首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
中国滇池流域土地利用方式对土壤侵蚀和养分状况的影响   总被引:2,自引:0,他引:2  
Soil erosion and loss of soil nutrients have been a crucial environment threat in Southwest China. The land use and its impact on soil qualities continue to be highlighted. The present study was conducted to compare soil erosion under four land use types(i.e.,forestland, abandoned farmland, tillage, and grassland) and their effects on soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) in the Shuanglong catchment of the Dianchi Lake watershed, China. There were large variations in the erosion rate and the nutrient distributions across the four land use types. The erosion rates estimated by137 Cs averaged 2 133 t km-2year-1under tillage and abandoned farmland over the erosion rate of non-cultivated sites, and the grasslands showed a net deposition. For all sites, the nutrient contents basically decreased with the soil depth. Compared with tillage and abandoned farmland, grassland had the highest SOC and TN contents within 0–40 cm soil layer, followed by forestland. The significant correlations between137 Cs, SOC and TN were observed. The nutrient loss caused by erosion in tillage was the highest. These results suggested that grassland and forestland would be beneficial for SOC and TN sequestration over a long-term period because of their ability to reduce the loss of nutrients by soil erosion. Our study demonstrated that reduction of nutrient loss in the red soil area could be made through well-managed vegetation restoration measures.  相似文献   

2.
土地利用对土壤线虫营养类群垂直分布和季节变化的影响   总被引:1,自引:0,他引:1  
A field investigation was conducted at the Shenyang Experimental Station of Ecology, Chinese Academy of Sciences, in an aquic brown soil of Northeast China under three land use types (cropland, abandoned cropland, and woodland) in order to evaluate whether the vertical distribution and seasonal fluctuation for the number of total nematodes and trophic groups could reflect soil ecosystem differences and to determine the relationships between soil chemical properties and soil nematodes. The majority of soil nematodes were present in the 0-20 cm soil layers, and for these land use types plant parasites were the most abundant trophic group. In the abandoned cropland the numbers of plant parasites reached a peak on the August sampling date, whereas the cropland and woodland peaked on the October sampling date. Meanwhile, in all land use types the number of total nematodes, bacterivores, plant parasites, and omnivores-predators was negatively (P 〈 0.05, except for bacterivores in cropland, which was not significant) correlated with bulk density, and positively (P 〈 0.05, except for fungivores in abandoned cropland, which was not significant) correlated with total organic carbon and total nitrogen.  相似文献   

3.
利用方式和土壤肥力对土壤团聚体和养分的影响   总被引:6,自引:0,他引:6  
The size distribution of water-stable aggregates and the variability of organic C, N and P contents over aggregate size fractions were studied for orchard, upland, paddy, and grassland soils with high, medium, and low fertility levels. The results showed that > 5 mm aggregates in the cultivated upland and paddy soils were 44.0% and 32.0%, respectively, less than those in the un-tilled orchard soil. Organic C and soil N in different size aggregate fractions in orchard soil with high fertility were significantly higher than those of other land uses. However, the contents of soil P in different size aggregates were significantly greater in the paddy soil as compared to the other land uses. Soil organic C, N and P contents were higher in larger aggregates than those in smaller ones. The amount of water-stable aggregates was positively correlated to their contribution to soil organic C, N and P. For orchard and grassland soils, the > 5 mm aggregates made the greatest contribution to soil nutrients, while for upland soil, the 0.25-0.053 mm aggregates contributed the most to soil nutrients. Therefore, the land use with minimum disturbance was beneficial for the formation of a better soil structure. The dominant soil aggregates in different land use types determined the distribution of soil nutrients. Utilization efficiency of soil P could be improved by converting other land uses to the paddy soil.  相似文献   

4.
黄土高原小流域土壤有机碳空间变异性研究   总被引:12,自引:0,他引:12  
Soil organic carbon (SOC) has great impacts on global warming, land degradation and food security. Classic statistical and geostatistical methods were used to characterize and compare the spatial heterogeneity of SOC and related factors, such as topography, soil type and land use, in the Liudaogou watershed on the Loess Plateau of North China. SOC concentrations followed a log-normal distribution with an arithmetic and geometric means of 23.4 and 21.3 g kg-1, respectively, were moderately variable (CV = 75.9%), and demonstrated a moderate spatial dependence according to the nugget ratio (34.7%). The experimental variogram of SOC was best-fitted by a spherical model, after the spatial outliers had been detected and subsequently eliminated. Lower SOC concentrations were associated with higher elevations. Warp soils and farmland had the highest SOC concentrations, while aeolian sand soil and shrublands had the lowest SOC values. The geostatistical characteristics of SOC for the different soil and land use types were different. These patterns were closely related to the spatial structure of topography, and soil and land use types.  相似文献   

5.
Yi WANG  Chunyue LI  Shunjin HU 《土壤圈》2024,34(1):181-190
The water-wind erosion crisscross region of the northern Loess Plateau in China is under constant pressure from severe erosion due to its windy and dry climate and intensive human activities. Identifying sustainable land use patterns is key to maintaining ecosystem sustainability in the area. Our aim was to appraise the impacts of different land use regimes on the dynamics of soil total organic C(TOC), total N(TN), and microbes in a typical watershed in the northern Loess Plateau to identify sui...  相似文献   

6.
The quantification of soil CO2 efflux is crucial for better understanding the interactions between driving variables and C losses from black soils in Northeast China and for assessing the function of black soil as a net source or sink of atmospheric CO2 depending upon land use.This study investigated responses of soil CO2 efflux variability to soil temperature interactions with diferent soil moisture levels under various land use types including grassland,bare land,and arable(maize,soybean,and wheat)land in the black soil zone of Northeast China.The soil CO2 effluxes with and without live roots,defined as the total CO2 efflux(FtS)and the root-free CO2 efflux(FrfS),respectively,were measured from April 2009 to May 2010 using a static closed chamber technique with gas chromatography.The seasonal soil CO2 fluxes tended to increase from the beginning of the measurements until they peaked in summer and then declined afterwards.The mean seasonal FtS ranged from 20.3±7.8 to 58.1±21.3 mg CO2-C m-2h-1 for all land use types and decreased in the order of soybean land>grassland>maize land>wheat land>bare land,while the corresponding values of FrfS were relatively lower,ranging from 20.3±7.8 to 42.3±21.3 mg CO2-C m-2h-1.The annual cumulative FtS was in the range of 107-315 g CO2-C m-2 across all land uses types.The seasonal CO2 effluxes were significantly(P<0.001)sensitive to soil temperature at 10 cm depth and were responsible for up to 62% of the CO2 efflux variability.Correspondingly,the temperature coefcient Q10 values varied from 2.1 to 4.5 for the seasonal FtS and 2.2 to 3.9 for the FrfS during the growing season.Soil temperature interacting with soil moisture accounted for a significant fraction of the CO2 flux variability for FtS (up to 61%) and FrfS (up to 67%) via a well-defined multiple regression model,indicating that temperature sensitivity of CO2 flux can be mediated by water availability,especially under water stress.  相似文献   

7.
海南橡胶园土壤持续利用措施的研究   总被引:3,自引:0,他引:3  
This research was designed to help solve existing sustainable use problems such as soil nutrient loss and soil fertility decline in natural rubber plantations located in the hilly land of the south central mountainous area of Hainan Island,China. Two different land management practices, sustainable and traditional, were adopted in a four-year experiment.Contour terraced fields and deep ditches for green manure were built in a sustainable way with a balanced, need-based application of complex fertilizer. Results of the four-year experiment showed that these sustainable measures compared to traditional measures improved available P and available K; had a 47.8% less soil erosion (an average of 3663 t km^-2 year^-1) and a 15.9% lower runoff coefficient of 0.53; increased the dry rubber yield by 42.4%; and improved the economic benefit by 2.4 times. The sustainable land management scheme not only improved land utilisation efficiency, hut also helped maintain soil fertility while increasing production in rubber plantations. It thereby offered a reasonable and sustainable use for land resources in the tropical mountainous areas.  相似文献   

8.
青州市精作农区耕地不同利用方式对土壤养分的影响研究   总被引:4,自引:0,他引:4  
On the basis of the data obtained from a field survey, the relationship between land use and soil nutrients was evaluated in Qingzhou County, Shandong Province, China, through a statistical analysis of differences in 17 nutrients in five types of cultivated land. The results showed significant effects (P≤0.05 or P ≤ 0.01) of land-use type on soil organic matter and concentration of macronutrients, secondary nutrients, and micronutrients, as well as total salt and soil pH. In vegetable land, because of the large amounts of fertilizer applied to vegetable crops, the concentrations of most soil nutrients, with exception of available Si and micronutrients, were higher than those in grain cropland. Grain cropland had a significantly lower total salt content (P ≤ 0.01) and tended to have a higher soil pH than vegetable land. Within subtypes of land use, dry land, irrigable land, and open-air vegetable land had the highest coefficient of variation (CV) for available P, whereas protected vegetable land had the highest CV for total N and available S. In general, land-use types had greater impact on macronutrients than on secondary nutrients and micronutrients.  相似文献   

9.
The reclamation of tidal flats has been one of the important approaches to replenish the arable lands in the coastal areas; pollution status of reclaimed soils has received wide attention recently, especially for the study of heavy metals due to the relative high pollutant concentrations in wetlands. To understand the impact of land use change on heavy metal and arsenic(As) geochemistry by the reclamation of wetlands for agriculture, surface soils and soil profiles were collected from the agricultural land reclaimed in the 1990 s and the intertidal flat wetland at Dongtan on Chongming Island in the Yangtze River Estuary, China. The soil samples were analyzed for total concentrations and chemical speciation of chromium(Cr), zinc(Zn), copper(Cu), lead(Pb), nickel(Ni), cadmium(Cd) and As using inductively coupled plasma mass spectrometry(ICP-MS). Results showed that soil properties(salinity, total organic carbon and grain-size distribution) and the concentrations of heavy metals and As in the soils differed under the different land use types. The conversion of wetland to forest had caused obvious losses of all the measured heavy metals. In paddy field and dryland with frequent cultivation, the concentrations of Cr, Zn, Cu, Ni and As were higher when compared to forest land which was disturbed rarely by human activities. Speciation analysis showed that Cr, Zn, Cu, Ni and As were predominated by the immobile residual fraction, while Pb and Cd showed relatively higher mobility. In general, metal(except Ni) and As mobility decreased in the following order: wetland dryland ≥ paddy field forest land, which suggested that the reclaimed soils had lower metal and As mobility than the intertidal flat wetland. The results of this study contribute to a better understanding of the effects of land use on heavy metals and As in the reclaimed soils of the study area and other similar coastal areas.  相似文献   

10.
Land use and protection has become a global hotspot. How to use land resources is an important topic for the future socio-economic sustainable development. This paper analyzes the land use changes of Mata lake of Shandong province in China, from 19.85's to 2000's using multi-temporal remotely sensed data including TM in the 1985s, ETM+ in the 2000s and ancillary data such as soil use map, water map etc. the remote sensing imageries were calibrated, registered and geo--referenced, then classified by multi-source information data and remote sensing image interpretation expert system based on knowledge base. Five land use types were extracted from remote sensing imageries, that is, water body, agriculture land, rural settlement, bare land and none use land. The total precision is 80. 7% and Kappa index is 0. 825. The analysis result of the remote sensing shows that during the past 15 years, water resource dropped off very promptly from 51.77 km^2 to 16.65 km^2 and bare land reduced greatly more than 60% in Mata lake region. With the development of the economy and agriculture areas, more and more water body and bare land converted to agriculture land use and rural settlement areas. Since last years, the Mata lake has been affected by natural factor, human activity and increasing population. So its land use pattern greatly changed from 1985 to 2000. The information of land use changes provided scientific supports for land planning and environmental protection.  相似文献   

11.
基于全国第二次土壤普查东北地区土壤数据,以ArcGIS和GS+软件为支撑,对比分析了反距离加权法(IDW)、径向基函数(RBF)、普通克里金(OK)和回归克里金(RK)4种地统计空间插值方法在7个不同样本容量下土壤全氮含量(STNC)的空间插值效果。结果表明,由普查数据得到的东北地区STNC在0.08~21.48 g/kg之间,数据变异性较大;STNC空间结构表现出中强度空间自相关性,空间自相关范围大于同区域的小尺度采样研究;样本容量<171时,STNC空间变异性发生变化,空间结构特征和精度检验水平难以确信。4种空间插值方法对STNC空间趋势表达均呈现从东北向西南方向递减规律,空间趋势预测效果为:RK >OK >RBF >IDW。RK方法通过线性回归分析添加了阳离子交换容量(CEC)、年均温(MAT)、土层厚度(d)和pH值等辅助信息,比IDW,RBF和OK方法的插值精度分别提高了19.40%,18.50%和16.15%;在不同样本容量下RK方法的插值精度较为稳定且对无样点区STNC的空间趋势预测也体现出了更多细节信息,因此对于大尺度低密度采样的土壤属性空间插值可重点考虑RK方法。  相似文献   

12.
以黄土高原寺底沟小流域为研究对象,根据不同土地利用方式采集46个样点的土壤样品,通过地统计方法对土壤有机碳和全氮的空间变异特征进行了分析。采用受限最大似然法(REML)和矩法(MOM)两种方法分别对变异函数进行了估计,通过交叉检验选择克里金预测效果较好的变异函数进行地统计插值。(1)与矩法(MOM)相比,在多数情况下受限最大似然法(REML)估计的变异函数进行克里金插值更加准确。(2)土层深度对土壤全氮空间变异影响较小,对土壤有机碳影响较大,表层土壤有机碳含量及变异程度明显高于下层土壤。(3)土地利用方式对土壤有机碳和全氮的空间分布有重要影响,灌木林和天然草地土壤有机碳和全氮水平最高,弃耕地其次,梯田、果园、人工草地最低,表明退耕还林对提高土壤碳氮水平有重要贡献。  相似文献   

13.
为探索东北黑土小流域土壤AP空间分布模拟的最佳方法,综合考虑区域尺度、景观格局和采样方法等信息,选取两个典型黑土小流域(光荣和海沟河流域)作为研究对象,结合半变异分析、回归分析、主成分分析等方法,比较了不同空间插值方法(反距离权重法、径向基函数法、普通克里格、协同克里格、多元线性回归模型、地理加权回归模型、回归克里格和地理加权回归克里格)对AP空间模拟精度的影响。结果表明:(1)引入主成分分析后能够提高回归克里格和地理加权回归克里格方法的模拟精度(4.5%和2.4%);(2)地理加权回归克里格方法可以作为最优空间插值方法模拟黑土区小流域AP的空间分布格局。地理加权回归克里格方法相较于传统插值方法能在一定程度上提高黑土小流域土壤AP空间模拟精度,为小流域尺度黑土养分管理提供技术支撑。  相似文献   

14.
选取我国北方地区以圩区为主要形式的北运河下游农业灌溉区——天津武清区和北辰区作为研究对象,针对不同土地利用类型进行降雨径流污染物浓度监测,采用美国土壤通用流失方程(USLE)、降雨径流模型(SCS-CN)、综合径流系数法等,结合GIS技术,分别估算了透水地面和不透水地面的氮磷负荷量。结果表明,非点源污染总氮、总磷的年负荷量分别为2865.04t.a-1和101.22t.a-1,不透水地面所产生的TN、TP负荷量分别占研究区污染负荷总量的81%和67%,透水地面所产生的TN、TP负荷量分别占研究区污染负荷总量的19%和33%(且污染物形态以溶解态为主,分别达到了81%和74%)。对于不同土地利用类型,总氮流失主要来源于村庄(贡献率为49%)、城镇(贡献率为17%)和耕地(贡献率为16%),而总磷主要来源于村庄(贡献率为31%)、耕地(贡献率为23%)和城镇(贡献率为19%)。从产污强度来看,城镇用地是最高的,是其他土地利用类型的10倍以上。  相似文献   

15.
ABSTRACT

Spatial interpolation methods are frequently used to characterize soil attributes’ spatial variability. However, inconclusive results, about the comparative performance of these methods, have been reported in the literature. Therefore, the present study aimed to analyze the efficiency of ordinary kriging (OK) and inverse distance weighting (IDW) methods in estimating the soil penetration resistance (SPR), soil bulk density (SBD), and soil moisture content (SM) using two distinct sampling grids. The soil sampling was performed on a 5.7 ha area in Southeast Brazil. For data collection, a regular grid with 145 points (20 x 20 m) was created. Soil samples were taken at a 0.20 m layer depth. In order to compare the accuracy of OK and IDW, another grid was created from the initial grid (A), by eliminating one interspersed line, which resulted in a grid with 41 sampled points (40 x 40 m). Results showed that sampling grid A presented less errors than B, proving that the more sampling points, the lower the errors that are associated with both methods will be. Overall, the OK was less biased than IDW only for SBD (A) and SM (B) maps, whereas IDW outperformed OK for the other attributes for both sampling grids.  相似文献   

16.
土壤速效钾养分含量空间插值方法比较研究   总被引:33,自引:0,他引:33  
土壤养分连续空间分布数据是土壤信息系统工作的基础,土壤养分空间插值的研究因此变得尤为重要。对陕西省周至县北部猕猴桃适生区土壤进行采样,以对猕猴桃生长作用较为密切的土壤速效钾含量为研究对象,用普通克里格(OK)、样条函数(Spline)、趋势面拟合(TSA)、距离权重反比法(IDW)等常用插值方法对采样点进行插值获取土壤速效钾空间分布图,进行交叉验证,结果表明能够反映出结构性影响的克里格插值方法明显优于其它方法,其中又以球形模型为最佳,样条函数、距离权重反比法在采样点密集区也能内插出较好的效果,但其受采样点密度影响较大.在采样点稀疏的地区内插结果较差。  相似文献   

17.
基于多元回归的黄土沟壑区小流域土壤水分空间模拟   总被引:1,自引:0,他引:1  
以延河流域羊圈沟为研究对象,基于土壤水分空间自相关理论,在土壤水分环境影响因子多元回归基础上,建立了土壤水分空间化模型,并探讨了土壤水分空间分布特征。结果表明:研究区内土壤水分空间分布具有正相关性,且相关性显著,在空间上表现为聚集状态;表层土壤水分与植被覆盖度、高程、坡度、地表粗糙度、地形起伏度和地表切割程度等因素密切相关,且与地表切割程度呈正相关关系,而与植被覆盖度、高程、坡度、地表粗糙度以及地形起伏度因子呈负相关;与普通克里格(OK)、反距离加权(IDW)、径向基函数(RBF)和全局多项式(GPI)的土壤水分空间内插方法相比,多元回归+普通克里格方法(MROK)的拟合程度最高,是表层土壤水分空间化较好模型;土壤水分空间分布格局明显,主要表现为西部和东北部土壤水分含量低,东南部土壤水分含量高。该研究揭示了土壤水分环境因子相关性及空间分异规律,对区域生态文明建设具有一定的促进意义。  相似文献   

18.
为了解三峡库区典型小流域不同土地利用类型下水质的变化特征,于2015-2020年对三峡库区长坪小流域开展水质监测,对不同土地利用类型下水体中的总氮(Total Nitrogen,TN)、硝态氮(NO3--N)、氨氮(NH4+-N)、总磷(Total Phosphorus,TP)、可溶态总磷(Dissolved Total Phosphorus,DTP)和颗粒态总磷(Particulate Phosphorus,PP)浓度的时空变化规律进行研究,识别流域内主要氮磷污染源,从而提出针对性的污染防控策略。结果表明:1)不同土地利用类型氮磷输出浓度从大到小依次为村庄、坡耕地、林地和水库,其TN平均浓度分别为8.29、2.88、1.57和1.43 mg/L,TP平均浓度分别为0.25、0.13、0.09和0.07 mg/L。2)不同土地利用类型的水质在汛期和非汛期存在差异,村庄氮磷输出浓度为非汛期高于汛期,坡耕地、林地和水库则表现为汛期高于非汛期。3)内梅罗综合污染指数评价结果表明林地和水库的污染程度均为清洁水平,坡耕地污染程度为轻污染水平,村庄受散养生猪数量的影响,污染程度从污染水平转变为重污染水平。4)长坪小流域TN和TP年输出负荷总量分别为4 278.59和364.93 kg/a。畜禽养殖源是小流域氮磷最主要的污染源,其TN和TP的输出负荷分别占流域总负荷的45.69%和71.77%。坡耕地的TN和TP单位面积污染负荷分别是村庄的7.58%和1.79%,与村庄相比,坡耕地具有显著的低污染特征,因此,以坡耕地消纳村庄污水和畜禽粪便,可促进流域内粪污的就地消纳,达到多源共治的效果。基于小流域不同土地利用类型的水质特征和生态系统服务功能,将流域划分为林草水源涵养区、村庄污染控制区和坡耕地水土保持区,并进行分区协同防控,促进流域农业面源污染系统高效治理。  相似文献   

19.
如何利用有限的样本数据来获得更为准确的土壤属性空间分布信息是土壤学研究的热点问题之一。利用福建省龙海市采集的1 133个耕地土壤样品,设计了结合地貌类型、土壤类型和土地利用类型等信息的5种克里格插值模型,研究县级尺度上土壤有机碳空间预测优化插值模型及其与样点密度的关系。结果表明:设计的5种插值模型预测精度均高于普通克里格法,但不同样点密度对插值结果影响较大。按0.5 km×0.5 km及以上的格网密度进行样点布设,采用土地利用现状类型结合土壤类型信息的普通克里格法(KDLTR)插值结果误差较小;按2 km×2 km的格网密度布设调查样点时,采用土壤类型信息的普通克里格法(KTR)插值结果误差较小;当格网大于4 km×4 km时,由于样点数少,各种模型的结果相差不大,可直接采用普通克里格法(KYJZ)进行插值。  相似文献   

20.
Impairment of water quality is a major concern for streams and rivers in the central USA. Total maximum daily loads (TMDLs) establish a watershed framework and set management targets to alleviate pollution from both point and nonpoint sources. For this study, we have used a hydrologic modeling approach to holistically examine the effect of land use management, urban development, and agricultural practices on sediment and nutrient loadings in an agricultural watershed. Annualized Agricultural Nonpoint Source (AnnAGNPS) simulation indicates that while point source dischargers contribute 8% of total nitrogen (TN) and 24% of total phosphorus (TP) loadings to the Marmaton River, agricultural nonpoint sources are the leading pollution source contributing 55% of TN and 49% of TP loading. Based on TMDL analysis and model simulation, 3% of the watershed area (3,244 ha) needs to be targeted to control TN loading whereas 1% of the total area (1,319 ha) is required for TP reduction management. Managing the TN areas alone can achieve a 57% reduction in the TP load required for the TMDL, whereas managing the targeted TP areas can only provide 30% of the required TN reduction. Areas required both TN and TP management comprise 469 ha. Targeting these areas can achieve approximately 22% of the required TN reduction and 29% of the required TP reduction. Overall, 4,094 ha will require management to achieve water quality goals. This study demonstrates that a modeling approach is needed to effectively address TMDL issues and help identify targeted areas for management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号