首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of stabilized urea fertilizers [Alzon 46 (A) and UREAstabil (US)] on soil microbiological and chemical parameters and also on grain yield, 1000-grain weight, and oil content were tested in a precise field study on Luvisol in 2010–2012. Winter rapeseed (Brassica napus L. cv. Californium) was fertilized both in autumn [45 kg nitrogen (N) ha?1] and in spring (155 kg N ha?1) with A [urea with DCD (dicyandiamide) plus pyrrodiazole (1,2,4-1H-triazole)], US {urea with NBPT [N-(n-butyl)-thiophosphoric acid triamide]}, and conventional N fertilizers (pure urea, calcium ammonium nitrate). Eleven parameters were used to evaluate the soil status: microbial biomass carbon (C; microwave method [MW]), dehydrogenase activity, arylsulfatase activity, available organic carbon, electroconductivity, Corg (MW method), and pH (in water, H2O). None of the 11 parameters demonstrated significant difference between control, conventional N fertilizers, and stabilized urea fertilizers. The greatest yield significantly different from the control (zero kg N ha?1; 2598 ± 881 kg ha?1) was found for both stabilized urea fertilizers: A (200 kg N ha?1; 3772 ± 759 kg ha?1) and US (200 kg N ha?1; 3764 ± 625 kg ha?1). The control achieved the greatest oil content (46.0 ± 1.2%), which was significantly different from all N-fertilized variants, and also the greatest 1000-grain weight (5.62 ± 0.62 g).  相似文献   

2.
ABSTRACT

Blends of controlled-release urea (CRU) and conventional urea can be an alternative to conventional fertilization to improve nitrogen use efficiency (NUE) and reduce costs when applied as a single application to agricultural crops. Different indexes of NUE, grain yield, nutrient uptake and partitioning in maize (Zea mays L.) were investigated in field experiments. The treatments consisted of a single rate of 180 kg N ha?1 with different proportions of polymer-sulfur coated urea (PSCU) and conventional urea (U) applied incorporated at sowing (0.05 m below and 0.1 m to the side of the seed row) at two tropical sites (Site 1, Typic Haplustox; Site 2, Rhodic Haplustox) in Brazil. A control treatment (without urea-N) and a treatment with conventional urea management (UCM: 20% of urea-N applied as basal fertilizer and 80% of N applied as top dressing) were also included. This study demonstrates that blends of PSCU and U are efficient in supplying N throughout the maize cycle at a Typic Haplustox site when applied in a single application incorporated at sowing, resulting in high yields and adequate macronutrient uptake. PSCU improved NUE index compared to U and UCM. There was not response for N fertilization in the Rhodic Haplustox site.  相似文献   

3.
It is not clear about the interactive effects of nitrogen, phosphorus, and potassium additions on carbohydrate accumulation in tree seedlings in the late-season of fall. In late September of 2009, 0 or 60 kg nitrogen ha?1 urea (46-0-0) was applied with 30 and 60 kg phosphorus ha?1 potassium hydrogen phosphate (0-41-45) to transplanted bareroot Changbai larch (Larix olgensis Henry) seedlings. One month after first fertilization, seedlings receiving nitrogen addition had higher nitrogen and phosphorus, but lower potassium, concentrations in combined stems and roots. The higher rate phosphorus and potassium treatment increased nitrogen concentration in coarse roots (diameter > 5 mm) without nitrogen addition and improved potassium reserves. Fertilization did not affect seedling growth and whole-plant carbohydrate accumulation. In conclusion, we recommend a fertilizer regime of 60 kg N ha?1 urea and 60 kg phosphorus ha?1 potassium hydrogen phosphate applied in fall to improve nutrient reserves and increase root carbohydrate accumulation in Changbai larch seedlings.  相似文献   

4.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

5.
The field experiment was conducted on black soil (Vertic Ustropept) at Zonal Agricultural Research Station farm, Solapur, for successive 30 years from 1987–1988 to 2016–2017 under dryland condition in a randomized block design with 10 treatments and 3 replications. The pooled results of seven years (2010–2011 to 2016–2017) revealed that the application of 25 kg N ha?1 through crop residue (CR, byre waste) along with 25 kg N ha-1 through Leucaena lopping (Leucaena leucocephala) to rabi sorghum gave significantly higher grain and stover yield and Sustainable Yield Index (14.61 and 36.11 q ha?1 and 0.47, respectively) which was on par with T7, where 25 kg N ha?1 through farmyard manure (FYM) + 25 kg N ha?1 through urea was applied for grain and stover yield (13.95 and 34.46 q ha?1 and 0.44, respectively). The gross and net monetary returns and benefit–cost ratio were also influenced significantly due to integrated nitrogen management (Rs. 59,796, Rs. 47,353 ha?1, and 3.13, respectively). This was also reflected in residual soil fertility status of soil after harvest of rabi sorghum. The organic carbon content and available nitrogen content of soil, as well as nitrogen uptake and moisture use efficiency for grain, were also increased. The total microbial count of bacteria, fungi, and actinomycetes was more where FYM or CR addition was done. The count of N fixers and P solubilizers was more under Leucaena application either alone or with CR or urea. Application of CR at 4.8 t ha?1 (25 kg N ha?1) along with Leucaena lopping at 3.5 t ha?1 (25 kg N ha?1) as green leaf manure is the best alternative organic source for fertilizer urea (50 kg N ha?1) to increase the production of dryland rabi sorghum.  相似文献   

6.
The objective of this growth chamber study was to evaluate the effect of adding N-(n-butyl) thiophosphoric triamide (NBPT) and dicyandiaminde (DCD) to urea fertilizer, on the physiology and growth of cotton (Gossypiumhirsutum L.) under normal and high temperatures. Treatments consisted of two day temperature regimes, 30°C and 38°C, and five nitrogen fertilization applications: unfertilized control, 125 kg ha?1 of urea, 93 kg ha?1 of urea, 93 kg ha?1 urea + NBPT, and 93 kg ha?1 urea + NBPT + DCD. The addition of NBPT to urea fertilizer had positive effects on leaf chlorophyll, leaf area, dry matter, nitrogen (N) uptake, and N use efficiency. The absence of a significant interaction effect indicated that N fertilization was not influenced by temperature. Deficiency of N significantly decreased leaf chlorophyll, increased glutathione reductase, decreased protein and increased leaf nitrate reductase. Physiological changes under high temperature included increased plant N uptake, glutamine synthetase, leaf chlorophyll, protein content, plant height and leaf area were due to high N uptake and utilization.  相似文献   

7.
In 2012, a greenhouse experiment was conducted to investigate the effects of field soil (C0), residual composted municipal waste (CMW), and residual composted sheep manure (SM) on the growth of triticale in pots previously growing oilseed rape in 2011. To each soil group, one of three levels of urea nitrogen (N) fertilizer was added. Results demonstrated that triticale grown in pots previously containing oilseed rape plants containing SM or CMW with 150 kg urea N ha?1 had the highest N content. Plants grown in SM with 150 kg N ha?1 had the greatest seed yield, but yield was not significantly different from plants grown in CMW receiving 150 kg N ha?1. Triticale plants enriched by either SM or CMW had a higher amount of N, copper, zinc, and manganese compared to the field soil control.  相似文献   

8.
To efficiently use nitrogen (N) while protecting water quality, one must know how a second-year crop, without further N fertilization, responds in years following a manure application. In an Idaho field study of winter wheat (Triticum aestivum L.) following organically fertilized sugarbeet (Beta vulgaris L.), we determined the residual (second-year) effects of fall-applied solid dairy manure, either stockpiled or composted, on wheat yield, biomass N, protein, and grain N removal. Along with a no-N control and urea (202 kg N ha?1), first-year treatments included compost (218 and 435 kg estimated available N ha?1) and manure (140 and 280 kg available N ha?1). All materials were incorporated into a Greenleaf silt loam (Xeric Calciargid) at Parma in fall 2002 and 2003 prior to planting first-year sugarbeet. Second-year wheat grain yield was similar among urea and organic N sources that applied optimal amounts of plant-available N to the preceding year’s sugarbeet, thus revealing no measurable second-year advantage for organic over conventional N sources. Both organic amendments applied at high rates to the preceding year’s sugarbeet produced greater wheat yields (compost in 2004 and manure in 2005) than urea applied at optimal N rates. On average, second-year wheat biomass took up 49% of the inorganic N remaining in organically fertilized soil after sugarbeet harvest. Applying compost or manure at greater than optimum rates for sugarbeet may increase second-year wheat yield but increase N losses as well.

Abbreviations CNS, carbon–nitrogen–sulfur  相似文献   

9.
A 2-year field experiment was conducted to evaluate the single- and combined-application effects of cattle manure and urea on corn (Zea mays L.) production. A randomized complete block design was conducted with five nitrogen (N) rates (36, 72, 108, 144, and 180 kg N ha?1) as urea, cattle manure, or both. The stover yield and aboveground biomass increased with urea application up to 144 kg N ha?1 but remained unchanged at greater N rates. At all N rates, combined application of manure and urea resulted in greater grain yields than single applications. Crop response to applied N was greater in the combined N application system than in the single-application treatments. The greatest grain yield was found in plots that had received a combination of 18 ton manure ha?1 plus 160 kg urea ha?1. Manure application along with urea enhanced crop yield response to urea and reduced its application rate.  相似文献   

10.
A field study was conducted in the sub-humid tropical region of India to examine the effect of different nitrogen (N) management strategies on nitrate leaching, nitrous oxide (N2O) emission and N use efficiency in aerobic rice. Treatments were: control (no N), 120 kg N ha?1 applied as prilled urea (PU) in conventional method, 120 kg N ha?1 applied as neem coated urea (NCU) in conventional method, N applied as PU on the basis of leaf colour chart (LCC) reading, N applied as NCU on the basis of LCC reading, and 120 kg N ha?1 applied as PU and farm yard manure (FYM) in 1:1 ratio. Results showed that 3.4–16.1 kg NO3-N ha?1 was leached below 45 cm depth and 0.61–1.12 kg N2O-N ha?1 was emitted from aerobic rice during the growing season. NCU when applied conventionally reduced nitrate-nitrogen (NO3-N) leaching and N2O emission by 18.6% and 21.4%, respectively However when applied on the basis of LCC reading NCU reduced NO3-N leaching by 39.8% as compared to PU applied in conventional method. NCU when applied on the basis of LCC reading synchronized N supply with demand and reduced N loss, which resulted in higher yield and N use efficiency.  相似文献   

11.
Abstract

To avoid toxicity resulting in reduced crop yields and/or phytotoxic symptoms on the foliage, information on the residual effect of micronutrient fertilization after periods of application is desirable. This article includes discussion on the micronutrients copper (Cu) and zinc (Zn), because they are essential and are of concern from plant and animal standpoints. In general, no detrimental effects in yield reduction or phytotoxicity were noted from Cu applications of up to 50 kg Cu ha?1 to barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). Barley was an exception where 50 kg Cu ha?1 decreased yield by about 12% in the first‐year crop. The Cu levels in plants did not exceed 9 mg kg?1. Studies showed that Zn applications of 50 kg ha?1 for 2 years in succession and the resulting crop tissue Zn levels as high as 105 mg kg?1 did not cause any phytotoxicity in cereals. The results of this study suggest that cereals can tolerate high levels of Cu and Zn.  相似文献   

12.
ABSTRACT

Reducing nitrogen (N) leaching from croplands is important to protect environmental quality and improve recovery of applied N. To contribute to this broader goal of nutrient management, a simple pot experiment evaluated the potential differences among urea (250 kg N ha?1), urea+compost (125 kg N ha?1 from urea + 125 kg N from 8 Mg ha?1 of compost), compost (250 kg N from 16 Mg ha?1 of compost) and a zero control (Ctrl), in terms of their effects on apparent N recovery (ANR), mineral N (Nmin) leaching and soil retention of applied N. Cabbage (Brassica oleraceae L.) and corn (Zea mays L.) were grown in rotation where compost application was not repeated in the 2nd year. Nmin leaching was monitored by adding 83 mm and 62 mm of water fortnightly to cabbage and corn crops, respectively for a total of 28 times in a two-year period. Combined (urea+compost) and independent (compost) treatment application retained 1.5 to 2 times higher N, and lowered 2.1 to 4.6 times Nmin leaching, relative to independent (urea) application. We conclude that farmers’ practice of fertilization that has an inherent problem of N leaching for high rainfall areas in Taiwan could be improved by proper compost and urea combinations within agronomically recommended rates of N application.  相似文献   

13.
A long-term experiment was conducted at the Central Research Institute for Dryland Agriculture for 13 years to evaluate the effect of low tillage cum cheaper conjunctive nutrient management practices in terms of productivity, soil fertility, and nitrogen chemical pools of soil under sorghum–mung bean system in Alfisol soils. The results of the study clearly revealed that sorghum and mung bean grain yield as influenced by low tillage and conjunctive nutrient management practices varied from 764 to 1792 and 603 to 1008 kg ha?1 with an average yield of 1458 and 805 kg ha?1 over a period of 13 years, respectively. Of the tillage practices, conventional tillage (CT) maintained 11.0% higher yields (1534 kg ha?1) over the minimum tillage (MT) (1382 kg ha?1) practice. Among the conjunctive nutrient management treatments, the application of 2 t Gliricidia loppings + 20 kg nitrogen (N) through urea to sorghum crop recorded significantly highest grain yield of 1712 kg ha?1 followed by application of 4 t compost + 20 kg N through urea (1650 kg ha?1) as well as 40 kg N through urea alone (1594 kg ha?1). Similar to sorghum, in case of mung bean also, CT exhibited a significant influence on mung bean grain yields (888 kg ha?1) which was 6.7% higher compared to MT (832 kg ha?1). Among all the conjunctive nutrient management treatments, 2 t compost + 10 kg N through urea and 2 t compost + 1 t Gliricidia loppings performed significantly well and recorded similar mung bean grain yields of 960 kg ha?1 followed by 1 t Gliricidia loppings + 10 kg N through urea (930 kg ha?1). The soil nitrogen chemical fractions (SNCFs) were also found to be significantly influenced by tillage and conjunctive nutrient management treatments. Further, a significant correlation of SNCF with total soil nitrogen was observed. In the correlation study, it was also observed that N fraction dynamically played an important role in enhancing the availability pool of N in soil and significantly influenced the yield of sorghum grain and mung bean.  相似文献   

14.
Sorghum is cultivated on Vertisols in the Ethiopian Highlands. An experiment was conducted in the Gumara-Maksegnit watershed in 2013 and 2014 to assess the effect of rate and timing of nitrogen fertilizer application on the possibility to shorten the maturity period and to improve the productivity of sorghum. The experiment was laid out as Randomized Complete Block Design with three replications. Treatments were nitrogen doses between 0 and 87 kg N ha?1 as urea applied at planting, at knee-height stage or in split doses at both stages. Results showed that application of 23, 41, 64 and 87 kg ha?1 N gave a yield increase of 40, 53, 62 and 69% over the control (0 kg N ha?1), respectively. In addition, split application of 41 kg ha?1, 64 kg ha?1 and 87 kg ha?1 of nitrogen fertilizer, half at planting and half at knee height stage, gave 19%, 15% and 18% increase in sorghum grain yield over a single dose application, respectively. Applying 87 kg ha?1 nitrogen fertilizer with split application half at planting and half at knee height stage, along with 46 kg ha?1 of P2O5, gave the highest grain yield and income.  相似文献   

15.
太湖地区稻麦轮作条件下施用包膜尿素的氮素循环和损失   总被引:8,自引:0,他引:8  
A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.  相似文献   

16.
Abstract

The objective of this study was to determine the effects of nitrogen fertilizer sources of ammonium sulphate and municipal sewage sludge on yield, N content and uptake of the maize (Zea mays L.). Nutrient and heavy metals were determined in soil and plant. The experiment with three sludge rates (256, 513 and 1026 kg total N ha?1 or 9.5, 18.0 and 38.1 t ha?1 sludge), two nitrogen rates (80 and 160 kg N ha?1) and zero-N control were conducted on a clay loam soils under irrigated conditions in Eastern Anatolia region in Turkey. Treatments were arranged in a randomized complete block design with four replications. Yield, N content and total N uptake of maize increased significantly with sludge application. 9.5 t and 19.0 t ha?1 sewage sludge applications did not significantly affect heavy metal content of leaf and grain. However, 38.1 t ha?1 sludge applications increased leaf Pb and Zn. DTPA-extractable Cd, Cu, Fe, Pb and Zn concentrations of the soil increased at applications of 38.1 t ha?1 sewage sludge, whereas applications of 9.5 t and 19.0 t ha?1 sludge only resulted in elevated levels of Cu and Zn, We conclude that if sewage sludge is to be used in production of maize, applications rate up to 19 t ha?1 could be accepted. However, this means also that the N requirement of maize crop is not covered by the sludge; therefore, the rest of nitrogen could be supplied as inorganic N.  相似文献   

17.
Controlled-release urea (CRU) and its placement method in rice production were investigated during 2007 and 2008 seasons. Controlled-release urea was applied at 62.5, 125, and 187.5 kg nitrogen (N) ha?1, and the urea was 187.5 kg N ha?1. All the CRU treatments were applied to the nursery beds once, and they were brought into the paddy field during transplanting, while the urea treatment was split into three applications from the plowing to the harvest. The results showed that rice seedlings with CRUs germinated and grow well and there was no salt damage at the nursery stage. The CRU treatment with 125 kg N ha?1 had 33% less N than urea treatment (187.50 kg N ha?1), but it produced significantly higher grain and straw yields, higher total N uptake and total apparent N uptake efficiency. In addition, all the CRU treatments effectively decreased floodwater ammonium (NH4 +)-N and nitrate (NO3 ?)-N concentrations, pH, and N runoff.  相似文献   

18.
The aim of the study was to examine effects of postharvest sprays of nitrogen (N), boron (B), and zinc (Zn) on reproductive response of sweet cherry (Prunus avium L.) trees, fruit quality and plant nutrition. The experiment was conducted during 2007–2009 in central Poland on mature ‘Burlat’ sweet cherry trees/F12, grown on a coarse-textured soil with low level of organic matter, and optimal soil reaction. Soil status of phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), manganese (Mn), Zn and copper (Cu) was optimal, whereas B – low. Sweet cherry trees were sprayed with boric acid-B, ethylenediaminetetraacetic acid (EDTA)-Zn, and urea-N at 30–40 d prior to initiation of leaf fall according to following schema: i) spray of N at a rate of 23 kg ha?1; ii) spray of B and Zn at a dose of 1.1 kg ha?1 and 0.5 kg ha?1, respectively; and iii) spray of N, B and Zn at the same rates as in the above spray combinations. The trees sprayed with water served as the control. The results showed that fall spray treatments had no influence on cold damage of flower buds, plant N status and soluble solids concentration in fruit. Postharvest spray of N and combined spray of N, B and Zn injured leaves in the fall but did not cause defoliation. Sprays of B and Zn with or without N increased status of Zn and B in fall leaves, and B in flowers and midsummer leaves. Those sprays also improved fruit set and yield. In one out of two years of the study, fall sprays of N with or without B and Zn decreased mean fruit weight. The above results indicate that only leaf-applied B in the fall improved reproductive response of sweet cherry trees. It is concluded that under conditions of B shortage in a soil and/or plant tissues, postharvest B sprays can be recommended in sweet cherry orchards to improve reproductive growth of the trees.  相似文献   

19.
This study provided an insight on improving soil-plant micronutrients availability in response to poultry manure (PM), wheat milling residues (WMR) and urea N (UN) and their integration in wheat–soybean cropping system. The treatments were: control; poultry manure full, PM100; wheat milling residues full, WMR100; urea N full, UN100; PM half and WMR half, PM50+WMR50; UN50+PM50; UN50+WMR50; UN50+PM25+WMR25. All amendments were added at the rate or equivalent to 100 kg total N ha–1. Results indicated that the integrated treatments increased Cu, Fe, Mn and Zn uptake of wheat by 35.7–103%, 48.4–111.1%, 85.2–267.0% and 33.8–128.2%, respectively over control. In soybean the corresponding increase in micronutrient uptake (Cu, Fe, Mn and Zn) was 18.3–60.3%, 27.5–87.4%, 14.1–54.6% and 13.2–58.0% in integrated treatments. The post-harvest soil analysis indicated 2 to 3-fold increase in micronutrient content with highest values in PM100 i.e., 2.66 mg kg?1 for Cu, 14.41 mg kg?1 for Fe, 18.58 mg kg?1 for Mn and 2.44 mg kg?1 for Zn, respectively. The results showed that the PM either alone or in integrated with WMR and UN can be an effective management strategy for improving micronutrient content of soil–plant.  相似文献   

20.
With regard to the low cation-exchange capacity and large saturated hydraulic conductivity of sandy soils, a field experiment was carried out in 2006–2007 to determine the impact of zeolite on nitrogen leaching and canola production. Four nitrogen (N) rates (0, 90, 180, and 270 kg ha–1) and three zeolite amounts (3, 6 and 9 t ha?1) were included as treatments. The results demonstrated that the highest growth parameters and seed yield were attained with 270 kg N ha?1 and 9 t zeolite ha?1. However, the highest and the lowest seed protein percentage and oil content were obtained with 270 kg N ha?1 accompanied by 9 t zeolite ha?1, respectively. Nitrate concentration in drained water was affected by nitrogen and zeolite. The lowest and highest leached nitrate values were found in control without N and zeolite (N0Z0) and in treatments with the highest N supply without zeolite (N270Z0), respectively. In general, nitrogen-use efficiency decreased with an increase in N supply. Application of 9 t zeolite ha?1 showed higher nitrogen use efficiency than other zeolite amounts. Also, application of more N fertilizer in soil reduced nitrogen uptake efficiency. In total, application of 270 kg N ha?1 and 9 t zeolite ha?1 could be suggested as superior treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号