首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
探究消费级无人机多光谱影像对不同生态点、不同品种水稻氮营养监测建模精确度和普适度的影响,对于实现区域水稻氮营养精确管理与应用有重要意义。该研究分别在云南省西双版纳勐遮镇(供试品种:云粳37)与重庆市北碚区(供试品种:极优6 135)2个试验点设置不同氮水平田间试验,利用大疆精灵4多光谱无人机于水稻分蘖期、拔节期和抽穗期采集水稻冠层多光谱图像,采用凯氏定氮法测定水稻植株冠层氮含量(canopy nitrogen content,CNC)并计算地上部氮累积量(plant nitrogen accumulation,PNA);分别利用植被指数、偏最小二乘回归(partial least squares regression,PLSR)、随机森林(random forest,RF)、反向传播神经网络(back-propagation neural network,BPNN)对单一试验点、单品种和不同试验点、多品种水稻建立氮营养监测模型并探究模型的迁移能力。拔节期和抽穗期的模型精度较高(归一化植被指数NDVI或近红外归一化植被指数NNVI,R2为0.68~0.88),而分蘖...  相似文献   

2.
选取长江中下游的芜湖地区超级水稻生产基地为试验区域,以2019年7月20日-8月9日连续高温日为试验时段,设计基于消费级无人机与便携式多光谱传感器的水稻长势遥感监测系统,并创建数据后处理分析与应用方法,对处于生育敏感期稻株的光谱特征进行研究,建立水稻高温胁迫的反演识别模型。结果表明:稻株植被指数与叶面积指数呈显著的指数关系,相关系数达到0.918,由此建立稻株叶面积指数反演模型,并进一步确定稻株出现高温胁迫的叶面积指数判别条件。利用叶面积指数反演模型和判别条件对实验区域内的水稻进行高温胁迫下的光谱特征提取与分析,结果显示,实验区域内15.3%的水稻受到了持续高温胁迫的影响,与农业部门田间调查事实相符,即实验区域内水稻灌浆率为82.2%。相对于传统人工田间调查和卫星遥感调查的作物长势监测方法,便携式无人机多光谱遥感监测技术具有空间分辨率高、可实时大范围监测、简单易行以及应用成本低等特点,利于普及与推广,在农作物自然灾害监测方面具有应用前景。  相似文献   

3.
基于无人机遥感多光谱影像的棉花倒伏信息提取   总被引:2,自引:1,他引:2  
为在棉花发生倒伏灾害后快速获取田块尺度下的受灾信息,该文以2017年8月21日强风暴雨导致大面积棉花倒伏的新疆生产建设兵团第八师135团的部分田块作为研究区,由无人机遥感试验获取倒伏后的多光谱影像,通过分析倒伏和正常棉花的光谱反射率差异提取了多种植被指数和主成分纹理特征,结合地面调查样本建立了3种花铃期倒伏棉花的Logistic二分类模型并进行了精度评价和验证。结果表明:棉花倒伏前后在可见光波段的反射率差异微小,而在红边和近红外波段的反射率明显降低0.12~0.20;以第一主成分均值(PCA1_mean)建立的Logistic二分类纹理模型效果最优,在测试集上分类结果的准确率为91.30%,ROC(receiver operating characteristic)曲线距左上角点最近,AUC(area under the roc curve)值为0.80。通过将该模型应用于试验区影像,分类制图效果良好且符合棉田倒伏症状特点。该研究可为无人机多光谱遥感棉花灾损评估提供参考。  相似文献   

4.
为探讨无人机多源影像特征融合估测作物叶面积指数的能力,该研究以冬小麦为研究对象,利用多旋翼无人机搭载高清数码相机和UHD185成像光谱仪获取研究区冬小麦关键生育期(扬花期、灌浆期)的可见光和高光谱影像。综合考虑可见光、高光谱影像特征与冬小麦叶面积指数的相关性及影像特征重要性进行特征筛选,然后,以可见光植被指数、纹理特征、可见光植被指数+纹理特征、高光谱波段、高光谱植被指数及高光谱波段+植被指数分别作为输入变量构建多元线性回归、支持向量回归和随机森林回归的叶面积指数估测模型(单传感器数据源);以优选的两种影像特征结合支持向量回归、随机森林回归构建叶面积指数估测模型(两种传感器数据源),比较分析单源与多源影像特征监测冬小麦叶面积指数的性能。进一步地,考虑到小区土壤空间异质性会影响冬小麦叶面积指数估测结果,该研究探讨了不同影像采样面积下基于单源遥感数据构建的小麦叶面积指数估测模型精度。研究结果表明:在扬花期和灌浆期,使用两种影像优选特征构建的随机森林回归估测模型精度最佳,验证集决定系数分别为0.733和0.929,均方根误差为0.193和0.118。可见光影像采样面积分别为30%和50%,高光谱影像采样面积为65%时,基于单源影像特征构建的随机森林回归估测模型在扬花期和灌浆期效果最好。综上,该研究结果可为无人机遥感监测作物生理参数提供有价值的依据和参考。  相似文献   

5.
基于无人机多光谱影像的完熟期玉米倒伏面积提取   总被引:2,自引:3,他引:2  
由于土壤、地形、水分以及耕作方式等存在的时空变异性,致使灾后完熟期玉米地块存在4类作物形态,包括叶片呈绿色的未倒伏玉米、叶片淡黄的未倒伏玉米、叶片淡黄的倒伏玉米、黑色阴影区域。为进一步提高现有倒伏玉米面积提取方法的精度,该文以黑龙江省国营农场典型玉米倒伏地块为研究区,获取无人机多光谱数据,对比4类作物形态的光谱、植被指数以及纹理特征差异,经特征筛选后,首先面向倒伏玉米提取构建了5种典型特征组合。然后针对植被指数特征、光谱和纹理特征组合采用最大似然法分类,最后对提取结果的精度进行评价和分析。结果表明:反射光谱特征或植被指数特征无法准确区分4类作物形态,提取的倒伏玉米面积偏差较大;多类纹理特征法所得结果最优,4类典型作物形态的识别平均误差为9.82%,倒伏面积提取的误差为3.40%,Kappa系数为0.84。该研究延展了纹理特征在倒伏玉米面积提取中的应用并对完熟期倒伏玉米识别具有重要的借鉴意义。  相似文献   

6.
基于无人机遥感影像的水稻种植信息提取   总被引:4,自引:5,他引:4  
水稻是中国南方最主要的粮食作物,种植面积波动对国家粮食稳定有很大影响。通过无人机遥感试验获取多幅有重叠区域的图像,使用Agisoft photoscan软件拼接重构试验区的完整图像,利用多尺度分割方法将试验区域分割成若干对象,并基于统计方法提取对象的光谱特征、几何特征和纹理特征;然后,建立识别水稻地块的二分类Logistic回归模型,特征指标为形状指数、红色均值、红色标准偏差、最大化差异度量、灰度共生矩阵同质性和灰度共生矩阵非相似性。结果表明:模型辨识训练样本集的正确率为100%,辨识检验样本的正确率为97%,模型应用于辨识验证区域水稻田块,总体正确率为98%。最后基于累计像素方法测算水稻田块的面积,并与目视解译测算的结果对比,面积误差小于3.5%,研究方法识别水稻田块效果好,面积测算准确率高。因此,该研究对利用无人机遥感影像普查水稻种植信息具有一定的适用性。  相似文献   

7.
基于无人机多光谱遥感的台风灾后玉米倒伏信息提取   总被引:1,自引:1,他引:0  
为快速获取台风过后玉米倒伏信息,该研究以生态无人农场大田玉米作为研究对象,利用无人机搭载多光谱相机获取玉米田块图像。采用主成分分析(Principal Component Analysis,PCA)变换多光谱图像,保留信息量最多的前3 个主成分波段;应用最小噪声分离变换(Minimum Noise Fraction Rotation,MNF)对48项纹理特征降维,保留信息量最多的前6项特征;计算选择10种植被指数;对多光谱图像进行低通、高通滤波,将以上特征作为全特征集。使用支持向量机递归(Support Vector Machines-Recursive Feature Elimination,SVM-RFE)、 ReliefF和套索算法(Least Absolute Shrinkage and Selection Operator,Lasso)筛选出3种特征子集,建立5种监督分类模型,对4种数据集进行训练。ReliefF特征子集训练的5种监督分类模型测试集最低分类准确率为89.02%,SVM-RFE和Lasso特征子集训练的5种监督分类模型测试集最低分类准确率均为95.38%,与全特征相比仅相差0.58%,表明通过特征筛选方法可在取得较高分类精度同时大幅减少特征输入数量;运用3种特征筛选方法与不同分类模型的最佳组合提取验证区域玉米倒伏信息,通过混淆矩阵验证结果可知,K最邻近模型结合SVM-RFE特征筛选方法分类精度最高,达93.49%,Kappa系数为0.9,表明了分类模型普适性较强。该研究使用最少特征数量参与分类,且获得最高分类识别精度,可为无人机多光谱技术快速、准确提取台风灾后玉米倒伏信息提供技术支持。  相似文献   

8.
针对目前使用无人机识别水稻关键生育期时光谱数据特征维度高和冗余,导致模型准确率和泛化能力不足的问题,该研究提出一种基于最优特征组合的水稻关键生育期(分蘖期、拔节期、抽穗期、乳熟期、完熟期)识别方法。首先使用无人机采集田间光谱图像,基于相对植被指数和迭代自组织数据分析算法对光谱图像进行分割,以有效提取水稻冠层区域。然后对水稻生育期的关键特征进行表达,采用最小冗余特征选择算法对特征进行重要性排序,并通过增量分组法确定最优特征组合。最后基于极度梯度提升算法构建水稻生育期的识别模型。对比试验结果显示,本文模型对5个关键生育期的识别较好,混淆情况少,对水稻分蘖期、拔节期、抽穗期、乳熟期和完熟期识别精确率分别为98.08%、100.00%、99.68%、97.50%和99.29%,整体识别精确率达到98.77%,F1值为0.9891,Kappa系数为0.984,相比于SVM(支持向量机)分别提高了1.59%、0.0146和0.02,相比于RF(随机森林)分别提升了1.23%、0.011和0.015。研究结果可为田间作物的精准管理和决策提供重要依据。  相似文献   

9.
黄化病是一种严重危害槟榔生长的病害,迫切需要及时、准确地监测其侵染的严重度差异和空间分布。低空无人机遥感可有效解决槟榔种植区由于多云雨天气而造成光学卫星影像获取不足,提高槟榔黄化病监测的实时性。该文利用大疆精灵Phantom 4 Pro V2.0四旋翼无人机搭载MicaSense RedEdge-M多光谱相机获取5波段多光谱影像,基于最小冗余最大相关算法(Minimum Redundancy Maximum Relevance,mRMR)从15个潜在的植被指数中优选比值植被指数(Ratio Vegetation Index,RVI)、改进的简单比值指数(Modified Simple Ratio Index,MSR)和花青素反射指数(Anthocyanin Reflectance Index,ARI)作为敏感特征,分别利用后向传播神经网络(Back Propagation Neural Network, BPNN)、随机森林(Random Forest, RF)和支持向量机(Support Vector Machine, SVM)分类算法,构建了槟榔黄化病严重度监测模型。结果表明,BPNN模型总体精度达到91.7%,分别比RF模型和SVM模型提高6.7%和10.0%,且Kappa系数为0.875,为所有模型中最高,漏分、错分误差也最小,健康,轻度和重度分别为11.1%、15.8%,13.6%、9.5%和0、0。研究结果证明了无人机多光谱遥感影像监测槟榔黄化病的可行性,同时也可为其他热带作物病害监测提供案例研究。  相似文献   

10.
基于遥感监测多品种玉米成熟度进而掌握最佳收获时机,对提高其产量和品质至关重要。该研究在玉米成熟阶段获取无人机多光谱影像,同步采集叶片叶绿素含量(chlorophyll content,C)、籽粒含水率(moisture content,M)、乳线占比(proportion of milk line,P)等地面实测数据,以此构建玉米成熟度指数(maize maturity index,MMI),从而定量表征玉米成熟度。通过MMI与植被指数构建回归模型和随机森林模型,验证MMI适用性,并分析无人机遥感对不同品种玉米成熟度的监测精度。结果表明:1)不同品种玉米的叶片叶绿素含量、籽粒含水率、乳线占比的变化速率均存在差异。2)MMI与所选植被指数的相关性均可达到0.01显著水平,其中与归一化植被指数(normalized difference vegetation index,NDVI)、转换叶绿素吸收率(transformed chlorophyll absorbtion ratio index,TCARI)相关性最高,相关系数均为0.87。3)该研究基于不同组合的数据集进行了模型验证,其中随机森林模型对MMI的估测精度最高,测试集决定系数(coefficient of determination,R2)为0.84,均方根误差(root mean squared error,RMSE)为8.77%,标准均方根误差(normalized root mean squared error,nRMSE)为12.05%。此外,随机森林模型对不同品种MMI的估测精度较好,京九青贮16精度最优,其中R2RMSE、nRMSE为0.76、10.67%、15.88%,模型精度证明了可以利用无人机平台对不同品种玉米成熟度进行监测。研究结果可为多光谱无人机实时监测农田多品种玉米成熟度的动态变化提供参考。  相似文献   

11.
为了实现田间条件下小麦抗冻性状相关的数量性状基因座(quantitative trait locus, QTL)分析,该研究针对4个试验地491份小麦核心种质资源的抗冻性状,基于无人机多光谱遥感提出了一种高通量表型方法。首先通过光谱植被指数对小麦抗冻性状进行评估,基于机器学习分类算法使用16个光谱植被指数特征构建了小麦冻害评价模型,并完成了光谱特征相关性分析及对评价模型的贡献率分析。对比随机森林(random forests,RF)、分布式梯度增强(extreme gradient boosting,XGBoost)、梯度提升决策树(gradient boosting decision tree,GBDT)及支持向量机(support vector machine,SVM)算法建立的小麦冻害等级评价模型,结果表明,使用XGBoost建立的评价模型准确率最高,达67.94%;16个光谱特征相关性及其对评价模型的贡献率分析表明,简化冠层叶绿素含量指数(simplified canopy chlorophyii content index, SCCCI)对小麦抗冻表型鉴定的贡献率最大。其次,使用SCCCI作为小麦抗冻表型,结合通过全基因组关联分析检测小麦抗冻相关QTL,检测到3个已被证明与抗冻性状相关的QTL,证明了基于无人机获取的光谱特征可以作为小麦抗冻表型定性定量分析指标,可提供小麦抗冻性状遗传解析必需的表型信息。小麦冻害的无人机遥感高通量表型方法的提出促进了小麦抗冻基因功能解锁。  相似文献   

12.
群体小麦条锈病发病动态无人机遥感监测方法   总被引:1,自引:1,他引:0  
针对当前育种群体小麦条锈病表型分析手段单一、效率低下等问题,该研究提出了一种基于无人机低空遥感和多光谱成像技术的群体小麦田间条锈病高通量表型动态分析方法。该方法利用无人机采集自然发病的育种群体小麦(共600个样本,516个基因型)冠层多时相的光谱图像,并提取22个植被指数作为后续分析的表型,同时按照发病后的时间顺序与传统条锈病人工鉴定标准记录条锈病发病阶段和发病严重度数据;使用随机森林算法建立22个光谱植被指数同条锈病发病阶段与病害严重度的分类模型,并筛选出对上述两个分类问题敏感的植被指数;同时,使用随机蛙跳算法对特征进行筛选以降低仅使用随机森林算法对特征筛选的偶然性,并将随机蛙跳算法给出被选择概率排名在约前1/3的特征作为SVM算法的输入,构建发病阶段与病害严重度模型以验证随机蛙跳算法对特征筛选的有效性;综合两次特征选择的结果,分别筛选出对发病阶段和病害严重度敏感的3个植被指数,并基于这些指数响应的时间序列分析了群体中6个参考品种发病动态的差异。对条锈病发病阶段的分类模型构建中,随机森林和SVM模型测试集的F1分数分别为0.970和0.985;对条锈病严重度等级分类中,二者的F1分数为0.741和0.780,表明通过所建立的模型可以实现对群体小麦发病阶段和病害严重度等级的分类,且随机森林算法和随机蛙跳算法都能够筛选出对条锈病发病阶段和病害严重度敏感的特征。筛选出的差分植被红边指数(Difference Vegetation Index - Rededge,DVIRE)的响应对病害胁迫较为敏感,可用于同时描述田间条锈病发病阶段和严重度。该研究提出的高通量表型分析方法,基于无人机成像光谱提取的植被指数对群体小麦田间条锈病进行时间序列动态分析,能够精准量化群体小麦受条锈病胁迫状态,并可为其他作物抗病育种的表型分析提供一定的参考。  相似文献   

13.
利用无人机平台搭载多光谱传感器在农业监测上已经有一些应用,但是利用无人机多光谱影像估算作物叶绿素含量的研究较少,特别是融合无人机多光谱影像光谱信息和纹理信息估算马铃薯叶绿素含量的研究更是罕见。基于此,该文利用2018年北京小汤山基地马铃薯各个典型生育期的无人机多光谱影像及实测的叶绿素含量数据,首先提取多光谱影像植被指数和纹理特征等变量,然后分析其与叶绿素含量相关性,筛选出较优特征变量,并开展基于调整R2和K折交叉验证的全子集分析估算马铃薯叶绿素含量。最后将植被指数与纹理特征通过主成分融合构建一种新的综合指标估算叶绿素含量。研究发现:1)多光谱植被指数和纹理特征估算叶绿素含量模型,K折交叉验证均优于调整R2;2)整个生育期,综合指标模型决定系数比植被指数模型、纹理特征模型均有提升,且标准均方根误差均降低。综合指标估算模型较优,多光谱植被指数模型次之,纹理特征模型较差。该研究可为马铃薯生长营养监测提供一种可行的方法,对马铃薯的栽培种植管理具有指导意义。  相似文献   

14.
倒伏是造成小麦减产和品质下降的主要原因之一。为快速准确地提取小麦倒伏面积,给农业保险理赔及灾后应急处置提供数据支持,该研究采用无人机遥感平台获取小麦倒伏后的冠层红绿蓝(Red-Green-Blue, RGB)可见光图像,并进行数字表面模型(Digital Surface Model,DSM)图像提取,计算了过绿植被(Excess Green, EXG)指数,利用ArcGIS中的镶嵌工具将不同图像特征进行融合,得到DSM+RGB融合图像和DSM+EXG融合图像,利用最大似然法和随机森林法对2种特征融合图像进行监督分类提取小麦倒伏面积,并与仅基于RGB可见光图像和DSM图像提取倒伏面积结果对比。结果表明,2种方法对4种图像进行小麦倒伏面积提取的整体趋势一致,且最大似然法提取效果整体优于随机森林法,基于最大似然法对RGB图像、DSM图像、DSM+RGB特征融合图像、DSM+EXG特征融合图像提取倒伏小麦面积的整体精度分别为77.21%、93.37%、93.75%和81.78%,Kappa系数分别为0.54、0.86、0.87和0.64,对比分析发现DSM+RGB特征融合图像提取小麦倒伏面积精度最高。该研究表明通过图像特征融合的方法能够有效提取倒伏小麦信息,为快速提取小麦倒伏面积提供参考。  相似文献   

15.
生菜外部表型参数的无损、高精度估算对全天候生长监测意义重大。为提高生菜表型参数估算模型泛化性能,以基质培生菜为研究对象,提出了基于深度学习的融合二维RGB图像和深度(Depth)图像的生菜表型参数(湿质量、干质量、株高、直径、叶面积)高精度估算方法。采集4个生菜品种生长全过程的表型参数数据集,包含RGB图像、深度图像和人工测量的表型参数,共388个样本。对RGB图像和深度图像进行背景分割和数据归一化,输入构建的深度学习多源数据融合模型对5种表型参数进行同步回归训练。试验表明,该研究方法对5种表型参数的估算决定系数均高于0.94,平均绝对百分比误差均低于8%,而传统特征提取+机器学习方法对部分表型参数估算的平均绝对百分比误差高达13%以上,表明该研究估算方法具有较高的精度。消融试验表明融合RGB和深度图像的深度学习模型优于仅使用单源图像的模型,尤其在株高、直径和叶面积的估算上。对生菜不同品种和不同生长阶段的估算结果表明该模型适用于不同颜色、形状的生菜品种,亦对不同生长阶段、不同植株大小的生菜具有一定的适应性。因此,该研究提出的基于深度学习多源数据融合模型的生菜表型参数估算方法性能优异,对设施蔬菜生长监测和产量预估有重要的应用价值。  相似文献   

16.
基于无人机采集的视觉与光谱图像预测棉花产量   总被引:2,自引:1,他引:2  
为了高效管理农田,该文提出了一种应用低空遥感视觉与光谱图像预测棉花产量的方法。盛花期前的棉花图像由无人机遥感平台在距地面50m的飞行高度下采集,采集的局部图像通过拼接处理得到棉花地的全景RGB图像与CIR(color-infrared,彩色红外)图像。基于全景图像提取并计算了色度、植株覆盖率与归一化植被指数(normalized difference vegetationindex,NDVI)3个特征参数,用于构建棉花产量的预测模型。包括产量与特征参数的原始数据集随机分为训练集(90%)与测试集(10%)。训练集数据首先基于产量概率分布特征去除了10%的离群值,然后通过均值滤波器滤波,处理后的数据用于构建预测模型。通过SAS软件对比分析了单变量、双变量以及三变量构建的线性回归模型,预测模型由P值、决定系数R2、每0.4 hm2面积下估计值与真实值之间的平均绝对误差百分比(mean absolute percentage error,MAPE)这3个参数进行评估。试验结果表明,单变量、双变量以及三变量构建的共7个线性回归模型,其P值均小于0.05,则7个线性回归模型均具有统计学意义(5%显著性水平)。其中,由三变量构建的多元线性回归模型具有最大的决定系数R2=0.9 773,因此适应性最优。基于测试集验证模型精度,试验结果表明,采用多元线性回归模型进行产量估计,估计值与实际值之间的平均绝对误差百分比为4.0%。因此,无人机搭载图像传感器采集提取视觉与光谱特征能够有效用于作物产量的预测。  相似文献   

17.
基于无人机RGB影像的玉米种植信息高精度提取方法   总被引:3,自引:3,他引:0  
为探究易获取且成本低的超高分辨率无人机(Unmanned Aerial Vehicle,UAV)航拍 "红-绿-蓝"(Red-Green-Blue,RGB)彩色影像提取作物种植信息的方法,该研究选取植被指数、"色度-色饱和度-亮度"(Hue-Saturation-Intensity,HSI)色彩特征和纹理特征等3种特征,通过比较贝叶斯(Bayes)、K最邻近分类(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random Forest,RF)共5种监督分类算法及不同特征组合的分类效果,以实现玉米种植信息的高精度提取。结果表明,使用单一种类特征或使用全部3种特征均不能获得最优的分类精度;将植被指数与HSI色彩特征或与纹理特征进行组合获得的总体分类精度(5种算法平均值)比仅使用植被指数获得的总体分类精度分别提高了4.2%和8.3%;在所有特征组合中,HSI色彩特征和纹理特征组合为最优选择,基于该特征空间的RF算法获得了最高的分类精度,总精度为86.2%,Kappa系数为0.793;基于RF算法进行降维并不能显著提高或降低分类精度(SVM除外),但所保留的特征因子可给出符合实际背景和意义的解释,并可提高分类结果的稳定性。研究结果可为基于无人机RGB影像的作物种植信息高精度提取提供方法参考。  相似文献   

18.
无人机影像反演玉米冠层LAI和叶绿素含量的参数确定   总被引:2,自引:4,他引:2  
小型低空无人机(Unmanned Aerial Vehicle, UAV)机动灵活、操作简便,可以按需获取高空间分辨率影像,是育种玉米长势监测的一种重要技术手段。针对UAV影像反演玉米冠层叶面积指数(LAI, Leaf Area Index)和叶绿素含量的参数确定问题,该研究以DJI S1000+无人机为平台,搭载法国Parrot Sequoia相机,获取海南三亚市崖城玉米育种基地的多光谱影像。基于预处理后的UAV影像,采用重采样的方式获得不同分辨率下(0.1~1 m)的不同植被指数,所构建的植被指数包括归一化植被指数(Normalized Difference Vegetation Index,NDVI)、叶绿素指数(Grassland Chlorophyll Index,GCI)、比值植被指数(Ratio Vegetation Index,RVI)、归一化红边红指数(Normalized Difference rededge-red Index,NDIrer)、归一化红边绿指数(Normalized Difference rededge-green Index,NDIreg)和重归一化植被指数(Renormalized Difference Vegetation Index,RDVI),通过将不同分辨率下的不同植被指数与地面实测数据进行回归分析,以获得各分辨率下植被指数与冠层LAI和叶绿素含量的关系模型及其决定系数,以决定系数的大小为依据来确定玉米冠层LAI和叶绿素含量反演的最优空间分辨率和最优植被指数。通过试验发现,在分辨率为0.6 m时,NDVI与地面实测LAI之间的决定系数R2为0.80,决定系数达到了最大,利用该分辨率下的NDVI反演得到的LAI验证精度R2达到0.73;在分辨率为0.1 m时,NDIreg与地面实测叶绿素含量之间的决定系数R2为0.70,决定系数达到最大,利用该分辨率下的NDIreg反演得到的叶绿素含量验证精度R2达到了0.63。因此得出结论:1)植被指数的选择:① 对于玉米冠层LAI的反演来说,不包含绿波段的植被指数的LAI反演精度较高,这说明绿波段对LAI的变化不敏感;② 对于玉米冠层叶绿素含量反演来说,包含红边波段的植被指数的反演精度较高,因此影像的红边波段对叶绿素含量的变化非常敏感。2)UAV影像空间分辨率的选择:反演LAI的最优分辨率是0.6 m,此时NDVI与实测LAI的决定系数达到最大;反演冠层叶绿素含量的最优分辨率是0.1~0.3 m范围内,此时NDIreg与实测叶绿素含量的决定系数达到最大。该研究可为UAV反演玉米表型参数时的分辨率和植被指数选择提供参考。  相似文献   

19.
OLI与HSI影像融合的土壤盐分反演模型   总被引:3,自引:2,他引:3  
土壤盐渍化问题是黄河三角洲地区主要的土地退化问题,借助遥感技术快速、准确地掌握土壤盐渍化信息,对农业可持续发展具有重要意义。该文以黄河三角洲垦利县为研究区,利用超球体色彩空间变换算法,将环境一号卫星HSI高光谱影像与Landsat 8 OLI多光谱影像进行融合,选择土壤盐分的特征波段,结合土壤盐分的实测数据,建立统计分析模型(多元线性回归、偏最小二乘回归)和机器学习模型(BP神经网络、支持向量机和随机森林),对土壤盐分进行遥感反演。结果表明:OLI影像的统计分析模型和机器学习模型精度均较低,精度最高的随机森林模型相关系数仅为0.570;HSI影像的反演模型精度高于OLI,BP神经网络模型相关系数为0.607;融合影像反演模型精度明显高于HSI影像和OLI影像,土壤盐分含量的实测值与机器学习模型预测值具有良好的相关性,BP神经网络模型、支持向量机模型和随机森林模型的决定系数R~2分别达到0.966、0.821和0.926,模型反演精度较高。研究表明,多光谱和高光谱影像融合能显著提高土壤盐分遥感反演精度,机器学习模型的反演效果明显优于统计分析模型。研究结果对黄河三角洲典型地区的土壤盐分反演具有积极的理论和实践意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号