首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
油菜株高QTL定位、整合和候选基因鉴定   总被引:1,自引:1,他引:0  
【目的】通过对油菜株高进行多环境QTL定位并与已报道的油菜株高QTL和植物株高基因分别进行整合和比对分析,揭示油菜株高的遗传结构和候选基因并为其分子改良提供依据。【方法】以油菜优良品种中双11(测序)和No.73290(重测序)衍生的含184个单株的Bna ZNF2群体为试验材料。首先,对Bna ZNF2群体进行基因型分析,利用Joinmap 4.0软件构建了一张含803个分子标记的高密度遗传图谱。其次,对F2:3和F2:4家系进行连续两年(2010—2011)两点(武汉和西宁)田间试验和表型鉴定。然后,利用Bna ZNF2群体的基因型数据和F2:3以及F2:4家系的株高表型数据,采用Win QTLCart 2.5软件的复合区间作图法进行QTL检测。最后,利用元分析的方法采用Bio Mercator软件对不同环境中检测到的株高QTL进行整合。【结果】对两年两点环境下分别检测到的株高QTL进行整合总共得到5个株高QTL的位点:q PH.A2-1、q PH.A2-2、q PH.C2-1、q PH.C3-1和q PH.C3-2,分布于A2、C2和C3染色体上,解释2.6%—55.6%的表型方差。其中,q PH.A2-1和q PH.A2-2只在武汉检测到,而q PH.C2-1、q PH.C3-1和q PH.C3-2只在西宁检测到。位于C2连锁群的主效QTL-q PH.C2-1只在西宁被重复检测到,而且LOD值、加性效应和贡献率(分别为23.4、-16.0和55.6%)均高于前人报道,是目前发现的效应最大的一个油菜株高QTL。基于油菜基因组物理图谱对本研究和已报道的油菜株高QTL和植物株高基因分别进行整合和比对分析,获得了一个由183个QTL和287个候选基因组成的相对完整的油菜株高遗传结构图。其中,有18个株高QTL簇能在不同研究中被共同检测到,分布在A1、A2、A3、A6、A7、A9、C6和C7染色体上。另外,本研究定位到的5个油菜株高QTL的物理位置和已报道的油菜株高QTL均不重叠,因而是新的株高QTL位点。其中,q PH.A2-2、q PH.C3-1和q PH.C3-2物理区间内总共找到了15个株高同源基因,而11个在2个亲本中存在序列变异,被选作候选基因进行进一步研究。【结论】QTL定位和整合获得5个油菜株高QTL,均为首次报道而且都只在武汉或西宁被检测到。其中位于C2连锁群的主效QTL效应值超过以往报道,表现出极强的QTL与环境的互作。通过与已报道的油菜株高QTL和植物株高基因分别进行整合和比对分析,较为全面地揭示了油菜株高的遗传结构和候选基因,生物信息学分析还鉴定到11个位于本研究定位到的3个株高QTL区间内的候选基因。  相似文献   

2.
玉米株高和穗位高的QTL定位   总被引:1,自引:0,他引:1  
为了鉴定株高、穗位高QTL的主效位点,利用高密度的SNP(单核苷酸多态性)连锁图谱和包含共同亲本的2个BC_2F_5群体,采用完备区间作图法对2个环境下的玉米株高和穗位高QTL进行分析。结果表明,BC_2F_5群体株高和穗位高存在广泛的变异;株高和穗位高性状受基因控制,同时受环境、基因型×环境互作的影响。在2个BC_2F_5群体中共检测到6个株高QTL和7个穗位高QTL,表型贡献率为8.36%~33.28%。影响株高、穗位高的主效QTLqPH2-2、qEH2-5均位于第2染色体Bin2.03~2.04区,表型贡献率分别为29.55%、31.86%。  相似文献   

3.
【目的】菜籽油包括多种脂肪酸组分,提高油酸(C18:1)含量,降低亚麻酸(C18:2)和芥酸(C22:1)含量是油菜育种改良和遗传研究的重要目标。本研究利用刚开发的油菜60K芯片构建的高世代重组自交系群体遗传连锁图谱,对3个不同环境中影响甘蓝型油菜品质的油酸、亚麻酸及芥酸含量进行QTL定位分析,研究结果可对脂肪酸组分QTL位点在不同的群体之间准确比较分析。【方法】以高芥酸亲本GH06为母本和低芥酸亲本P174为父本构建高世代重组自交系,分别于2008年在德国吉森、德国霍亨里特及2009年德国吉森3个不同的环境中设置田间试验,收获自交种子,采用近红外分析方法3次重复对种子的脂肪酸组分进行分析。利用油菜60K芯片对重组自交系群体进行基因型分析,DNA样品预处理及芯片处理严格按照Illumina Inc公司Infinium HD Assay Ultra操作说明进行。取最小阈值LOD 5.0利用MSTmap软件构建遗传图谱。QTL定位所用的遗传图谱包括2 756个SNP位点,覆盖甘蓝型油菜基因组1 832.4 cM。利用Windows QTL Cartographer复合区间作图法对油酸、亚麻酸及芥酸含量进行QTL定位。【结果】在3个环境中,油酸和芥酸含量均表现为极显著负相关,相关系数均达到-0.95,且表现为主基因控制的性状,芥酸和亚麻酸表现负相关,油酸与亚麻酸表现正相关。3个性状在3个环境中共检测到14个QTL,在A08和C03上都检测到油酸和芥酸含量重叠的主效QTL位点。在3个环境中,油酸主效QTL位点解释表型变异19%-31%,芥酸主效QTL位点解释表型变异19%-34%,两者表现加性效应相反。A08和C03染色体上的芥酸主效QTL位点加性效应在3个环境中为7.6到9.6,加性效应来自低油酸、高芥酸亲本GH06。亚麻酸属于典型的数量性状,受环境影响较大,在3个环境中检测到不同的微效QTL位点,解释表型变异3%-12%。遗传图谱与物理图谱比较分析发现,脂肪酸去饱和酶FAD2基因位于亚麻酸QTL qA05C18:3的置信区间,而脂肪酸延长酶FAE1基因位于芥酸QTL qA08C22:1的置信区间。【结论】利用该套油菜60K芯片准确定位了油酸、亚麻酸及芥酸QTL位点,位于A08和C03染色体上的芥酸主效QTL位点同时也是油酸的主效QTL位点,该研究结果有利于不同群体在使用该套SNP芯片分析及对脂肪酸组分定位后准确比较分析。  相似文献   

4.
[目的]对甘蓝型油菜花期和生育期QTL进行定位,为精细定位和克隆早花基因及开展分子标记辅助早熟油菜品种选育提供理论依据.[方法]以极早熟甘蓝型油菜G28、甘蓝型油菜H008及以二者为亲本构建的175个F1DH株系为材料,利用甘蓝型油菜60K SNP芯片分型技术绘制高密度遗传连锁图谱,并采用完备复合区间作图法对2016─2017年度丽江和临沧2个生长环境下甘蓝型油菜的花期(FT)和生育期(MT)田间调查数据进行QTL扫描分析.[结果]F1DH株系花期与生育期具有较明显的超亲现象,表明双亲材料控制花期和生育期的位点不同.F1DH株系在丽江生长环境下花期与生育期相关系数为0.63,在临沧生长环境下二者相关系数为0.79,即花期与生育期呈较高的正相关.利用SNP芯片构建的高密度遗传连锁图谱共包含19条连锁群,7601个SNPs位点,总长3838.2 cM.在丽江和临沧2个生长环境下共检测到6个花期QTL和5个生育期QTL,分布于A02、A07、C02、C03、C06、C07和C09连锁群上,可分别解释2.96%~17.40%和4.98%~11.82%的遗传变异.花期QTL qFTA02-1和qFTC03-2在2生长个环境下均可检测到,加性效应值相反,其中qFTA02-1具有最高的LOD值(20.43)、贡献率(17.40%)和加性效应值(3.27 d),且与生育期QTL qMTA02-1置信区间重叠,是最主要的花期主效QTL;qFTC03-2为次要的花期主效QTL.在qFTA02-1置信区间内发现2个拟南芥花期调控关键基因FLC和FY的油菜同源基因拷贝BnaA02g00370D和BnaA02g01670D.[结论]花期主效QTL qFTA02-1和qFTC03-2可用于分子标记辅助选育早熟油菜品种.BnaA02g00370D和BnaA02g01670D可能为qFTA02-1置信区间内控制甘蓝型油菜花期性状的目标基因.  相似文献   

5.
利用以玉米自交系T319与9406为亲本构建的242个重组自交系(F8),对玉米株高和穗位高进行QTL(数量性状基因座位)分析,在第1、2、3、5、7、10染色体定位到6个株高QTL,位于umc2228与bnlg2295、bnlg1609与bnlg1350、bnlg210与umc1045,可解释表型变异率12.13%、13.00%、11.58%,为株高主效QTL;在第1、10染色体上检测到2个穗位高主效QTL,位于umc2228-bnlg2295、bnlg210与umc1045,可解释表型变异率10.73%、16.92%。位于umc2228-bnlg2295、bnlg210-umc1045的区域为株高和穗位高的一致主效QTL区间,这些位点的标记可进行株高和穗位高的株型改良分子标记辅助选择。  相似文献   

6.
以大白菜Bre-1-1-1-1和芜菁W-2-1-8-1自交系杂交产生的F2群体为材料,构建连锁图谱,采用春季自然春化方法,以抽薹和初花日数为表型值,对控制抽薹和初花基因进行QTL鉴定。群体的抽薹和初花时间偏向于大白菜,且呈连续性分布,表明抽薹、初花性状为数量性状,受多个基因控制。抽薹日数与初花日数相关性较高,达到极显著性水平。利用WinQTLCart 2.5软件对抽薹、初花性状进行QTL分析,检测到控制抽薹日数的主效QTL两个,分别位于A02和A09连锁群上;控制初花日数的主效QTL两个,分别位于A03和A09连锁群上,且A09上控制抽薹、初花的QTL位点相同。筛选到了与这些位点紧密连锁的分子标记,可在今后大白菜耐抽薹分子标记辅助选择育种及相关基因克隆中加以利用。  相似文献   

7.
高粱株高性状的QTL定位初步分析   总被引:1,自引:0,他引:1  
以高粱品种T70、P607为亲本构建的218株F6重组自交系群体为材料,对亲本及各单株的株高性状进行调查和微卫星序列重复(SSR)分析。运用复合区间作图法构建遗传连锁图,得到了包含65个SSR标记的遗传图谱,进行全基因组数量性状基因座(QTL)扫描,共监测到6个与株高相关的QTL,解释性状表型变异37.2%,其中2个QTL解释超过10%的表型变异。说明这6个与株高相关的QTL可作为利用分子标记辅助育种途径进行高粱遗传改良的依据。  相似文献   

8.
目的 菜籽油在烹饪、食品加工及工业生产中广泛应用,因此,根据生产需要改善菜籽油脂肪酸组分是油菜育种的重要目标。通过对2种环境下甘蓝型油菜主要脂肪酸组成进行QTL定位分析,寻找甘蓝型油菜脂肪酸组分的QTL及影响本群体脂肪酸组分的候选基因。方法以人工合成甘蓝型油菜10D130和甘蓝型油菜常规品种中双11构建高世代重组自交系(RIL)为研究材料,分别于2016-2017年和2017-2018年2个年度在重庆市北碚区2个不同的环境中设置田间试验,收获自交种子,采用气相色谱法3次重复对种子的脂肪酸组分进行分析。利用油菜6K SNP芯片对该RIL群体进行基因分型,DNA样品预处理及芯片处理严格按照Illumina Inc 公司Infinium HD Assay Ultra操作说明进行。取最小阈值LOD 2.0利用JoinMap4.0软件构建高密度遗传连锁图谱。通过QTL IciMapping V4.1完备区间作图法对油菜主要脂肪酸组成进行QTL定位。结果 2种环境中,两亲本各性状间差异及RIL群体各性状在株系间差异均达到显著或极显著水平,且6种脂肪酸含量在2个环境中均表现为连续分布,适合进行QTL检测。构建用于QTL定位的遗传图谱包含1 897个多态性SNP标记,覆盖甘蓝型油菜基因组3 214.19 cM,平均图距1.69 cM。利用此图谱,在2个环境共检测到位于8条染色体上的23个控制脂肪酸组分QTL位点,与硬脂酸、油酸、亚油酸、亚麻酸、廿碳烯酸和芥酸含量相关的QTL位点分别为6、3、4、5、2和3个,其中在A05、A08和C03染色体上发现多种脂肪酸含量的QTL“富集区”。在A05染色体上检测到亚油酸和亚麻酸含量重叠的主效QTL,亚油酸与亚麻酸表现加性效应相同;在A08和C03上都检测到油酸、廿碳烯酸和芥酸含量重叠的主效QTL,油酸与廿碳烯酸及芥酸表现加性效应相反。与拟南芥脂肪酸代谢基因进行同源性比对分析,在17个QTL置信区间内筛选到22个候选基因,主要通过编码脂肪酸去饱和酶、全羧化酶合酶、碳链延长酶和参与酰基辅酶A生物合成等途径调控脂质的生物合成和代谢。结论 利用甘蓝型油菜6K SNP芯片准确定位了2种环境条件脂肪酸组成的QTL位点,筛选到位于A05、A08和C03染色体上多种脂肪酸QTL的“富集区”,并与拟南芥脂肪酸代谢基因比对出该群体油菜脂肪酸代谢基因,可作为改善油菜籽脂肪酸组成的重要区段及候选基因。  相似文献   

9.
利用重组自交系检测小麦株高的QTL   总被引:10,自引:0,他引:10  
为寻找更多小麦株高的QTL ,并用于品种改良和分子标记辅助育种 ,利用江苏地方品种望水白与墨西哥小麦品种Alondra杂交构建的重组自交系群体 (10 4个家系 )在 3个试验环境 [1997年和 1999年于江苏省农业科学院 (以下简称农科院 )、2 0 0 2年于南京江宁试验区 (以下简称江宁 ) ]中的株高资料 ,进行了株高性状的QTL分析。共检测到 4个影响小麦株高的QTL ,它们分别位于 1D、2B、4A和 4D染色体上 ,其中位于 1D染色体上的QTL来自地方品种望水白 ,其余 3个QTL均来自矮杆亲本Alondra;单个QTL能够解释 10 3%~ 33 8%的表型变异 ,降低株高效应为 3 2~ 7 4cm ,每个环境条件下检测到的所有QTL能解释 35 0 %~ 4 4 5 %的表型变异 ,4A和 4D染色体上的QTL在 3个试验环境下均能被检测出来 ,说明这 2个QTL可以用于品种改良和标记辅助育种 ;4D染色体上的QTL可能是矮杆基因Rht D1b  相似文献   

10.
为了解析油菜开花期性状的遗传机制,利用KN DH群体在冬性、半冬性和春性环境的开花期表型和KN 高密度遗传连锁图谱,通过Wincart 2.5软件的符合区间作图法对油菜开花期性状进行QTL定位及候选基因鉴定。结果显示,共鉴定到119个开花期QTL,单个QTL解释表型变异最大是qFT-13DL16-4 (25.96%),最小的是qFT-13ZY2-1(2.48%)。利用元分析的方法将初步鉴定的QTL整合为consensus QTL,共获得26个环境稳定表达QTL,包括7个开花期主效QTL。如cqFT-A2-3、cqFT-A2-4在春性环境稳定表达,cqFT-C6-4、cqFT-C6-7、cqFT-C6-12、cqFT-C6-13在冬性和半冬性环境稳定表达, cqFT-C6-14在冬性环境稳定表达QTL。主效QTL置信区间共鉴定到15个与成花诱导相关的候选基因,如 BnaA02g12260D(RGA1)、 BnaA02g15390D(AGL12)、 BnaA02g16710D(LKP2)和BnaC06g19930D(NUA)等,这些候选基因主要涉及赤霉素、光周期、生物钟、春化作用响应和花发育等功能。可见,油菜开花期主效QTL及其候选基因的鉴定为开花期基因的精细定位和图位克隆奠定基础,也为培育早熟、高产油菜品种提供指导。  相似文献   

11.
基于SNP遗传图谱定位甘蓝型油菜千粒重QTL位点   总被引:1,自引:0,他引:1  
【目的】甘蓝型油菜籽粒重量是构成油菜单株产量的三大因素之一(单株有效角果数、每角果粒数、粒重),是重要的育种目标。通过对5种环境下甘蓝型油菜千粒重进行QTL定位分析,寻找甘蓝型油菜千粒重的QTL及影响本甘蓝型油菜群体千粒重的候选基因。【方法】利用重组自交系群体在德国吉森、重庆北碚5种不同的环境下,测定各株系天然种子千粒重。利用重庆市油菜工程技术研究中心实验室构建的SNP高密度遗传图谱扫描5种环境中的千粒重QTL。该遗传图谱包括2 795个SNP位点,覆盖甘蓝型油菜基因组1 832.9 cM,标记之间的平均距离为0.66 cM。利用Windows QTL Cartographer2.5复合区间作图法对千粒重进行QTL定位。将49个拟南芥粒重相关基因与QTL对应置信区间序列进行同源比较分析(E值<1E–21),找出可能与甘蓝型油菜千粒重关联的候选基因。【结果】5种环境中千粒重变异范围较大,且均呈现正态分布,符合QTL定位要求。在5种环境之间千粒重均表现出正相关,其中,2013北碚与2012北碚、2008年吉森达到极显著水平,相关系数分别为0.248和0.249;2012年北碚与2010年北碚、2011年北碚及2008年吉森达到显著相关,相关系数分别为0.226、0.397和0.190。5种环境中共检测到14个QTL,分布在9条染色体,其中,C03染色体3个,A06、A07和C01各有2个,A03、A05、A08、A10和C02染色体上各有1个,LOD值在2.57-6.05,单个QTL解释的表型变异为4.64%-14.13%。与拟南芥粒重基因进行同源性分析,有16个粒重相关基因落在8个QTL置信区间,匹配E值介于0-2E-21。其中QTL qTSWA07-2区间内筛出7个粒重基因。粒重基因TTG2qTSWA03-1qTSWC02-1 2个QTL区间内均被检测到。AHK3qTSWA07-2qTSWA08-1qTSWC01-1区间内被检测到。【结论】利用该套油菜60K芯片准确定位了5种环境条件千粒重的QTL位点,与拟南芥粒重基因比对出该群体油菜粒重基因,该结果有利于不同材料在使用该套SNP芯片分析及对千粒重QTL位点的比对和候选基因的分析。  相似文献   

12.
甜瓜果实相关性状QTL分析   总被引:3,自引:0,他引:3  
以美国厚皮甜瓜品系ms-5为母本,中国薄皮甜瓜品系HM-1为父本,配置杂交组合,构建含有189个单株的F2:3群体,对两亲本高通量重测序开发CAPS标记,构建包含159个标记、12个连锁群的遗传连锁图谱,该图谱覆盖基因组长度为1 771.53 cM,标记间平均距离为11.35 cM。应用复合区间作图法对甜瓜果实单果重、果实长、宽、果形指数、果肉厚度作QTL分析,共检测到与果实性状相关QTL位点18个,分布在第2、4、5、6和7染色体上,LOD值为2.82~18.78,可解释2.68%~79.40%表型变异率。检测到7个与果形指数相关QTL位点,分别为FS2.1、FS4.1、FS6.1、FS6.2、FS7.1、FS7.2、FS7.3,果形指数QTL位点FS6.1位于B0610和E0623两个标记之间,两标记间遗传距离为0.27 cM,LOD值为6.14,解释5.72%表型变异率,通过基因序列比对QTL FS6.1位于甜瓜基因组scaffold00027上,基因注释结果发现,该区域有26个候选基因。  相似文献   

13.
小麦重要品质性状的QTL定位   总被引:5,自引:0,他引:5  
【目的】发掘重要性状的QTL及其分子标记进行小麦品质分子改良。【方法】采用PH82-2/内乡188杂交后代240个F5:6家系,按照Latinized α-lattice设计,2004~2005年度分别种植在河南焦作、安阳和山东泰安。对籽粒蛋白质含量、Zeleny沉降值、和面时间、8分钟带宽、峰值粘度和稀懈值进行测定,利用188个SSR标记和4个蛋白标记构建遗传连锁图谱,采用复合区间作图法(CIM)对上述6个品质性状进行QTL定位。【结果】 籽粒蛋白质含量检测出3个QTL,分布在3A、3B染色体上。在1B、1D和3B染色体上检测到3个控制Zeleny沉降值的QTL,其中位于1B和1D染色体上的QTL在3个地点均检测到,可解释5.5%~17.6%表型变异。发现3个控制和面时间的QTL,分布在1B和1D染色体上,在3个地点均能检测到,贡献率为7.9%~55.3%;检测出8分钟带宽的QTL 5个,其中1B和1D染色体上的QTL在3种环境下均能检测到,贡献率为11.7%~33.9%。发现峰值粘度QTL 4个,分布在1A、1B、3A和7B染色体上;检测出稀懈值QTL 5个,位于1B、4A、5B、6B和7A染色体上。1B染色体上存在同时控制Zeleny沉降值、和面时间、8分钟带宽、峰值粘度和稀懈值的QTL,与最近标记Glu-B3j连锁距离为0.1~0.8cM,说明1BL/1RS易位对这些性状有重要影响;1D染色体上存在同时控制Zeleny沉降值、和面时间和8分钟带宽的QTL,与最近的标记Dx5+Dy10连锁距离为2.5~3.3cM,表明Dx5+Dy10高分子量谷蛋白亚基对这3个性状影响很大。和面时间和8分钟带宽位于1B和1D染色体的QTL以及稀懈值位于1B染色体上的QTL在3个地点均能检测到,具有环境稳定性。【结论】本研究定位的品质性状的标记可作为小麦品质分子育种的工具。  相似文献   

14.
RTM-GWAS方法应用于大豆RIL群体百粒重QTL检测的功效   总被引:1,自引:1,他引:0  
【目的】为全面解析大豆重组自交系群体中调控百粒重性状的QTL体系,将限制性两阶段多位点全基因组关联分析方法(RTM-GWAS)和不同定位方法进行比较、优选,为后续候选基因体系探索及分子标记辅助育种设计提供依据。【方法】利用以科丰1号和南农1138-2为亲本衍生的重组自交系群体NJRIKY的427个家系,通过由全基因组39 353个SNP构建的3 683个SNPLDB标记及3个环境下的百粒重表型数据,选用复合区间作图法(CIM)、基于混合线性模型的全基因组关联分析方法(MLM-GWAS)和RTM-GWAS3种方法检测百粒重QTL,通过QTL数目和总的表型变异解释率比较检测功效,挑选最佳定位结果进行NJRIKY群体中的百粒重遗传体系解析。通过候选基因体系的功能注释,挖掘调控大豆百粒重的生物学途径。【结果】科丰1号与南农1138-2的百粒重差异较大,多环境平均数分别为9.0和17.9 g,遗传变异系数为12.4%,遗传率为85.4%,适用于百粒重性状的遗传解析。比较3种方法定位结果表明RTM-GWAS方法表现最佳,检测QTL数目最多(57个),解释表型变异最多(70.78%)。而CIM仅检测到14个QTL,解释了56.47%的表型变异,MLM-GWAS仅定位到6个QTL,解释了18.47%的表型变异。RTM-GWAS共检测到57个QTL,分布在19条染色体上,表型变异解释率为0.03%—7.57%,其中41个QTL覆盖了已报道的来自30个双亲群体的81个百粒重QTL,16个QTL为新发现位点,包含一个表型变异解释率大于3%的大效应位点Sw-09-2。此外,检测的57个QTL中有20个位点与环境存在互作效应。这57个QTL构成了影响NJRIKY群体百粒重性状的遗传体系。通过SNPLDB标记与预测基因内的SNP进行χ2检验,共筛选到36个候选基因,其中4个候选基因来自大效应QTL,剩余32个候选基因来自小效应QTL。通过GO注释发现这些候选基因功能注释丰富,其中13个候选基因与籽粒发育直接相关,剩余的候选基因功能丰富,包含转运、转录调节因子等,表明不同生物学途径的基因共同调控NJRIKY群体中百粒重性状的表达。【结论】3种定位方法中,高效的RTM-GWAS方法检测到较为全面的NJRIKY群体的百粒重QTL,更适用于双亲RIL群体的QTL定位。不同功能的候选基因共同调控了复杂的百粒重性状的表达。  相似文献   

15.
以基于豫82×沈137和豫537A×沈137构建的2个重组自交系群体的420个家系为材料,借助SNP分子标记遗传连锁图谱,利用复合区间作图法定位了发芽率(GP)、发芽势(GE)、发芽指数(GI)、活力指数(VI)、苗长(SL)、幼苗干质量(SDW)、根干质量(RDW)7个种子发芽相关性状的QTL。结果表明,基于豫82×沈137的重组自交系群体检测到24个QTLs,分布在1、2、3、5、6、7、10染色体上,单个QTL解释性状遗传变异的5.61%~11.01%;基于豫537A×沈137的重组自交系群体检测到40个QTLs,分布在除第2染色体外的其余9条染色体上,单个QTL解释性状遗传变异的5.39%~11.92%。通过元分析方法将64个原初QTLs中的25个(39.1%)整合进6个mQTLs,分别分布于第3、5、7、10染色体上,每个mQTL平均包含4.17个QTLs,分别参与2~4个性状的调控,其中,mQTL3-2包含了7个QTLs,参与对VI、SDW、RDW、GE等4个性状的调控。确定了位于6个mQTLs对应标记区间的35个候选基因,主要参与种子萌发、氧化还原代谢途径、信号传导、逆境抵御等生物学过程。  相似文献   

16.
Plant height is an important agronomic trait, which is governed by multiple genes with major or minor effects. Of numerous QTLs for plant height reported in soybean, most are in large genomic regions, which results in a still unknown molecular mechanism for plant height. Increasing the density of molecular markers in genetic maps will significantly improve the efficiency and accuracy of QTL mapping. This study constructed a high-density genetic map using 4 011 recombination bin markers developed from whole genome re-sequencing of 241 recombinant inbred lines (RILs) and their bi-parents, Zhonghuang 13 (ZH) and Zhongpin 03-5373 (ZP). The total genetic distance of this bin map was 3 139.15 cM, with an average interval of 0.78 cM between adjacent bin markers. Comparative genomic analysis indicated that this genetic map showed a high collinearity with the soybean reference genome. Based on this bin map, nine QTLs for plant height were detected across six environments, including three novel loci (qPH-b_11, qPH-b_17 and qPH-b_18). Of them, two environmentally stable QTLs qPH-b_13 and qPH-b_19-1 played a major role in plant height, which explained 10.56–32.7% of the phenotypic variance. They were fine-mapped to 440.12 and 237.06 kb region, covering 54 and 28 annotated genes, respectively. Via the function of homologous genes in Arabidopsis and expression analysis, two genes of them were preferentially predicted as candidate genes for further study.  相似文献   

17.
不同环境下水稻株高和穗长的QTL分析   总被引:4,自引:1,他引:3  
【目的】水稻株高和穗长是影响水稻产量的2个重要因素,选育长穗大粒和株高适中的品种将对水稻的增产有非常重要的意义。通过对株高和穗长进行多环境QTL分析,鉴定稳定表达的株高和穗长的主效QTL,增加对株高和穗长遗传行为的了解,为水稻株型育种提供参考。【方法】首先,以辽宁省超级粳稻品种沈农265和云南省的地方粳稻品种丽江新团黑谷杂交衍生的粳-粳交重组自交系(recombinant inbredline,RIL)群体为试验材料,采用QTL IciMapping v3.0软件基于完备复合区间作图法在多环境条件下(沈阳,2011;海南,2012年;沈阳,2013年)对株高和穗长进行QTL分析;其次,基于上面定位的结果,结合已发表的文献和水稻数据库中的相关数据,对在3种环境条件下检测到的主效QTL进行比较分析,确定其可靠性;最后,采用主效QTL-BSA法(Bulked Segregant Analysis of Major QTL)对3种环境条件下检测到的主效QTL进行分析,进一步缩小目标QTL的区间范围。【结果】在3种环境条件下,沈农265和丽江新团黑谷的株高和穗长均存在显著差异,在RIL群体中,株高和穗长存在较大幅度变异,呈现双向超亲分离,近似于正态分布,这表明株高和穗长均为多基因控制的数量性状。在3种环境下,共检测到9个与株高和穗长相关的QTL,包括5个株高QTL,分布于第6、7、9和12染色体上,LOD介于2.67-19.39,加性效应值在-17.68-2.90,单个QTL贡献率为4.25%-37.35%;4个穗长QTL,分布于第6、7和9染色体上,LOD介于3.57-23.18,加性效应值在-3.22-1.42,单个QTL贡献率为11.30%-61.62%。有5个QTL被单独检测到,仅有4个QTL能在2个或3个环境中被检测到。其中,位于第9染色体上相同区间的qPL9a和qPH9能在3种环境中被检测到,而位于第7染色体上相同区间的qPH7qPL7b分别能在2种或3种环境中被检测到,增效等位基因均来自丽江新团黑谷。同时,依据已发表的相关文献和Gramene网站对所定位的主效QTL进行整合分析,在第7染色体上的RM10-RM248区域存在一个油菜素内酯的信号转导调控因子基因OsBZR1和8个控制株高或穗长相关的QTL,在第9染色体上的RM566-RM242区域存在多个赤霉素合成或油菜素内酯合成相关基因和9个控制株高或穗长相关的QTL,进一步验证了所检测到的主效QTL的可靠性。利用主效QTL-BSA分析法将第9染色体上控制株高和穗长的QTL-qPHL9qPL9aqPH9)定位在RM1189-RM24457,物理距离522.46 kb,而将新发现的第7染色体QTL-qPHL7qPL7bqPH7)定位在RM478-RM429,物理距离为856.49 kb。【结论】3种环境中,在沈农265和丽江新团黑谷的RILs群体分别检测到5个控制株高和4个控制穗长的QTL,其中位于第9染色体上的主效QTL-qPHL9同时影响株高和穗长,在3种环境中均能被检测到,位于第7染色体上的主效QTL-qPHL7同时影响株高和穗长,该位点能在2种环境中被检测到,是一个新的多效性QTL位点。  相似文献   

18.
采用普通小麦农大3338和京冬6号的组合构建的包含216个株系的DH系为材料,以包含379个标记的高密度遗传连锁图谱为基础,利用复合区间作图法,通过一年两点田间试验,对株高及其组成成分不同节间长度的QTL进行分析。结果表明,一年两点最终株高共定位到8个QTL,分布在染色体2D,4B,4D,5A,6D,7A上,共解释株高变异为91.86%(北京)、92.63%(临汾)。各节间表型数据总共定位到28个QTL,分布在染色体2B,2D,3B,4A,4B,4D,5A,6A,6D,7A上。这些QTL基本包括了影响最终株高的8个位点,各节间长度还有部分特有的QTL。上述结果为在育种中实现对株高、穗下节长和其他节间长度的精细遗传操作及深入解析株高性状形成的遗传学基础提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号