像为数据源,针对制种玉米识别的纹理特征计算尺度问题,首先采用最近邻内插法对制种玉米和大田玉米样本田块的无人机影像进行重采样,得到不同分辨率的样本;然后用融合Uniform-LBP(local binary pattern)和GLCM(gray level co-occurrence matrix)方法得到提取玉米田块纹理特征合理GLCM参数,其中方向参数为0°、45°、90°和135°这4个方向上的纹理特征值的平均值、距离为5~7像元、灰度级为8;通过多尺度对比分析,得到最适宜区分制种玉米与大田玉米的纹理辨率为0.6~0.9m.最后采用奇台县的0.7m分辨率的Kompsat-3遥感影像进行验证,在多时相EVI(enhanced vegetation index)光谱信息识别玉米的基础上,利用本文确定的纹理分析方法,通过决策树建立规则识别制种玉米,识别精度达90.9%.通过该文的研究,可为高空间分辨率遥感制种玉米田监管提供支撑.  相似文献   

15.
基于叶片光谱特性的玉米品种抗倒伏性预测   总被引:1,自引:1,他引:0  
针对玉米叶片各区域光谱特性与玉米品种抗倒伏性能之间关系未知的问题,该研究探讨了叶脉区、正常反射区和整片叶的平均光谱对玉米品种抗倒伏性预测效果的影响。试验采集了2018年和2019年8个玉米品种的叶片高光谱图像,使用阈值分割和K-means聚类方法提取各叶片区域的平均光谱数据。用最大相关最小冗余(Max-Relevance and Min-Redundancy,MRMR)特征选择算法,提取各叶片区域平均光谱的抗倒伏和不抗倒伏品种分类特征。使用交叉验证的方式,对MRMR方法选择的特征数量进行优化,并使用支持向量机(Support Vector Machines,SVM)方法建立各叶片区域的抗倒伏性预测光谱模型,用网格搜索法对各模型参数进行优化。2 a试验结果显示,各叶片区域约有35~50个可以反映品种抗倒伏性的光谱特征,其中非叶脉区光谱相比叶脉区光谱的抗倒伏特征更多,分类效果更好。参数优化训练后,叶片各区域的光谱模型对训练集数据的预测正确率达到98.46%、98.52%和100%,正常反射区的光谱模型对测试集数据的分类效果最好,2018年和2019年测试集数据的预测正确率分别达到了91%和94.34%。与基于整片叶平均光谱的预测模型相比,基于叶片各区域的光谱特征模型可以排除不平整叶面反射的干扰,有助于提高模型预测结果的稳定性。研究表明,基于正常反射区光谱的预测模型更适用于品种抗倒伏预测,研究结果可为基于玉米叶片光谱预测品种的抗倒伏能力提供借鉴。  相似文献   

16.
稻穗表型是表征水稻生长状况和产量品质的关键参数,稻穗表型的准确监测对于大田精准管理和水稻智慧育种具有重要意义。无人机图谱数据已被广泛用于水稻生长监测,然而大部分研究主要集中在水稻的营养生长阶段,针对抽穗期和成熟期稻穗表型监测方面的研究非常有限。因此,该研究利用无人机多源图谱数据进行水稻稻穗表型监测研究,分析了不同氮肥梯度和生长时期对稻穗表型的影响,构建了稻穗覆盖度、生物量以及倒伏等监测模型。结果表明,不同生长时期和氮肥梯度的稻穗表型呈现显著差异,稻穗覆盖度与图像特征高度相关。利用粒子群优化算法(Particle Swarm Optimization,PSO)和支持向量机(Support Vector Machine,SVM)回归模型能够从可见光图像中准确识别稻穗,计算的穗覆盖度与实际标记值高度相关,决定系数(coefficient of determination,R2)为0.87,将此结果与多光谱图像反射率融合,利用随机森林(Random Forest,RF)回归模型可以提高稻穗覆盖度的评估精度,R2为0.93,相对均方根误差(relative Root Mean Square Error,rRMSE)为9.47%。融合可见光图像的颜色和纹理以及多光谱图像的光谱反射率改善了穗生物量的评估精度,R2高达0.84,rRMSE为8.68%,此模型能够在不同种植年间迁移,进一步利用模型更新添加10%新样本能够改善模型迁移能力。基于PSO-SVM分类模型,联合可见光图像的颜色和纹理以及多光谱图像的光谱反射率也准确地识别稻穗倒伏,准确率达99.87%。上述研究结果证明了无人机遥感用于水稻稻穗表型监测的可行性,可为作物精准管理和智慧育种提供决策支持。  相似文献   

17.
基于无人机遥感影像的玉米苗期株数信息提取   总被引:6,自引:5,他引:1  
准确、快速地获取玉米苗期株数对于育种早期决策起着至关重要的作用。该文利用2017年6月于北京市小汤山镇采集的无人机影像,首先对比分析RGB、HSV、YCbCr及L*A*B 4种色彩空间,变换优选HSV颜色模型对无人机影像前景(作物)与后景(土壤背景)进行分割,得到分类二值图。然后利用骨架提取算法及多次去毛刺处理等数学形态学流程提取玉米苗形态,得到高精度作物形态骨架,结合影像尺度变换剔除噪声影像,将影像分为多叶、少叶2类,经Harris、Moravec和Fast角点检测识别结果对比,Harris角点检测算法可以较好地提取玉米苗期影像的株数信息。结果表明,少叶类型识别率达到96.3%,多叶类型识别率达到99%,总体识别率为97.8%,将目前传统影像识别精度提高了约3%。同时在多个植株叶片交叉重叠覆盖的情况下,该文的研究方法有良好的适用性。通过无人机影像提取玉米苗期作物准确数目是可行的。该文采用了数学形态学的原理,通过HSV色彩空间变换得到的二值图,从无人机影像中识别提取玉米苗期形态信息,利用影像尺度缩放变换去除噪点,优化骨架识别算法使得识别精度大大提高,最后采用角点检测从无人机影像中直接读取玉米材料小区内的具体数目,该方法节省了人力物力,为田间大面积测定出苗率及最终估产提供了参考。  相似文献   

18.
基于无人机可见光影像的农田作物分类方法比较   总被引:8,自引:4,他引:4  
大面积农田种植信息的准确获取是精准农业的基础。色彩空间转换、纹理分析和颜色指数等方法能够有效的增强和挖掘影像潜在的信息,对影像分类很有帮助,该文利用2016年9月获取的无人机影像对新疆兵团第八师149团的部分农田进行了作物类型的提取研究。首先对影像进行了色彩空间转换和灰度共生矩阵纹理滤波,得到了27项色彩与纹理特征,通过比较变异系数和差异系数认为亮度、饱和度和红色二阶矩可以作为最优分类特征。其次计算影像的过绿指数(excess green index,EXG)和可见光波段差异植被指数(visible-band difference vegetation index,VDVI),通过阈值对比确定了EXG指数可以有效的区分不同作物类型。最后对比以上2种方法计算得到的分类结果,表明基于色彩与纹理特征提取的作物类型的精度较高,将该方法应用于棉花、玉米和葡萄的分类,误差值分别为7.2%、4.75%和2.37%,明显高于基于颜色指数的提取方法,是一种行之有效的无人机数据作物分类方法。该研究虽未对更大区域做进一步探讨,但可为无人机应用于农田作物分类提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号