首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 875 毫秒
1.
采用硫酸水解桉木浆制备纳米纤维素,进行响应面法优化制备工艺条件设计实验,并用透射电子显微镜表征了桉木浆纳米纤维素的形貌.结果表明,硫酸浓度55%,反应温度50℃,水解时间2h,纳米纤维素得率为70.05%;透射电子显微镜观察制备的纳米纤维素呈棒状,长度小于1000nm.桉木浆纳米纤维素制备优化适宜的水解时间应在3h以上.  相似文献   

2.
一锅法制备羧基化纳米纤维素晶体   总被引:1,自引:0,他引:1  
为了探究高效、简便的羧基化纳米纤维素晶体(CCN)制备工艺,以微晶纤维素(MCC)为原料,过硫酸铵为氧化剂,采用一锅法制备出羧基化纳米纤维素晶体。并运用响应面分析法对影响羧基化纳米纤维素得率的各因素及其相互之间的交互作用进行优化。再采用透射电镜、马尔文激光粒度仪、红外光谱、X射线衍射和热分析对样品的微观形貌、粒度分布、晶体特性、结构和热稳定性能进行了研究。结果表明:过硫酸铵浓度与时间、温度与时间之间的交互作用比过硫酸铵浓度与温度间的交互作用对羧基化纳米纤维素得率的影响显著。通过优化得到的制备工艺条件为时间204min、过硫酸铵浓度2mol/L、温度62℃,优化条件下制备的羧基化纳米纤维素得率为46.41%,与模型预测值(46.93%)吻合较好,表明建立的数学模型是有效的。CCN为直径10~30nm、长度50~200nm均匀分布的棒状,Z均粒径为96.92nm;在1731cm-1出现了羧基基团的CO特征峰,表明过硫酸铵分解产生的氧化剂H2O2选择性地把纤维素C6原子上的羟基氧化成了羧基;CCN属纤维素Ⅰ型,结晶度为78.35%;羧基化后的CCN热稳定性相对于MCC有较明显的降低。   相似文献   

3.
微晶纤维素在盐酸、甲酸体系中的水解动力学   总被引:1,自引:0,他引:1  
研究了微晶纤维素在盐酸、甲酸体系(4%盐酸,甲酸78.22%,水17.78%)中的水解动力学,以及反应温度在55~75℃、反应时间0~9h对葡萄糖得率的影响,并探讨了葡萄糖在该水解体系中的降解情况。研究结果表明,葡萄糖的降解反应和纤维素的水解反应相比是个快速反应。微晶纤维素在盐酸、甲酸体系中的水解速率表现在反应温度为55℃时,水解速率为6.34×10-3h-1;反应温度为65℃时,水解速率为2.94×10-2h-1;反应温度为75℃时,水解速率为6.84×10-2h-1。葡萄糖的降解速率表现为反应温度为55℃时,降解速率为0.01h-1;反应温度为65℃时,降解速率为0.14h-1;反应温度为75℃时,降解速率为0.34h-1。微晶纤维素水解的表观活化能为105.61kJ/mol,葡萄糖的降解表观活化能131.37kJ/mol。  相似文献   

4.
为促进笋头的高值化利用,利用富含纤维素的竹笋笋头进行纳米纤维素晶体(cellulose nanocrystal,CNC)的制备。以福建省绿竹笋笋头为原料,通过粉碎、前处理和硫酸水解法进行笋头纳米纤维素晶体的制备,并研究其持水力、持油力和膨胀力等理化性质。结果表明:笋头是制备纳米纤维素晶体的适宜原料,经过硫酸水解后笋头纳米纤维素晶体的理化性质得到显著改良。通过硫酸水解法制备的笋头纳米纤维素晶体的得率为49.54%,粒径为91.87nm;相对于笋头粗纤维,笋头纳米纤维素晶体的持水力、持油力和膨胀力分别提高了99.54%、29.80%和81.15%。  相似文献   

5.
木质纤维素稀酸糖化研究初探   总被引:4,自引:1,他引:4  
木质纤维素的分解利用对于解决未来的能源危机与环境问题具有重大意义。以脱脂棉、滤纸模拟生物质的主要组分之一纤维素,在不同稀硫酸浓度、时间和温度反应参数下,进行纤维素水解糖化试验研究,以还原糖量为指标,考察纤维素糖化最佳反应条件。研究结果表明,在加热时间为60min时,还原糖得率随硫酸浓度的增加而增加;在加热时间为80min时,还原糖得率在硫酸浓度4%处出现最大值。综合硫酸及废液处理成本考虑,得到实验最佳条件为4%硫酸加热80min。  相似文献   

6.
稻壳制备糠醛的研究   总被引:3,自引:0,他引:3  
马军强  冯贵颖 《安徽农业科学》2007,35(16):4738-4739
研究了糠醛生产的新原料-稻壳的硫酸水解试验。利用蒸汽加热在反应釜中分别对硫酸浓度、液固比、反应温度、反应时间4项参数进行了糠醛得率的对比研究。经过多批次试验,得出糠醛生产的最佳水解工艺参数:硫酸浓度为10%,水解时间为4 h,温度为170℃,液固比为6。糠醛得率达到理论量的62%,比玉米芯生产糠醛得率提高了12%。  相似文献   

7.
为缓解当前能源危机,寻求农作物秸秆的有效利用途径,运用稀酸水解法对秸秆纤维素进行水解实验研究.该文基于自行设计的高温高压反应装置,以玉米秸秆为原料,以还原糖得率为指标,采用正交实验设计对硫酸浓度、秸秆粉碎度及金属盐助催化剂种类与浓度四种水解条件进行了研究.实验结果表明:氯化铬、氧化亚铁、氯化铜、氯化锌四种金属盐助催化剂均提高纤维素稀酸水解效率,并得出了四种助催化剂稀酸水解纤维素的最佳反应条件.实验表明,最佳工艺条件为硫酸浓度2%、粉碎度60目、氯化亚铁浓度1%.实验结果为秸秆纤维素稀酸水解规模化生产应用奠定了基础.  相似文献   

8.
 为缓解当前能源危机,寻求农作物秸秆的有效利用途径,运用稀酸水解法对秸秆纤维素进行水解实验研究。该文基于自行设计的高温高压反应装置,以玉米秸秆为原料,以还原糖得率为指标,采用正交实验设计对硫酸浓度、秸秆粉碎度及金属盐助催化剂种类与浓度四种水解条件进行了研究。实验结果表明:氯化铬、氯化亚铁、氯化铜、氯化锌四种金属盐助催化剂均提高纤维素稀酸水解效率,并得出了四种助催化剂稀酸水解纤维素的最佳反应条件。实验表明,最佳工艺条件为硫酸浓度2%、粉碎度60目、氯化亚铁浓度1%。实验结果为秸秆纤维素稀酸水解规模化生产应用奠定了基础。  相似文献   

9.
用超声辅助硫酸水解芦苇浆制备纳米纤维素,将芦苇浆粉置于55%硫酸溶液中,分别在200 W、45 kHz超声条件下预处理O、10、20、30、40、50 min,通过前期正交试验优化工艺条件,在反应温度50 °C下酸水解4h制备纳米纤维素.研究结果表明超声辅助预处理可以提高纳米纤维素得率,超声30 min时纳米纤维素得率最高,为73.95%;超声处理50 min制备的纳米纤维素傅立叶变换红外光谱和X射线衍射分析结果表明,所制备的纳米纤维素是纤维素且为天然纤维素Ⅰ型,结晶度为74.54%;预处理超声10、50 min制备的纳米纤维素的透射电子显微镜分析结果表明,所制备的纳米纤维素均达到纳米级,为棒状.  相似文献   

10.
为高效利用五节芒Miscanthus floridulus,通过硫酸酸解五节芒纤维素制备了纤维素纳米晶体(CNC),并采用正交分析法考察了硫酸质量分数、酸解时间和反应温度对五节芒CNC产率、悬浮液稳定性和CNC尺寸的影响。透射电镜(TEM)研究结果表明:用酸解法可成功制备五节芒CNC,CNC为刚性棒状结构,长度为100~200nm,直径为5~15 nm,产率为25%~50%。动态光散射(DLS)和Zeta电位测试发现,五节芒CNC悬浮液的稳定性很好,DLS得到的CNC流体力学直径略小于由TEM观察到的CNC长度。正交分析表明,3个工艺参数对CNC产率的影响依次为:硫酸质量分数(P=0.03),酸解时间(P=0.06),反应温度(P=0.35);对CNC流体力学直径的影响依次为:硫酸质量分数(P=0.03),反应温度(P=0.22),酸解时间(P=0.38)。制备五节芒CNC的最优工艺条件为:硫酸质量分数(62%),酸解时间(45 min),反应温度(45℃)。  相似文献   

11.
采用炭基磷钨酸在超声波辅助作用下水解微晶纤维素(MCC ),制备得到纳米纤维素晶体(NCC)。采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和热分析仪(TGA )等对所制备N C C的形貌、晶体结构、光谱性质和热稳定性进行分析。结果表明:制备的NCC呈棒状,直径和长度主要分布在12~79 nm和146~862 nm,样品仍属于纤维素Ⅰ型,结晶度为76.1%;FTIR分析可知,纳米纤维素晶体仍然具有纤维素的基本化学结构;TGA分析表明,纳米纤维素晶体热分解温度为300℃,初期热稳定性低于微晶纤维素。与常规酸水解方法相比,该方法在制备过程中可省去脱酸过程,具有对设备腐蚀性小、环保等优点。  相似文献   

12.
旧瓦楞纸箱稀酸水解制还原糖的研究   总被引:1,自引:0,他引:1  
张晶晶  万金泉  赵银中  王艳 《安徽农业科学》2009,37(35):17312-17314
[目的]探讨稀H2SO4水解旧瓦楞纸箱(OCC)制还原糖的影响因素。[方法]采用稀酸在高温下水解OCC,进行正交优化试验。[结果]稀H2SO4水解OCC的最佳工艺条件为:硫酸质量分数3%,水解温度180℃,水解时间60min,液固比16:1(ml:g),还原糖得率为68.481%。其还原糖得率明显高于稻草、玉米秸秆等原生植物纤维的得糖率,而酸浓度又远远低于浓跋水解的酸浓度。[结论]对于OCC酸水解过程,前30rain半纤维素先于纤维素水解,30—60min主要为纤维素水解,60~120min炭化作用超过了纤维素的水解作用。  相似文献   

13.
以微晶纤维素(MCC)为原料,经环氧化和醚化反应,制备了纤维素衍生物--纤维素苦味酸醚(MCC-PA).通过红外光谱、元素分析对其进行结构表征,以氮质量分数为优化指标,考查了物料比、氢氧化钠(质量分数36%)的用量、反应温度和反应时间对纤维素苦味酸醚制备的影响.通过单因素试验得出合成条件为:m(苦味酸(PA)):m(环氧化纤维素)=5:l,NaOH用量为30 mL,反应温度为45℃,反应时间为3h,此时产物的氮质量分数为2.22%.在模拟人体生理介质的条件下,测定了纤维素苦味酸醚对肌酐的吸附性能,绘制了吸附动力学曲线.结果表明,纤维素苦味酸醚对肌酐的吸附平衡时间为18 h,对肌酐的最大吸附容量为2.49 ms/s.  相似文献   

14.
小麦麸皮纤维稀酸水解糖化工艺研究   总被引:1,自引:1,他引:0  
郭娜  姜绍通  李兴江  李硕 《安徽农业科学》2012,40(24):12232-12234
[目的]提高小麦麸皮纤维糖化率,使小麦麸皮得到高效利用。[方法]以小麦麸皮为原料,采用正交试验的方法,以还原糖浓度和水解率为考察指标,研究了稀酸浓度、温度、时间、底物浓度对小麦麸皮纤维酸水解糖化的影响。[结果]温度对酸水解制备还原糖影响非常显著,酸浓度对水解影响明显,时间和底物浓度对小麦麸皮酸水解的影响不明显。小麦麸皮酸水解糖化工艺最佳条件为温度100℃,酸浓度1.5%,时间3.0 h,底物浓度0.067 g/ml;该条件下,小麦麸皮纤维酸水解后还原糖浓度达到38.137 mg/ml,水解率为51.485%。[结论]该研究提高了小麦麸皮纤维酸水解制糖能力,可为小麦麸皮的工业加工应用提供理论依据。  相似文献   

15.
[目的]为菊苣菊粉水解的生产实践提供理论依据。[方法]以普那菊苣为材料,单因素试验研究水解时间、水解温度、硫酸浓度(体积分数)对菊粉果糖转化率的影响,正交试验结合方差分析确定菊粉水解的最优工艺参数,并进行验证。[结果]单因素试验结果表明,随着水解时间的延长、水解温度的升高和硫酸浓度的增大,果糖转化率均呈先增加后降低的趋势,分别在水解时间60min、水解温度70℃和硫酸浓度3%时达到峰值。各因素对果糖转化率的影响程度由大到小依次为:水解时间>硫酸浓度>水解温度。[结论]菊苣菊粉水解的最优工艺为:菊苣菊粉浓度15%,水解时间65min,水解温度65℃,硫酸浓度3.5%,该工艺条件下,果糖的平均转化率为91.62%。  相似文献   

16.
唐建  海维燕  邱忠平  周丽萍  童霏 《安徽农业科学》2010,38(27):15206-15207
[目的]为更有效地处理生活垃圾提供参考。[方法]采用硫酸法测定生活垃圾中的木质素。以垃圾中脂肪抽提时间、硫酸浓度、水解反应温度、水解反应时间、加水稀释硫酸浓度、回流时间为考察因素进行6因素5水平正交试验。[结果]测定生活垃圾中木质素含量时各因素影响大小为:回流时间〉水解反应温度〉硫酸浓度〉脂肪抽提时间〉水解反应时间〉加水稀释硫酸浓度。测定生活垃圾中木质素含量的最佳条件为:脂肪抽提时间1h、硫酸浓度60%、水解反应温度20℃、水解反应时间1h、加水稀释硫酸浓度9%、回流时间3h。优化后木质素的测定条件RSD均小于1.51%,表明该方法的精度高,适用于垃圾填埋各个阶段的木质素含量测定,且分析结果准确可靠,符合分析方法的要求。[结论]优化了城市生活垃圾中木质素含量的测定方法。  相似文献   

17.
张建辉  梁海琴  王文冠 《安徽农业科学》2012,40(28):13988+14066
[目的]确定稀硫酸催化水解小麦秸秆的最优工艺条件。[方法]以小麦秸秆为原料,在稀硫酸催化条件下进行热水解,分别考察水解温度、硫酸浓度、水解时间对小麦秸秆水解液中还原性糖含量的影响,从而确定小麦秸秆的最优水解工艺。[结果]在硫酸浓度为5.0%,水解时间为150 min,水解温度为120℃的试验条件下小麦秸秆水解液中还原性糖含量最高,在此条件下所得还原性糖的产率为83.3%。[结论]该研究可为更好地利用小麦秸秆提供一定的理论依据。  相似文献   

18.
在硫酸催化剂作用下对稻草进行加溶剂液化,考察了稻草中主要成分纤维素的变化规律。通过设计液化温度、液化时间、催化剂用量、液固质量比(乙二醇∶稻草)等反应条件,跟踪了液化产物中纤维素的量变轨迹。结果表明:液化温度为90℃,液化时间为90 min,催化剂用量为1.50 mmol/g,液固质量比为7∶1时,液化产物中纤维素含量可达到58.3%。  相似文献   

19.
张丽君  李爱军  欧仕益 《广东农业科学》2012,39(14):113-115,118
以大豆皮为原料,采用纤维素酶酶解法制备大豆皮微晶纤维素(MCC).通过单因素试验考察料液比、酶添加量、pH值、酶解时间、酶解温度对制备大豆皮微晶纤维素得率及聚合度的影响,并在此基础上通过正交试验确立最佳酶解条件:酶添加量0.3 mL/g、pH 5.8、料液比1∶20(g/mL)、温度50℃、酶解时间3h.该最佳条件下制得的微晶纤维素的得率为29.93%,聚合度为494.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号