首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解析油菜开花期性状的遗传机制,利用KN DH群体在冬性、半冬性和春性环境的开花期表型和KN 高密度遗传连锁图谱,通过Wincart 2.5软件的符合区间作图法对油菜开花期性状进行QTL定位及候选基因鉴定。结果显示,共鉴定到119个开花期QTL,单个QTL解释表型变异最大是qFT-13DL16-4 (25.96%),最小的是qFT-13ZY2-1(2.48%)。利用元分析的方法将初步鉴定的QTL整合为consensus QTL,共获得26个环境稳定表达QTL,包括7个开花期主效QTL。如cqFT-A2-3、cqFT-A2-4在春性环境稳定表达,cqFT-C6-4、cqFT-C6-7、cqFT-C6-12、cqFT-C6-13在冬性和半冬性环境稳定表达, cqFT-C6-14在冬性环境稳定表达QTL。主效QTL置信区间共鉴定到15个与成花诱导相关的候选基因,如 BnaA02g12260D(RGA1)、 BnaA02g15390D(AGL12)、 BnaA02g16710D(LKP2)和BnaC06g19930D(NUA)等,这些候选基因主要涉及赤霉素、光周期、生物钟、春化作用响应和花发育等功能。可见,油菜开花期主效QTL及其候选基因的鉴定为开花期基因的精细定位和图位克隆奠定基础,也为培育早熟、高产油菜品种提供指导。  相似文献   

2.
油菜开花期QTL定位及与粒重的遗传关联性   总被引:2,自引:1,他引:1  
【目的】明确中国和欧洲油菜开花期主控位点及其对粒重的影响,为早熟油菜品种选育提供科学依据。【方法】以欧洲冬油菜Sollux和中国品种高油605的选系(Gaoyou)杂交F1经小孢子培养产生的DH群体为材料,采用7年9种环境下的开花期表型数据和新版SG图谱定位开花期QTL,并采用条件遗传学和QTL分析相结合的条件QTL定位方法,解析开花期对千粒重QTL的影响,最后对各20个极端开花期株系的基因型和表现型进行性状-标记的符合度测定,为标记筛选用于辅助选育提供依据。【结果】应用WinQTLCart 2.5复合区间作图法,共检测到7个在3种以上环境中稳定表达的控制开花QTL,加性效应值在0.58—3.85 d,解释了表型总变异的84%。8对上位性QTL效应总和为加性总效应的41.8%。QTL与环境互作效应只在少数位点和个别环境中显著。在3个主效QTL峰值或相近位置上定位了4个在拟南芥中调控开花的关键基因FT、API、FLC和FY的6个同源拷贝,为发掘控制这些QTL的候选基因提供了有价值的参考信息。条件QTL分析表明,在4个增重效应均来自Gaoyou的千粒重QTL位点(qSWA2、qSWA3、qSWA4和qSWC2),大粒等位基因效应可能与开花早、籽粒灌浆期长有关。通过选择这些位点的早开花标记基因型有望同时提高种子千粒重,这也部分给出了开花期与千粒重之间极显著负相关的遗传解释,但2个粒重主效位点(qSWA7和qSWC8)的遗传效应不受开花期影响。根据SG群体极端开花期株系在3个效应值最大的QTL(qFTA2、qFTC2和qFTC6)区域标记基因型和开花期表现型的关联分析,筛选获得6个高质量、高吻合度的共显性标记推荐育种应用。qFTA2位点,标记辅助准确率为70%-80%;qFTC2和qFTC6位点的选择效率达到80%-100%。基因型组配分析显示,聚合qFTA2、qFTC2和qFTC6的早开花等位基因,可显著提早开花期,同步增加千粒重但不影响含油量和角果粒数。【结论】7个QTL均显示早开花等位基因来自中国亲本。拟南芥中调控开花关键基因FT、API、FLC和FY的6个同源拷贝定位到3个主效QTL峰值位置。开花迟、早显著影响4个千粒重QTL位点,但2个最重要的粒重位点(qSWA7和qSWC8)不受影响;3个主效QTL(qFTA2、qFTC2和qFTC6)的6个共显性标记可用于早熟基因的转育和早熟材料的筛选。  相似文献   

3.
【目的】在云南生境下挖掘甘蓝型油菜含油量QTL位点,为高含油量性状遗传机制研究和分子标记辅助高含油量育种提供理论基础。【方法】以高含油量材料G28为母本,低含油量材料H008为父本,通过小孢子培养技术创建包含175份株系的F_1 DH群体,利用60K SNP芯片构建高密度遗传连锁图谱,结合2016-2017年丽江与临沧点DH群体含油量数据采用完备区间作图法,以LOD=2.5为阈值扫描含油量性状QTL。【结果】DH群体含油量性状呈现正态分布,表现出单向超亲分离。2个环境下共检测到6个含油量QTL,分别可解释6.29%~10.36%的表型变异。通过Blast分析将这6个QTL分别映射到参考基因组-Darmor-bzh ChrA01,ChrA10,ChrC05与ChrC08染色体物理图谱上。与前人研究比较分析推测位于C05染色体上的qOCc05.1与qOCc05.2为新的含油量性状相关的QTL。【结论】在云南生境下检测到6个含油量性状QTL并明确了其在染色体的物理区间,定位结果可用于下一步主效QTL的精细定位和分子标记辅助高含油量油菜育种。  相似文献   

4.
基于SNP遗传图谱定位甘蓝型油菜千粒重QTL位点   总被引:1,自引:0,他引:1  
【目的】甘蓝型油菜籽粒重量是构成油菜单株产量的三大因素之一(单株有效角果数、每角果粒数、粒重),是重要的育种目标。通过对5种环境下甘蓝型油菜千粒重进行QTL定位分析,寻找甘蓝型油菜千粒重的QTL及影响本甘蓝型油菜群体千粒重的候选基因。【方法】利用重组自交系群体在德国吉森、重庆北碚5种不同的环境下,测定各株系天然种子千粒重。利用重庆市油菜工程技术研究中心实验室构建的SNP高密度遗传图谱扫描5种环境中的千粒重QTL。该遗传图谱包括2 795个SNP位点,覆盖甘蓝型油菜基因组1 832.9 cM,标记之间的平均距离为0.66 cM。利用Windows QTL Cartographer2.5复合区间作图法对千粒重进行QTL定位。将49个拟南芥粒重相关基因与QTL对应置信区间序列进行同源比较分析(E值<1E–21),找出可能与甘蓝型油菜千粒重关联的候选基因。【结果】5种环境中千粒重变异范围较大,且均呈现正态分布,符合QTL定位要求。在5种环境之间千粒重均表现出正相关,其中,2013北碚与2012北碚、2008年吉森达到极显著水平,相关系数分别为0.248和0.249;2012年北碚与2010年北碚、2011年北碚及2008年吉森达到显著相关,相关系数分别为0.226、0.397和0.190。5种环境中共检测到14个QTL,分布在9条染色体,其中,C03染色体3个,A06、A07和C01各有2个,A03、A05、A08、A10和C02染色体上各有1个,LOD值在2.57-6.05,单个QTL解释的表型变异为4.64%-14.13%。与拟南芥粒重基因进行同源性分析,有16个粒重相关基因落在8个QTL置信区间,匹配E值介于0-2E-21。其中QTL qTSWA07-2区间内筛出7个粒重基因。粒重基因TTG2qTSWA03-1qTSWC02-1 2个QTL区间内均被检测到。AHK3qTSWA07-2qTSWA08-1qTSWC01-1区间内被检测到。【结论】利用该套油菜60K芯片准确定位了5种环境条件千粒重的QTL位点,与拟南芥粒重基因比对出该群体油菜粒重基因,该结果有利于不同材料在使用该套SNP芯片分析及对千粒重QTL位点的比对和候选基因的分析。  相似文献   

5.
油菜籽含油量和蛋白质含量的种子胚与母体植株QTL定位   总被引:1,自引:0,他引:1  
【目的】利用甘蓝型油菜TN DH群体分别与双亲Tapidor和Ningyou7回交构建的BC1F1 1和BC1F1 2两个群体,分析油菜籽含油量和蛋白质含量的种子胚和母体植株两套不同核基因组的QTL及其遗传效应,以明确QTL在不同遗传体系中的分布状况以及连锁的分子标记,研究环境互作效应对不同遗传体系QTL定位的影响,探讨相应品质性状分子标记辅助选择的最优策略和方法。【方法】按照常规田间试验方法种植202个TN DH群体材料与双亲,采用2年、2次重复、随机区组试验设计,开花时通过双向回交构建BC1F1 1和BC1F1 2两个群体,收获双亲和回交群体的种子。利用可分析含油量和蛋白质含量的近红外分析模型和方法测定油菜籽含油量和蛋白质含量。结合甘蓝型油菜分子标记连锁遗传图谱以及新创建的双子叶作物种子品质性状两套遗传体系的QTL定位方法和作图软件,对不同年份BC1F1 1和BC1F1 2油菜籽含油量和蛋白质含量进行QTL定位分析。【结果】共检测到7个与油菜籽含油量和蛋白质含量相关的QTL,分布在A1、A4、A6、A7、C2和C5连锁群上,其中,4个与含油量相关的QTL和3个控制蛋白质含量的QTL对表型的总贡献率分别为49.1%和59.6%。检测到的QTL均具有极显著的胚加性主效应和母体加性主效应,其中4个QTL具有显著或极显著的胚显性主效应、2个与含油量相关的QTL具有极显著的环境互作效应。qOC-6-3和qPC-4-1作为控制含油量和蛋白质含量的重要QTL,分别能解释36.3%和37.9%的表型变异;而qOC-4-2和qPC-4-1均被定位在甘蓝型油菜A4连锁群相同的位点上,位于分子标记HS-K02-2和HBR094之间,QTL峰值位置为18.5 cM,置信区间为17.5-19.4 cM。【结论】甘蓝型油菜籽含油量和蛋白质含量的表现会同时受到种子胚和母体植株两套不同遗传体系核基因组QTL表达效应的影响,其中环境互作效应对含油量表现的作用更为明显,而控制蛋白质含量表现的QTL在不同环境条件下的表达较为稳定。在A6和A4连锁群上检测到的qOC-6-3和qPC-4-1是2个控制含油量和蛋白质含量的主效QTL,同时2个控制蛋白质含量的QTL尚未见报道。  相似文献   

6.
目的 菜籽油在烹饪、食品加工及工业生产中广泛应用,因此,根据生产需要改善菜籽油脂肪酸组分是油菜育种的重要目标。通过对2种环境下甘蓝型油菜主要脂肪酸组成进行QTL定位分析,寻找甘蓝型油菜脂肪酸组分的QTL及影响本群体脂肪酸组分的候选基因。方法以人工合成甘蓝型油菜10D130和甘蓝型油菜常规品种中双11构建高世代重组自交系(RIL)为研究材料,分别于2016-2017年和2017-2018年2个年度在重庆市北碚区2个不同的环境中设置田间试验,收获自交种子,采用气相色谱法3次重复对种子的脂肪酸组分进行分析。利用油菜6K SNP芯片对该RIL群体进行基因分型,DNA样品预处理及芯片处理严格按照Illumina Inc 公司Infinium HD Assay Ultra操作说明进行。取最小阈值LOD 2.0利用JoinMap4.0软件构建高密度遗传连锁图谱。通过QTL IciMapping V4.1完备区间作图法对油菜主要脂肪酸组成进行QTL定位。结果 2种环境中,两亲本各性状间差异及RIL群体各性状在株系间差异均达到显著或极显著水平,且6种脂肪酸含量在2个环境中均表现为连续分布,适合进行QTL检测。构建用于QTL定位的遗传图谱包含1 897个多态性SNP标记,覆盖甘蓝型油菜基因组3 214.19 cM,平均图距1.69 cM。利用此图谱,在2个环境共检测到位于8条染色体上的23个控制脂肪酸组分QTL位点,与硬脂酸、油酸、亚油酸、亚麻酸、廿碳烯酸和芥酸含量相关的QTL位点分别为6、3、4、5、2和3个,其中在A05、A08和C03染色体上发现多种脂肪酸含量的QTL“富集区”。在A05染色体上检测到亚油酸和亚麻酸含量重叠的主效QTL,亚油酸与亚麻酸表现加性效应相同;在A08和C03上都检测到油酸、廿碳烯酸和芥酸含量重叠的主效QTL,油酸与廿碳烯酸及芥酸表现加性效应相反。与拟南芥脂肪酸代谢基因进行同源性比对分析,在17个QTL置信区间内筛选到22个候选基因,主要通过编码脂肪酸去饱和酶、全羧化酶合酶、碳链延长酶和参与酰基辅酶A生物合成等途径调控脂质的生物合成和代谢。结论 利用甘蓝型油菜6K SNP芯片准确定位了2种环境条件脂肪酸组成的QTL位点,筛选到位于A05、A08和C03染色体上多种脂肪酸QTL的“富集区”,并与拟南芥脂肪酸代谢基因比对出该群体油菜脂肪酸代谢基因,可作为改善油菜籽脂肪酸组成的重要区段及候选基因。  相似文献   

7.
为了研究油菜株高的遗传基础,以2个甘蓝型油菜株系DH-7-9(矮杆)×DH-G-42(高杆)杂交后代连续自交的重组自交系群体(190个家系)为材料,在西宁和武汉2种环境下进行株高性状鉴定,结果显示,该重组自交系群体的株高表现连续变异并且符合正态分布。利用前期构建的遗传连锁图,结合2种环境下株高性状鉴定数据,采用Win QTLcart 2.5软件复合区间作图法(CIM)进行QTL定位和效应估计,结果表明,在2种环境下共检测到11个与株高性状相关的QTL,单个QTL可解释的表型变异为1.17%~10.45%。在A10连锁群上,主效QTL(q PH-X-A10或q PHW-A10)在两环境下可重复检测到,可解释10.24%~10.45%的表型变异。将156个拟南芥株高基因与该主效QTL置信区间对应的油菜基因组上的723个基因进行同源比较分析,在主效QTL区域内预测到2个株高候选基因Bna A10g07740D和Bna A10g12020D,其对应的拟南芥同源基因分别为ATGA20ox2、GA5/ATGA20ox1和STA1,均与拟南芥株高相关。  相似文献   

8.
【目的】研究开花调控转录因子CONSTANS(CO)同源基因在甘蓝型油菜中的表达特征。【方法】以早熟甘蓝型油菜品系D626-6和晚熟甘蓝型油菜品系D125-5为材料,依据甘蓝型油菜CONSTANS同源基因Bn1CON19设计特异性引物扩增CO基因全长编码区,并根据获得的cDNA序列设计实时荧光定量特异性引物,采用SYBR Green I染料法进行实时荧光定量PCR研究CO基因表达差异。【结果】在整个生育期内,早熟和晚熟甘蓝型油菜品系的CO基因以叶片中的表达量最高,花蕾和茎中表达量次之,且早晚表达量高于中午时分;在不同生育时期内,抽薹期表达量最大,且早熟甘蓝型油菜品系CO基因在叶片和花蕾中的表达明显高于晚熟甘蓝型油菜品系。【结论】CO同源基因在甘蓝型油菜成花过程中以及生育期的长短上发挥着一定的作用。  相似文献   

9.
【目的】菜籽油包括多种脂肪酸组分,提高油酸(C18:1)含量,降低亚麻酸(C18:2)和芥酸(C22:1)含量是油菜育种改良和遗传研究的重要目标。本研究利用刚开发的油菜60K芯片构建的高世代重组自交系群体遗传连锁图谱,对3个不同环境中影响甘蓝型油菜品质的油酸、亚麻酸及芥酸含量进行QTL定位分析,研究结果可对脂肪酸组分QTL位点在不同的群体之间准确比较分析。【方法】以高芥酸亲本GH06为母本和低芥酸亲本P174为父本构建高世代重组自交系,分别于2008年在德国吉森、德国霍亨里特及2009年德国吉森3个不同的环境中设置田间试验,收获自交种子,采用近红外分析方法3次重复对种子的脂肪酸组分进行分析。利用油菜60K芯片对重组自交系群体进行基因型分析,DNA样品预处理及芯片处理严格按照Illumina Inc公司Infinium HD Assay Ultra操作说明进行。取最小阈值LOD 5.0利用MSTmap软件构建遗传图谱。QTL定位所用的遗传图谱包括2 756个SNP位点,覆盖甘蓝型油菜基因组1 832.4 cM。利用Windows QTL Cartographer复合区间作图法对油酸、亚麻酸及芥酸含量进行QTL定位。【结果】在3个环境中,油酸和芥酸含量均表现为极显著负相关,相关系数均达到-0.95,且表现为主基因控制的性状,芥酸和亚麻酸表现负相关,油酸与亚麻酸表现正相关。3个性状在3个环境中共检测到14个QTL,在A08和C03上都检测到油酸和芥酸含量重叠的主效QTL位点。在3个环境中,油酸主效QTL位点解释表型变异19%-31%,芥酸主效QTL位点解释表型变异19%-34%,两者表现加性效应相反。A08和C03染色体上的芥酸主效QTL位点加性效应在3个环境中为7.6到9.6,加性效应来自低油酸、高芥酸亲本GH06。亚麻酸属于典型的数量性状,受环境影响较大,在3个环境中检测到不同的微效QTL位点,解释表型变异3%-12%。遗传图谱与物理图谱比较分析发现,脂肪酸去饱和酶FAD2基因位于亚麻酸QTL qA05C18:3的置信区间,而脂肪酸延长酶FAE1基因位于芥酸QTL qA08C22:1的置信区间。【结论】利用该套油菜60K芯片准确定位了油酸、亚麻酸及芥酸QTL位点,位于A08和C03染色体上的芥酸主效QTL位点同时也是油酸的主效QTL位点,该研究结果有利于不同群体在使用该套SNP芯片分析及对脂肪酸组分定位后准确比较分析。  相似文献   

10.
【目的】寻找苯磺隆胁迫下油菜种子萌发性状相关的QTL及其耐性基因,为筛选与培育耐苯磺隆油菜种质以及探究油菜种子萌发过程中苯磺隆耐性分子机理奠定基础。【方法】用0.15 mg·kg~(-1)苯磺隆溶液处理由人工合成甘蓝型油菜10D130和甘蓝型油菜常规品种ZS11构建的包含175个株系的高世代重组自交系(RIL)群体,进行种子发芽试验,以蒸馏水为对照,分别测定其相对发芽势、相对发芽率、相对根长和相对干重。然后,利用油菜6K SNP芯片对该RIL群体进行基因分型,通过JoinMap4.0软件构建高密度遗传连锁图谱。基于该遗传图谱,利用MapQTL软件多QTL作图法对4个性状的相对值进行QTL定位,根据各QTL置信区间查找甘蓝型油菜的基因序列,并依次与拟南芥基因组序列进行BLAST,筛选可能与耐苯磺隆胁迫相关的候选基因。【结果】频数分布表明4个相对性状的变异范围较大,且呈连续性分布,符合数量性状表现特征,适宜进行QTL遗传分析。相关分析表明,相对发芽率和相对发芽势呈极显著正相关,相关系数为0.587。构建的遗传图谱包含1 897个多态性SNP标记,覆盖甘蓝型油菜基因组3 214.19 cM,标记之间的平均图距为1.69 cM。利用此图谱共检测到22个相关QTL,表型贡献率变幅为6.4%—12.6%。其中,与相对发芽势、相对发芽率相关的QTL分别有6个和3个,与相对根长和相对干重有关的QTL分别为8个和5个。在A01染色体64.857 cM、55.935 cM和56.645 cM处检测到的相对发芽势与相对发芽率QTL的置信区间完全或者部分重叠。通过分析QTL置信区间上甘蓝型油菜对应的区间序列,筛选到30个可能与油菜耐苯磺隆有关的候选基因,其中包括18个细胞色素P450家族成员、5个糖基转移酶家族基因、1个GSTF相关基因、1个ABC转运蛋白相关基因和1个ALS基因,这些基因均与除草剂抗性机制有关,尤其ALS为磺酰脲类除草剂靶位点酶;另外筛选到1个BHLH和1个JAZ6基因,BHLH与JAZ蛋白可通过相互作用来防御胁迫;检测到1个LSU2蛋白相关基因和1个MATE家族成员,前者参与细胞氧化剂解毒及植物防御反应,后者参与类黄酮、生物碱、金属离子、其他多种代谢物的转运及有毒物质引起的植物胁迫响应。【结论】检测到与相关QTL共22个,筛选出可能与苯磺隆耐性有关的候选基因30个。这些基因通过加速毒性分子的转运与代谢从而响应有毒物质引起的胁迫反应,可能参与植物对苯磺隆的抗性调节与反应机制。  相似文献   

11.
12.
13.
Telling time     
  相似文献   

14.
Talk time     
  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号